Copper(I) stabilized on N, N^{\prime}-methylene bis-acrylamide crosslinked polyvinylpyrrolidone: An efficient reusable catalyst for click synthesis of 1,2,3-triazoles in water

Paulson Mathew (${ }^{\text {(}}$ Drishya Sasidharan | Nellickal Purushothaman Rakesh

Department of Chemistry, Centre for Sustainability Science, St. Thomas College (Autonomous), University of Calicut, Thrissur, 680001, Kerala, India

Correspondence

Paulson Mathew, Department of Chemistry, Centre for Sustainability Science, St. Thomas College (Autonomous), University of Calicut, Thrissur, 680001, Kerala, India.
Email: paulson.org@gmail.com

Funding information

University Grants Commission, New Delhi, Grant/Award Numbers: No. 2242-MRP/15-16/KLCA019/UGC-SWRO, No.F.14-18/2013 Inno/ASIT

Abstract

N, N^{\prime}-methylene bis-acrylamide crosslinked N-vinyl-2-pyrrolidone (NVPMBA) polymer was prepared via suspension polymerization technique and used as a polymeric support for the reduction of $\mathrm{Cu}(\mathrm{II})$ to $\mathrm{Cu}(\mathrm{I})$. It was observed that NVPMBA matrix facilitated the stabilization of $\mathrm{Cu}(\mathrm{I})$ particles. Furthermore, the copper supported polymer catalyst (CuNVPMBA) was characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray analysis, transmission electron microscope (TEM), X-ray photoelectron spectra (XPS), inductively coupled plasma optical emission spectroscopy, and derivative thermogravimetry analysis. SEM showed that both the polymer and CuNVPMBA exhibit a spherical morphology. TEM revealed that copper nanoparticles formed on the polymer surface have an average particle size of 5.14 nm . XPS analysis confirmed the presence of $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Cu}(\mathrm{II})$ in the ratio $1: 2$. The copper content in CuNVPMBA was found to be $1.25 \mathrm{wt} \%$. CuNVPMBA was found to be very effective in promoting the click reaction between terminal alkynes and azides in aqueous media in the absence of ascorbate or external base under mild conditions to form $1,2,3$-triazoles in excellent yield with a copper loading as low as $0.2 \mathrm{~mol} \%$. The catalyst could be reused and recycled several times without significant loss of catalytic activity.

KEYWORDS

Polymer-supported copper, click reaction, 1,2,3-triazole, reaction in aqueous media, in situ reduction of $\mathrm{Cu}(\mathrm{II})$

1 | INTRODUCTION

1,2,3-Triazoles are an important class of heterocyclic compounds and are widely used in synthetic organic chemistry and materials science. ${ }^{[1]}$ They are well known for their potential biological activities such as antibacterial, antiviral, anti-HIV and anticancer

[^0]behavior. ${ }^{[2-4]}$ Moreover, triazoles and their triazolylidene derivatives are versatile ligands for late transition metals that have special significance in homogeneous catalysis. ${ }^{[5-7]} 1,2,3$-Triazole derivatives are also used in industry as agrochemicals, corrosion inhibitors, and dyes. ${ }^{[8]}$ The synthesis of $1,2,3$-triazoles has gained significant attention after the $\mathrm{Cu}(\mathrm{I})$-catalyzed azide-alkyne cycloaddition (CuAAC) reaction developed independently by Sharpless ${ }^{[9]}$ and Meldal ${ }^{[10]}$ in 2002. A plethora of methods have since been developed by various
researchers to improve its synthetic efficiency. ${ }^{[11]}$ These include both homogeneous and heterogeneous systems ${ }^{[12]}$ using one-pot procedures, ${ }^{[13]}$ magnetic heterogeneous catalysis, ${ }^{[14]}$ nanoparticles, ${ }^{[15]}$ and reactions in water. ${ }^{[16]}$ Although metals like silver, ruthenium, zinc, nickel etc. have been known to catalyze the reaction, ${ }^{[17]}$ the $\mathrm{Cu}(\mathrm{I})$ catalyzed reaction is the most practical and useful "click" reaction for the regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles. ${ }^{[18]}$ To date various ligand systems have been designed and developed to stabilize and modulate the reactivity of the catalytically active $\mathrm{Cu}(\mathrm{I})$ species. However, a homogeneous click catalyst add to the problem of removing copper ions from finished products. ${ }^{[19]}$ With growing environmental concerns, green protocols requiring the minimum use of catalyst, including its recovery and reuse, are in great demand. To resolve such issues, immobilizing the copper ions on solid supports like carbon, zeolite, silica, polymers etc. has been developed to synthesize the corresponding heterogeneous catalyst. ${ }^{[20-24]}$ Such immobilization of copper ions onto various heterogeneous supports can generate an efficient heterogeneous catalyst for the click reaction with good catalytic activity and recyclability.

