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ABSTRACT
Main purpose of this paper is to study a robust measure of esti-
mating dependence between random variables that can be used
as an alternative to classical covariance estimator. An efficient uni-
variate nested L-estimator (repeated median) Sn with high break-
down point is used to define bivariate dispersion. Results
regarding in the characteristics of proposed estimator is discussed
through this paper.

ARTICLE HISTORY
Received 6 March 2019
Accepted 31 May 2019

KEYWORDS
Robust estimation; scale;
covariance; finite efficiency

1. Introduction

Robust inferences have significant role in the field of statistical analysis. It is necessary
to estimate location and scatter parameters robustly for noise free analysis. Median is
the most extensively known robust estimator for location of a random variable X.

Usually, it gives ½n=2�th order statistic from n independent observations x1; x2:::xn of X

when n is odd. In the case where n is even, median is the average of ½n=2�th and

ð½n=2� þ 1Þth order statistic. It is clear that median posses the optimal breakdown
point 50%.
Several median based scale estimators are available in literature. A very popular

median based robust scale estimator is Median Absolute Deviation from median
(MAD) raised by Hampel (1974) and he established that it is an approximation of M
estimator of scale. The asymptotic variance and influence function of MAD was derived
by Huber (1981). A detailed study on limit theorems and strong consistency of MAD
has been developed by Hall and Welsh (1985). MAD has breakdown point which is
equal to that of median. Despite of high breakdown value, MAD has only 37%
Gaussian efficiency in symmetric distributions. More efficient alternative for MAD with
50% breakdown point is discussed by Rousseeuw and Croux (1993). A pairwise distance

estimator QnðXÞ ¼ 2:2219fjxi � xjj; i < jgðkÞ where k�
� n
2

�
4 is one of the alternative to

MAD. Another reliable substitute for MAD is

Sn Xð Þ ¼ 1:1926med
i

med
j

jxi � xjj
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where med stands for low median (½nþ1
2 �th order statistic) for outer median and high

median (ð½n2� þ 1Þth order statistic) for inner median and 1.1926 is the consistency factor
for normal distributions. Sn estimator of scale assures bounded influence function and
optimal breakdown point 50%. Even though Sn is less efficient than Qn, Sn is more
applicable because of its low gross error sensitivity. Thus, Sn is more robust than Qn

(Rousseeuw and Croux 1993).
Sample covariance is not robust against existence of possible outliers. Falk (1997)

proposed a median based robust alternative to the sample covariance between two ran-
dom variables X and Y called comedian. It turns out that MAD is a special case of com-
edian. Similar type of estimator which robustly measure the degree of relation between
two random variables is discussed in this paper. Location free scale estimator is used to
define the dependence among two variables. The scope for location free robust covari-
ance estimator is discussed in Falk (1997). Characteristics of proposed robust covariance
is compared to classical covariance and comedian by utilizing theoretical and empir-
ical results.

2. Robust covariance estimator

Consider the bivariate random variable ðX;YÞ and let ðX1;Y1Þ; ðX2;Y2Þ; :::; ðXn;YnÞ be n
independent observations of ðX;YÞ: Then �X ¼ Pn

i¼1 Xi and �Y ¼ Pn
i¼1 Yi are the sample

means of X and Y respectively. Empirical covariance between X and Y is defined as

dCOV X;Yð Þ ¼ n�1ð Þ�1
Xn
i¼1

Xi � �Xnð Þ Yi��Ynð Þ (1)

It is clear that, dCOVðX;YÞ is highly influenced by the presence of outliers which
decreases its breakdown point 1=n: Asymptotically it will become zero.
In this paper a robust alternative for covariance estimation is proposed and is

denoted by SnCovðX;YÞ: It is defined as

SnCov X;Yð Þ ¼ med
i

med
j 6¼i

xi � xjð Þ yi � yjð Þ½ �
n o

(2)

where 16i; j6n and med stands for low median (½nþ1
2 �th order statistic). The square of