Recently, polymer-supported catalysts have been explored as recyclable heterogeneous catalysts due to their ease of preparation and post functionalization of the support. It has been observed that the copper-mediated click reaction is accelerated by the presence of certain ligands, such as tris(2-aminoethyl)amine derivatives and acrylamide, and by minimizing the amount of $\mathrm{Cu}(\mathrm{I})$ catalyst to an order of less than 1%. ${ }^{[25]}$

Polyvinylpyrrolidone (PVP), a stable, nontoxic commercially available polymer, is widely used as a stabilizer and growth modifier in the synthesis of metal nanoparticles. ${ }^{[26,27]}$ It can also act as a mild reducing agent for transforming transition metals in their higher oxidation state to zero oxidation state. ${ }^{[28]}$ However, such reduction processes are frequently accomplished in presence of other reducing agents such as NaBH_{4}, ethylene glycol, ${ }^{[29-31]}$ glucose ${ }^{[32]}$ or hydrogen gas. ${ }^{[33]}$ The reducing power of PVP is attributed to the presence of a terminal hydroxyl group. ${ }^{[34]}$ Metal particles stabilized on PVP show better catalytic activity and selectivity than conventional catalysts. ${ }^{[35,36]}$ With this in mind, it was presumed that a copolymer containing a pyrrolidone backbone can perform a dual role of in situ reduction of $\mathrm{Cu}(\mathrm{II})$ to $\mathrm{Cu}(\mathrm{I})$ and stabilization of the latter in the polymer matrix, preventing further reduction to $\mathrm{Cu}(0)$.

In this context, an in situ reduction of $\mathrm{Cu}(\mathrm{II})$ to $\mathrm{Cu}(\mathrm{I})$, from inexpensive and easily available reagent, that is, copper sulfate, using the copolymer N, N^{\prime}-methylene bisacrylamide crosslinked with N-vinyl-2-pyrrolidone (NVPMBA), is reported in the present work. Subsequently, the copper-supported polymer catalyst (CuNVPMBA) was used for the click synthesis of 1,2,3-triazoles in water with very low catalyst loading. Unlike previous reports, no post functionalization of the support was required and reduction of $\mathrm{Cu}(\mathrm{II})$ to $\mathrm{Cu}(\mathrm{I})$ could be carried out without external reducing agents or an additional base. ${ }^{[37-41]}$ The crosslinking agent with its basic character could provide additional stability to the $\mathrm{Cu}(\mathrm{I})$ ions and prevent further reduction to $\mathrm{Cu}(0)$. This catalyst was highly efficient in terms of low metal

FIGURE 1 Swelling properties of the polymer (NVPMBA) with different degrees of crosslinking
loading, reaction in water, recyclability, and robustness. It is noteworthy that with a very low amount of catalyst being loaded and exceptional efficiencies, the CuAAC reactions in aqueous solution under mild reaction conditions can effectively contribute to the pursuit of "green chemistry" with potential industrial applications.

2 | EXPERIMENTAL SECTION

2.1 | Materials and methods

All the chemicals were purchased from Sigma Aldrich, Bangalore, India and used as received. All the organic solvents were obtained from Spectrochem India and were used without further purification. Double-distilled water was used in all experiments. Fourier transform infrared (FT-IR) spectra were recorded on a Perkin Elmer L160000A (USA) instrument by the attenuated total reflection method. Scanning electron microscopy (SEM) images were collected using a JEOL JSM-6390LV (Japan) instrument operated at $2-10 \mathrm{kV}$. An ultrathin window energy dispersive X-ray (EDX) analysis and a Gatan imaging filter attached to the microscope were used to determine the chemical composition of the sample. Transmission electron microscopy (TEM) images were used to study the microscopic properties of the coppersupported polymer catalyst and were recorded using a JEOL 4000EX high-resolution transmission electron microscope operated at 400 kV using an LaB6 source. The powder X-ray diffraction (PXRD) patterns were recorded on a AXS, D8 Advance X-ray diffractometer (Bruker, Germany) operated at 20 kV using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=0.1542 \mathrm{~nm})$. The measurements were performed over a diffraction angle range of $2 \theta=15-80^{\circ}$. The X-ray photoelectron spectra (XPS) were collected in an ultrahigh vacuum chamber attached to a Thermo Electron Iris Intrepid II XSP Duo system (Thermo Electron Corporation, USA). Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis was carried out using a Thermo Fisher Scientific iCAP 7000 series (USA)
instrument. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Advance III, 400 instrument (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$ in CDCl_{3}). Thermogravimetric (TG) analysis and derivative thermogravimetry (DTG) results were obtained from a Perkin Elmer, Diamond Thermogravimetric/Differential

(a)

(b)

FIGURE 2 SEM images of (a) NVPMBA and (b) Cu NVPMBA catalyst

SCHEME 1 Synthesis of NVPMBA and plausible copper coordination

FIGURE 3 (a) EDX spectrum and (b) particle size histogram of CuNVPMBA

FIGURE 4 PXRD pattern of CuNVPMBA catalyst

Thermal Analyzer (Perkin Elmer, USA). Elemental analysis was performed on an on a Vario EL III (Elementar, Germany) and gas chromatography-mass spectrometry studies were conducted on an ISQ LT GC-MS Thermo Fisher Scientific instrument.

2.2 | Synthesis of $\boldsymbol{N}, \boldsymbol{N}^{\prime}$-methylene bisacrylamide crosslinked polyvinylpyrrolidone

N, N^{\prime}-methylene bis-acrylamide crosslinked (4\%) polyvinylpyrrolidone (NVPMBA) was prepared via suspension polymerization of the monomers in water. To a solution of 0.23 g of sodium dibasic phosphate and 20 g of sodium sulfate in 120 ml of water, a mixture of the monomers N-vinyl-2-pyrrolidone (10.5 ml), N, N^{\prime} methylene bis-acrylamide (0.62 g) and $2,2^{\prime}$-azobisisobutyronitrile (AIBN) (0.12 g) were added under nitrogen atmosphere. The mixture was then stirred at $70^{\circ} \mathrm{C}$ for 4 hr . The mixture was cooled to room temperature and the product was filtered, washed with water $(4 \times 25 \mathrm{ml})$ followed by acetone and dried at $60^{\circ} \mathrm{C}$ in a vacuum oven to obtain 10.4 g of the polymer beads. These beads were then subjected to Soxhlet extraction using an acetone/methanol (1:1) mixture to remove linear polymers. Beads with mesh size 120-200 were separated by sieving and used in the study.

2.3 | Complexation of copper ions with NVPMBA

To a 100 ml round-bottomed flask containing 20 ml of acetic acid, 2 g NVPMBA was added and kept for 4 hr until it had swelled up. Copper sulfate ($1.5 \mathrm{~g}, 6 \mathrm{mmol}$) dissolved in water $(10 \mathrm{ml})$ was added to the solution and the resultant mixture was stirred at $70^{\circ} \mathrm{C}$ for 2 hr . After cooling to room temperature, the copper complexed polymer (CuNVPMBA) was filtered, washed with ethanol and dried at $60^{\circ} \mathrm{C}$ in a vacuum oven.

2.4 | General procedure for the azidealkyne cycloaddition

Alkyne (10 mmol), halide (10 mmol), and sodium azide ($730 \mathrm{mg}, 12 \mathrm{mmol}$) were placed in a 100 ml roundbottomed flask. Subsequently, $10 \mathrm{mg}(0.2 \mathrm{~mol} \%)$ of the catalyst CuNVPMBA and 10 ml water were added. The resultant mixture was heated at $60^{\circ} \mathrm{C}$ for 5 hr and cooled to room temperature to form a white solid. The same product can be obtained by stirring the reaction mixture for 8 hr at room temperature. The solid formed was filtered, washed with water, and recrystallized from alcohol to get 1,2,3-triazoles in excellent yields. These triazoles

FIGURE 5 Binding energy of CuNVPMBA as observed in XPS
(a)

FIGURE 6 (a) HR-TEM image and (b) TEM particle size histogram of CuNVPMBA
were characterized using ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR analysis. The values are in good agreement with those reported in the literature (see Supporting Information Data S1).