consistency factor (1.1926) of SnðxÞ can be multiplied to SnCovðX;YÞ in order to get
consistency at normal distribution. The repeated use of median was introduced by
Tukey (1977) and it is applied in estimation of linear regression by Siegel (1982).
Clearly, the defined robust covariance estimator is designed on the basis of repeated
median idea. Due to lemma by Siegel (1982), repeated median values are bounded.
Further properties of proposed estimators are discussed below.
Assume that fzi ¼ ðxi; yiÞ; i ¼ 1; :::ng are independent observations from a Euclidean

space X with common distribution L ¼ F � G (F and G are distribution functions of X
and Y respectively). Define a kernel function u : X � X ! R where uðzi; zjÞ ¼
ðxi�xjÞðyi�yjÞ: Let T1 and T2 be sample medians. For each z, let UðzÞ ¼ T1ðHzðtÞÞ and
h ¼ T2ðHÞ where HzðtÞ and H are distribution functions u(z, Z) and U(Z) respectively.
Here, h be the covariance that need to estimate. For estimating h, first estimate UðziÞ
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by bUðziÞ ¼ T1ðHzi;n�1ðtÞÞ; where Hzi;n�1ðtÞ is the empirical distribution of fuðzi; zjÞ; j 6¼
i; i fixedg: Then put bhn ¼ T2ðHnÞ; where Hn is the empirical distribution

of bUðz1Þ; :::; bUðznÞ:
Now, define the distribution function HzðtÞ i.e,

Hz tð Þ ¼ P u z;Zð Þ � tð Þ ¼ 1�
ðx
�1

ðy� t
x�x0

�1
l x0; y0
� �

d y0
� �

d x0ð Þ�
ð1
x

ð1
y� t

x�x0

l x0; y0
� �

d y0
� �

d x0ð Þ

(3)

where l is the density function of L

Lemma 1. If X and Y are independent and continuous with F�1ð0:5Þ ¼ G�1ð0:5Þ ¼ 0;
then SnCovðX;YÞ ¼ 0

Proof. Since X and Y are independent

Hz tð Þ ¼ 1�
ðx
�1

G y� t
x� x0

� �
dF x0ð Þ�

ð1
x

1�G y� t
x � x0

� �� �
dF x0ð Þ (4)

Here, U(z) solves for HzðUÞ ¼ 0:5: By Equation (4), and since

sgn F tð Þ�0:5ð Þ ¼ sgn G tð Þ�0:5ð Þ ¼ sgn tð Þ
where sgnðtÞ ¼ �1 if t<0;¼ 0 if t¼ 0 and ¼ 1 if t>0

Hz 0ð Þ ¼ 1�F xð ÞG yð Þ� 1�F xð Þð Þ 1�G yð Þ� �
<0:5; if sgn xyð Þ>0
¼ 0:5; if sgn xyð Þ ¼ 0
>0:5; if sgn xyð Þ<0

Hence, based on the similar arguments that of H€ossjer, Rousseeuw and Croux
(1992), sgnðUðzÞÞ ¼ sgnðxyÞ:
Also

H 0ð Þ ¼ P sgn xyð Þ � 0
� � ¼ 1�F 0ð ÞG 0ð Þ� 1�F 0ð Þð Þ 1�G 0ð Þð Þ ¼ 0:5

This follows,

H�1 0:5ð Þ ¼ med
Z�L

U Zð Þ ¼ 0

SnCov X;Yð Þ ¼ 0 w

Considering the two equalities in lemma 1.1 and 1.3 by Falk (1997), it is clear that

SnðaX þ bÞ ¼ jajSnðXÞ and SnCovðX;YÞ ¼ aSnðXÞ2 when Y ¼ aX þ b where a; b 2 R:

Let X ¼ Y; SnCovðX;XÞ ¼ SnðXÞ2; this states that Sn is a special case of SnCov:
Moreover SnCov is symmetric, location invariant and scale equivariant, i.e.