3 | RESULTS AND DISCUSSION

3.1 | Synthesis of the polymer catalyst

N, N^{\prime}-methylene bis-acrylamide (MBA) crosslinked polyvinylpyrrolidone copolymer was prepared by suspension polymerization of the monomers N -vinyl-2-pyrrolidone (NVP) and $\mathrm{N}, \mathrm{N}^{\prime}$-methylene bis-acrylamide (MBA) using AIBN as the radical initiator. MBA was selected as the crosslinking agent since the amide moiety present on the
molecule can facilitate the coordination of copper. ${ }^{[42]}$ Crosslinking agent up to 4% was used to ensure a balance between rigidity and swelling properties. The polymer showed better swelling properties in acetic acid medium compared to water (Figure 1). Immobilization of copper ions into the polymer was achieved by heating it with $\mathrm{Cu}(\mathrm{II})$ sulfate in acetic acid as solvent. During this process, Cu (II) ions were adsorbed onto the polymer matrix and subsequently reduced to $\mathrm{Cu}(\mathrm{I})$. The polymer support facilitates the immobilization of copper ions within the polymeric voids. This could be attributed to the coordination of $\mathrm{Cu}(\mathrm{I})$ with the oxygen atoms of pyrrolidone and chain nitrogen MBA, which can plausibly form an energetically more stable $\mathrm{Cu}(\mathrm{I})$ species and prevent further reduction of $\mathrm{Cu}(\mathrm{I})$ to $\mathrm{Cu}(0)$ (Scheme 1). This mode

FIGURE 7 FTIR spectrum of (a) MBA, (b) NVP, (c) NVPMBA, and (d) CuNVPMBA
of action was further supported by the following characterization techniques.

3.2 | Characterization of copper supported polymer catalyst

SEM analysis was used to study the surface morphology of NVPMBA and CuNVPMBA catalyst (Figure 2). The spherical surface morphology of the polymer remained unchanged even after loading the metal on its surface. A high level of rigidity of the polymer could be deduced from the fact that focusing the high intensity electron beam on the sample did not distort its morphology. EDX spectra were obtained from the electron beam focused onto the CuNVPMBA sample, which showed peaks at binding energies of $0.85,8.05$, and 8.95 keV . The peaks could be assigned to $\mathrm{CuL} 1, \mathrm{CuK} \alpha$, and $\mathrm{CuK} \beta$, respectively (Figure 3). EDX analysis of the copper-supported NVPMBA copolymer showed the existence of copper species in different environments and a weight percentage of $1.23 \mathrm{wt} \%$. This was confirmed using ICP-OES analysis and the result showed that percentage of copper in the polymer was $1.25 \mathrm{wt} \%$.

The PXRD pattern of $\mathrm{Cu}(\mathrm{I})$ stabilized on the polymer support is shown in Figure 4. The pattern indicates a mixed phase of $\mathrm{Cu}_{2} \mathrm{O}$ and CuSO_{4}. Peaks at $2 \theta=38.4$, $42.1,61.8$, and 73.6 were indexed as the (111), (200), (220), and (311) planes of $\mathrm{Cu}_{2} \mathrm{O}$, which is in good agreement with JCPDS file no. 45-0937 for $\mathrm{Cu}_{2} \mathrm{O}$. Peaks at $2 \theta=25.4,33.7,48.7,54.4$, and 59.3 were assigned to the (0-21), (-140), (-312), (202), and (321) planes of CuSO_{4}, respectively (JCPDS File No. 77-1900). Other peaks at $2 \theta=18.9,23,28,28.9,32$, and 33.7 were assigned to the crystalline phases present in the NVPMBA polymer matrix.

The PXRD results were in good agreement with XPS studies which confirmed the presence of $\mathrm{Cu}(\mathrm{I})$ and Cu (II) in the polymer matrix (Figure 5). In the figure, peaks at 932.4 eV and 934.8 eV are due to the characteristic $\mathrm{Cu} 2 \mathrm{p}_{3 / 2}$ peaks of $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Cu}(\mathrm{II})$ respectively. Shake-up satellite peaks were also observed at higher binding energies, characteristic of compounds having d^{9} configuration in the ground state. ${ }^{[43]}$ The area under these two main peaks was used to estimate the ratio of $\mathrm{Cu}(\mathrm{I}): \mathrm{Cu}(\mathrm{II})$ and this was found to be $1: 2$. Since the XPS spectra of $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Cu}(0)$ are indistinguishable ${ }^{[44]}$ and reduction of $\mathrm{Cu}(\mathrm{II})$ to $\mathrm{Cu}(0)$ was ruled out in the PXRD analysis, the area of peak at 932.45 was considered to be exclusively due to the presence of $\mathrm{Cu}(\mathrm{I})$.

The transmission electron microscopy (TEM) image of the CuNVPMBA catalyst confirmed the presence of copper oxide nanoparticles dispersed on the polymer support with an average size of 5.14 nm (Figure 6).

The FT-IR spectra of MBA, NVP, CuNVPMBA, and NVPMBA are shown in Figure 7. The spectra display characteristic $\mathrm{Cu}-\mathrm{O}$ stretching vibration of $\mathrm{Cu}_{2} \mathrm{O}$ at

FIGURE 8 TG and DTG curves obtained for CuNVPMBA catalyst

TABLE 1 Solvent and catalyst optimization studies ${ }^{a}$
\(\left.\left.$$
\begin{array}{lllll}\text { Catalyst } \\
\text { loading } \\
\text { (mg) }\end{array}
$$\right) \begin{array}{l}Temperature

\left({ }^{\circ} C)\right.\end{array}\right]\)| Yield |
| :--- |
| $(\%)^{\mathbf{b}}$ |

[^1]TABLE 2 CuNVPMBA catalyzed one-pot synthesis of 1,2,3-triazoles in water ${ }^{\text {a }}$
Entry

3

4

5

6

TABLE 2 (Continued)
Entry
10

11

12

13

${ }^{\text {a }}$ Reaction conditions: Halide $\mathbf{1}(10 \mathrm{mmol})$, terminal alkynes $\mathbf{2}(10 \mathrm{mmol})$, sodium azide (12 mmol), catalyst CuNVPMBA ($10 \mathrm{mg}, 0.2 \mathrm{~mol} \%$) in water (5 ml) at $60^{\circ} \mathrm{C}$ for 5 hr .
${ }^{\mathrm{b}}$ Yield: isolated yield.
$627 \mathrm{~cm}^{-1} .{ }^{[45]}$ The $\mathrm{C}=\mathrm{O}$ groups of pure NVPMBA show a prominent peak at $1639 \mathrm{~cm}^{-1}$. This characteristic peak was used to observe the interaction between the polymer and copper ions. CuNVPMBA showed a strong absorption at $1608 \mathrm{~cm}^{-1}$, which indicates a strong interaction between copper and the polymer support, possibly through the nitrogen and carbonyl groups present in the polymer. The peak shift towards the low wavenumber direction has been reported previously in PVP-stabilized
platinum group metals. ${ }^{[46]}$ A very small shift in the $\mathrm{N}-\mathrm{H}$ vibrational frequency indicates feeble interaction between copper and the crosslinking agent (MBA).

The thermal stability of the polymer was monitored using TG and DTG analysis (Figure 8). The thermogram indicated major weight loss at $240^{\circ} \mathrm{C}$. In TGA, the residue at $900^{\circ} \mathrm{C}$ indicated a copper weight percentage of $\sim 1.25 \mathrm{wt} \%$, which is in good agreement with other analysis.

FIGURE 9 Reusability study of CuNVPMBA catalyst in the CuAAC reaction
(a)

FIGURE 10 (a) SEM image and (b) EDX spectrum of the reused catalyst after the fifth cycle

3.3 | Catalytic activity

The as-prepared CuNVPMBA catalyst was investigated for the click synthesis of 1,4-disubstituted 1,2,3-triazoles using alkyl halide, sodium azide, and alkyne. Optimization of the reaction was performed by taking benzyl chloride, sodium azide, and phenylacetylene as reactants (Table 1). The three-component reaction was carried out by taking the components in water followed by addition of 10 mg of the catalyst and heating at $60^{\circ} \mathrm{C}$ for 5 hr . The solid that separated out was filtered and recrystallized from ethanol to get pure 1,2,3-triazoles. Increasing the catalyst loading to 20 mg did not significantly affect the overall yield whereas decreasing the catalyst loading to 5 mg reduced the yield of the products (Table 1, entries 7 and 8). In the absence of the catalyst, formation of 1-benzyl-4-phenyl-1 H-1,2,3-triazole was not observed (Table 1, entries 9 and 10).
t-butanol, ethanol, dichloromethane (DCM), acetonitrile, tetrahydrofuran (THF), N,N-dimethylformamide
(DMF), water were tested as solvents, and water was found to be the most effective (Table 1). After optimizing the click reaction, the scope of the reaction was further explored using different alkynes and alkyl halides. It was observed that electron-donating or electron-withdrawing groups had negligible effect on the overall yield of the product (Table 2).

As proposed by Fokin et al. ${ }^{[47]}$ for the mechanism of 1,2,3-triazole formation by click chemistry, it has been speculated that $\mathrm{Cu}(\mathrm{I})$ present in the polymer wells is responsible for the catalytic activity. During the catalytic process, $\mathrm{Cu}(\mathrm{I})$ was oxidized to $\mathrm{Cu}(\mathrm{II})$, which in turn was reduced to $\mathrm{Cu}(\mathrm{I})$ by the NVP backbone and the catalytic cycle was repeated.