SnCov X; aY þ bð Þ ¼ aSnCov X;Yð Þ ¼ aSnCov Y;Xð Þ
A robust location free alternative to the coefficient of correlation q ¼ COVðX;YÞ

rxry
is there-

fore the Sncorrelation is denoted by nðX;YÞ is defined as

n ¼ n X;Yð Þ ¼ SnCov X;Yð Þ
Sn Xð ÞSn Yð Þ
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By lemma 1, if X and Y are independent and symmetric nðX;YÞ ¼ 0: Similarly in the
case where there is complete dependence i.e Y ¼ aX þ b for bivariate normal random
variable nðX;YÞ ¼ sgnðaÞ; almost surely: Hence, n 2 f�1; 1g:

3. Simulation study

Empirical properties of proposed estimator is discussed by Monte Carlo experiments.
Nonparametric correlation coefficient estimators are compared by Croux and Dehon
(2010) using finite sample variances. Finite sample efficiencies are estimated through
Mean Square Error (MSE) and it is defined as

MSE ¼ 1
k

Xk
i¼1

bq�qð Þ2 (5)

where bq is the estimated correlation coefficient.
Survey and comparison of different approaches of robust correlation coefficients are

presented by Shevlyakov and Smirnov (2011). Their study includes robust correlation
coefficients introduced by Gnanadesikan and Kettenring (1972), which is defined as

r~r ¼ ~r2 v1ð Þ�~r2 v2ð Þ
~r2 v1ð Þ þ ~r2 v2ð Þ

where v1 ¼ ðX=~rðXÞ þ Y=~rðYÞÞ= ffiffiffi
2

p
; v2 ¼ ðX=~rðXÞ�Y=~rðYÞÞ= ffiffiffi

2
p

and ~r is the robust
estimators of scale. Substituting MAD, Sn and Qn for ~r provides robust estimator for r~r :
The corresponding robust estimators of correlation coefficients are denoted by rMAD, rSn
and rQn : From the Monte Carlo study among these estimators presented in Shevlyakov
and Smirnov (2011), rQn shows better performance.
The following simulation aims to give a performance evaluation of robust correlation

coefficient defined using proposed covariance estimator. The MSE of proposed estima-
tor is compared with the robust correlation coefficients discussed in Shevlyakov and
Smirnov (2011), correlation median established by Falk (1997) and the classical coeffi-
cient of correlation r.
The simulation is performed for k¼ 10000, q ¼ 0:8 and different sample sizes n. The

results are presented in Tables 1 and 2. Table 1 shows the empirical n�MSEs of various
estimators for data sets without outliers. The simulation is performed with varying
amount of contamination and the results for 30% contamination is presented in
Table 2. The results are similar in other cases as well. Table 1 shows that error of n is
less for small sample sizes as compared to correlation median. On small and large

Table 1. n�MSE in Symmetric distribution.
n

20 50 100 200 1000

Correlation median 1.825 2.17 2.465 4.040 10.333
n 1.200 1.54 2.241 5.431 16.312
rMAD 0.778 0.502 0.432 0.389 0.366
rSn 0.462 0.293 0.246 0.238 0.248
rQn 0.326 0.206 0.176 0.175 0.164
r 0.173 0.151 0.135 0.137 0.133

4 S. O. KUNJUNNI AND S. T. ABRAHAM



sample sizes, classical coefficient of correlation r is the best for symmetric samples.
From Table 2, it is clear that in contaminated situation the proposed method perform
better than the other methods when n>50:

4. Conclusion

An efficient alternative for robust covariance estimator on the basis of repeated median
is investigated. Purpose of this paper is to find an alternative for comedian using Sn
scale estimator which is the more efficient and robust alternatives for MAD. Covariance
based on Sn estimator motivates to realize that it is a nested L-estimator. A non-
parametric measure of covariance and coefficient of correlation are proposed through
this paper. The SnCovðX;YÞ satisfies characteristic of sample covariance in independent
and symmetric random variables. The proposed estimator assures location invariant and
scale equivariant properties as well. The efficiency of Sncorrelation is greater than
median correlation in terms of MSE. The error estimate of Sncorrelation is lower than
that of rQn for large samples in contaminated situations. This specifies that Sncorrelation
is more resistant than other estimates to the presence of outliers in the large sample
cases. The direct generalization of proposed method to higher dimension is not be pos-
sible as the corresponding covariance matrix may not be positive definite. But an ortho-
gonalization similar to that of developed by Maronna and Zamar (2002) may be helpful
in higher dimensional cases.
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