Recyclability of the catalyst was examined using phenylacetylene, benzyl chloride, and sodium azide as reactants and the reaction was performed under the previous reaction conditions. To avoid any loss of catalyst while separating the product by filtration, the product was extracted using ethyl acetate after the first run. The

TABLE 3 Comparison of click synthesis of 1,2,3-triazoles catalyzed by polymer-supported copper catalyst reported in the literature

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^2]residual catalyst was reused five times under the same conditions and did not show any significant loss of catalytic activity after each successive run (Figure 9).

After the fifth reaction cycle, an SEM image of the catalyst was taken and this did not show any significant change in the morphology (Figure 10). EDX analysis of the recycled catalyst after the fifth run indicated that the copper concentration was $1.22 \mathrm{wt} \%$. After completion of the reaction, the residual solution was subjected to ICPOES analysis and the absence of copper in the reaction medium was confirmed. Therefore, metal leaching during the process was negligible and facilitated efficient catalyst recycling.

Further investigation of scaling up of the reaction was undertaken by increasing the amount of reactants 10 -fold under the same reaction conditions. It was observed that using the same quantity of catalyst, the product was obtained in 97% yield only after 7 hr . However, on increasing the amount of catalyst to 20 mg , the reaction time could be reduced to 5 hr to get quantitative conversion of reactants to product.

A comparative study of the efficiency of CuNVPMBA catalyst with that of recently reported polymer-supported copper catalysts for the click reaction to afford 1,4-disubstituted 1,2,3-triazoles is summarized in Table $3 .{ }^{[48,49]}$ It is noteworthy that the CuNVPMBA catalyst is highly efficient in terms of activity, resistance to oxidation, and stability. The reaction involves the in situ generation of organic azides which are directly converted into 1,2,3-triazoles. Therefore, handling of hazardous byproducts is completely avoided during this reaction.

4 | CONCLUSIONS

To conclude, the present study demonstrates the synthesis and characterization of CuNVPMBA polymer and its application in catalyzing azide-alkyne cycloaddition in water. The dual function of in situ reduction of $\mathrm{Cu}(\mathrm{II})$ to $\mathrm{Cu}(\mathrm{I})$ and stabilization of the latter on the polymer matrix has been explored in this work. The catalyst was characterized by spectral and analytical techniques. Execution of the catalytic reaction was performed easily using a one-pot, three-component strategy of click reaction between alkyl halide, sodium azide, and alkyne to provide the target compound 1,4-disubstituted 1,2,3-triazoles in a regioselective manner and excellent yields. Inexpensive and easily available copper sulfate was used as the copper source. The process was environmentally friendly and only a very small quantity of catalyst was required. Recyclability of the catalyst without significant loss of efficiency was observed. The possibility
for scaling up the reaction extends the scope for commercialization of the catalyst.

ACKNOWLEDGMENTS

PM thanks the University Grants Commission (UGC), New Delhi for the generous support for a GCMS system under Innovative Programme (No.F.14-18/2013 Inno/ASIT) and a minor project No. 2242-MRP/15-16/ KLCA019/UGC-SWRO for financial support. We thank IIRBS, MG University, Kottayam, Kerala and SAIF, Cochin University of Science and Technology (CUSAT), Kerala, India for providing NMR and other analytical data respectively.

FUNDING INFORMATION

PM thanks the University Grants Commission (UGC), New Delhi for the generous support for a GCMS system under Innovative Programme (No.F.14-18/2013 Inno/ASIT) and a minor project No. 2242-MRP/15-16/ KLCA019/UGC-SWRO for financial support.

ORCID

Paulson Mathew (D) https://orcid.org/0000-0001-6809-3491

REFERENCES

[1] W. Dehaen, V. A. Bakulev, Chemistry of 1,2,3-triazoles, Springer International Publishing, Switzerland 2014.
[2] S. G. Agalave, S. R. Maujan, V. S. Pore, Chem. - Asian J. 2011, 6, 2696.
[3] D. Dheer, V. Singh, R. Shankar, Bioorg. Chem. 2017, 71, 30.
[4] R. Alvarez, S. Velazquez, A. San-Felix, S. Aquaro, E. D. Clercq, C. F. Perno, A. Karlsson, J. Balzarini, M. J. Camarasa, J. Med. Chem. 1994, 37, 4185.
[5] A. Vivancos, C. Segarra, M. Albrech, Chem. Rev. 2018, 118, 9493.
[6] D. Sasidharan, C. V. Aji, P. Mathew, Polyhedron 2019, 157, 335.
[7] P. Sharma, J. Rathod, A. P. Singh, P. Kumar, Y. Sasson, Catal. Sci. Technol. 2018, 8, 3246.
[8] W. Q. Fan, A. R. Katritzky, 1,2,3-Triazoles, in Comprehensive Heterocyclic Chemistry II, (Eds: A. R. Katritzky, C. W. Rees, E. F. V. Scriven), Elsevier Science, Oxford 1996.
[9] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
[10] C. W. Tornoe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
[11] D. Huang, P. Zhao, D. Astruc, Coord. Chem. Rev. 2014, 272, 145.
[12] S. Chassaing, V. Bénéteau, P. Pale, Catal. Sci. Tech. 2016, 6, 923.
[13] S. Roy, T. Chatterjee, S. M. Islam, Green Chem. 2013, 15, 2532.
[14] Z. Zarnegar, J. Safari, New J. Chem. 2014, 38, 4555.
[15] M. Gholinejad, N. Jeddi, ACS Sustainable Chem. Eng. 2014, 2, 2658.
[16] R. N. Butler, A. G. Coyne, Chem. Rev. 2010, 110, 6302.
[17] C. Wang, D. Ikhlef, S. Kahlal, J. Saillard, D. Astruc, Coord. Chem. Rev. 2016, 316, 1.
[18] P. Thirumurugan, D. Matosiuk, K. Jozwiak, Chem. Rev. 2013, 113, 4905.
[19] C. Deraedt, N. Pinaud, D. Astruc, J. Am. Chem. Soc. 2014, 136, 12092.
[20] C. Girard, E. Onen, M. Aufort, S. Beauviere, E. Samson, J. Herscovici, Org. Lett. 2006, 8, 1689.
[21] M. Nasrollahzadeh, M. Sajjadi, H. Alikhonakdar, J. Mol. Struct. 2018, 1161, 453.
[22] M. Nasrollahzadeh, M. Maryami, M. Sajjadi, E. Mehdipour, Appl. Organomet. Chem. 2019, 33, e4730.
[23] M. Nasrollahzadeh, S. M. Sajadi, A. Rostami-Vartooni, M. Khalaj, J. Colloid Interface Sci. 2015, 453, 237.
[24] M. Nasrollahzadeh, B. Jaleh, P. Fakhri, A. Zahraei, E. Ghadery, RSC Adv. 2015, 5, 2785.
[25] Y. M. A. Yamada, S. M. Sarkar, Y. Uozumi, J. Am. Chem. Soc. 2012, 134, 9285.
[26] K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, S. E. Skrabalak, Dalton Trans. 2015, 44, 17883.
[27] T. C. Deivaraj, N. L. Lala, J. Y. Lee, J. Colloid Interface Sci. 2005, 289, 402.
[28] Y. Xiong, I. Washio, J. Chen, H. Cai, Z.-Y. Li, Y. Xia, Langmuir 2006, 22, 8563.
[29] M. Tsuji, R. Matsuo, P. Jiang, N. Miyamae, D. Ueyama, M. Nishio, S. Hikino, H. Kumagae, K. S. N. Kamarudin, X.L. Tang, Cryst. Growth Des. 2008, 8, 2528.
[30] M. H. Kim, B. Lim, E. P. Lee, Y. Xia, J. Mater. Chem. 2008, 18, 4069.
[31] H. Zhang, X. Ren, Z. Chi, J. Cryst. Growth 2007, 304, 206.
[32] M. Jin, G. He, H. Zhang, J. Zeng, Z. Xie, Y. Xia, Angew. Chem. Int. Ed. 2011, 50, 10560.
[33] T. Ayvali, P. Lecante, P.-F. Fazzini, A. Gillet, K. Philippot, B. Chaudret, Chem. Commun. 2014, 50, 10809.
[34] B. Lim, M. Jiang, J. Tao, P. H. C. Camargo, Y. Zhu, Y. Xia, Adv. Funct. Mater. 2009, 19, 189.
[35] A. Sarkar, T. Mukherjee, S. Kapoor, J. Phys. Chem. C 2008, 112, 3334.
[36] X. Zuo, H. Liu, M. Liu, Tetrahedron Lett. 1998, 39, 1941.
[37] R. U. Islam, A. Taher, M. Choudhary, M. J. Witcomb, K. Mallick, Dalton Trans. 2015, 44, 1341.
[38] L. Bahsis, H. B. El Ayouchia, H. Anane, A. Pascual-Álvarez, G. D. Munno, M. Julve, S.-E. Stiriba, Appl. Organomet. Chem. 2019, 33, e4669.
[39] F. Ebrahimpour-Malamir, T. Hosseinnejad, R. Mirsafaei, M. M. Heravi, Appl. Organomet. Chem. 2018, 32, e3913.
[40] P. V. Chavan, K. S. Pandit, U. V. Desai, M. A. Kulkarni, P. P. Wadgaonkar, RSC Adv. 2014, 44, 2137.
[41] B. Movassagh, N. Rezaei, Tetrahedron 2014, 70, 8885.
[42] B. George, V. N. R. Pillai, B. Mathew, J. Appl. Polym. Sci. 1999, 74, 3432.
[43] J. Ghijsen, L. H. Tjeng, J. V. Elp, H. Eskes, J. Westerink, G. A. Sawatzky, M. T. Czyzyk, Phys. Rev. B 1988, 38, 11322.
[44] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Mouler, in Handbook of X-Ray Photoelectron Spectroscopy, (Ed: G. E. Muilenberg), Perkin Elmer Corporation, Physical Electronics Division, Eden Prairie, MN 1979.
[45] A. S. Ethiraj, D. J. Kang, Nanoscale Res. Lett. 2012, 7, 70.
[46] W. X. Tu, X. B. Zuo, H. F. Liu, Chin. J. Polym. Sci. 2008, $26,23$.
[47] B. T. Worrell, J. A. Malik, V. V. Fokin, Science 2013, 340, 457.
[48] A. V. Zuraev, Y. V. Grigoriev, V. A. Budevich, O. A. Ivashkevich, Tetrahedron Lett. 2018, 59, 1583.
[49] M. Chetia, A. A. Ali, D. Bhuyan, L. Saikia, D. Sarma, New J. Chem. 2015, 39, 5902.
[50] B. H. Mandal, M. L. Rahman, M. M. Yusoff, K. F. Chong, S. M. Sarkar, Carbohydr. Polym. 2017, 156, 175.
[51] S. Pan, S. Yan, T. Osako, Y. Uozumi, ACS Sustainable Chem. Eng. 2017, 5, 10722.
[52] R. N. Baig, R. S. Varma, Green Chem. 2013, 15, 1839.
[53] J. F. Souza, G. P. Costa, R. Luque, D. Alves, A. R. Fajardo, Catal. Sci. Technol. 2019, 9, 136.
[54] N. Pourmohammad, M. M. Heravi, S. Ahmadi, T. Hosseinnejadi, Appl. Organomet. Chem. 2019, 33, e4967.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Mathew P,

 Sasidharan D, Rakesh NP. Copper(I) stabilized on N, N^{\prime}-methylene bis-acrylamide crosslinked polyvinylpyrrolidone: An efficient reusable catalyst for click synthesis of 1,2,3-triazoles in water. Appl Organometal Chem. 2020;e5642. https://doi.org/10. 1002/aoc. 5642
[^0]: Dedicated to the memory of Rt. Rev. Adolphus E. Medlycott, founder of the college, on the occasion of the centenary year 2019.

[^1]: ${ }^{\text {a }}$ Reaction conditions: benzyl chloride (10 mmol), phenyl acetylene (10 mmol), sodium azide (12 mmol), and catalyst.
 ${ }^{\mathrm{b}}$ Isolated yield after 5 hr of reaction.
 Note. DCM, dichloromethane; NVPMBA, RT, room temperature; THF, tetrahydrofuran.

[^2]: ${ }^{\mathrm{a}}$ Isolated yield.
 Note. DCM, dichloromethane; NVPMBA, N, N^{\prime}-methylene bis-acrylamide crosslinked N-vinyl-2-pyrrolidone; RT, room temperature. Catalysts: Aminomethylpolystyrene-supportedcopper(I): (Cu(I)-AMPS); Polystyreneresin-supported copper(I) iodide-cryptand-22 complex: (Cu(I)C22PS); Copper(II) poly-5-vinyltetrazolate: ($\mathrm{Cu}(\mathrm{II}) \mathrm{PolNC})$; CuI-functionalized poly[(methyl methacrylate)-co-maleimide]:(CuI@[PMMA-co-MI]); Coppernanoparticles in hydrogel based on chitosan and poly(vinyl alcohol): (Cuchitosan PVA); Thienebenzodiazepine modified poly (styrene-co-maleic anhydride) supported Cu(I)NPs: (CuI/ SMI-TD).

