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ABSTRACT: The use of hydrogen, being an environmentally
cleaner source of energy, may reduce the pressing problem of CO2
emissions due to the burning of conventional fossil fuels. However,
the prolonged production of hydrogen is a major issue and can be
solved through designing a stable electrocatalyst. In this work, we
have designed a Ni-doped Pd17Se15 catalyst that retains its activity
for 20000 electrochemical cycles. The enhanced stability of this
electrocatalyst can be attributed to the reversal of the activity
center from the Pd to the Se center through Ni substitution. The
concept of activating the chalcogen center and deactivating the Pd
site is supported through theoretical calculations. This work
provides a unique strategy of tuning catalysts toward higher activity and stability.
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■ INTRODUCTION

Environmental pollution and global warming are two major
concerns of the past few decades. Resorting to an alternative
source of energy can prove to be a better choice for sustainable
development. The hydrogen economy has the potential for
mitigating the problem of global warming through the
reduction of greenhouse gases.1 However, generating an
inexpensive source of hydrogen is still a challenge. The
hydrogen evolution reaction (HER) is a photo/electro-
chemical process in which water is reduced to molecular
hydrogen. With increasing emphasis recently placed on
sustainable energy harvesting and conversion, this particular
reaction has gained mounting attention for its pivotal role in
electrolytic or photocatalytic water splitting.
Generating a significant amount of hydrogen for a prolonged

period is still a challenge through electrochemical splitting
mainly due to poor stability of the electrocatalyst in an
electrolyte medium. First, the strong adsorption of the anionic
intermediates (SO4

2−, ClO4
2−) on the catalyst surface can

accelerate the degradation over time. Second, the stronger
hydrogen adsorption enables faster proton supply for the
reaction, leading to weaker hydrogen desorption and slower
release of active sites, thus poisoning the catalyst surface.
Hydrogen adsorption that is too weak will lead to inefficient
proton supply, resulting in a sluggish HER rate. Therefore, it is
crucial to control the behavior of H2 adsorption so that the
adsorption is neither strong nor too weak.
Both of these associated issues can be resolved by changing

the active center from the most vulnerable metallic site to the
less vulnerable nonmetallic site. From a fundamental

perspective, the transfer of activity from the metal to nonmetal
site provides us with two advantages: (i) the reduced activity of
the metallic site and enhanced activity of the nonmetallic site
can demonstrate enhanced stability during a reaction due to
reduced poisoning by the anionic and neutral adsorbate, and
(ii) since the metal site contributes negligibly to the overall
activity, lowering the loading percentage of the noble metal is
barely expected to affect the activity of the catalyst.
However, the precise tuning of the electronic structure is

required to achieve such an idea of reversing the activity.
Previous literature has proven that alloying techniques can
show genuine potential to obtain the required electronic
structure that is substantially different from the constituent
element.2−11 Alloying can induce an electronic structure
change into the system due to strain (strain/geometric
effect)12,13 and due to the introduction of a secondary element
(ligand effect).14−18

Recently, some chalcogenide materials have been reported
to exhibit a high degree of hydrogen evolution activity.19−27

Most of them have reported chalcogen surface sites as the
active center toward hydrogen adsorption.28 ZrS2, ZrSe2, and
ZrSSe are theoretically predicted to have better HER activity.29

They show more activity in the chalcogenide center. The
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electronic structure of such binary chalcogenides can further be
tuned by the introduction of a secondary element into the
lattice.
Motivated by our previous works on CoPd2Se2,

30 Pd17Se15,
31

and (Cu/Pd)17Se15,
4 which demonstrated better activity and

stability through alloying/substitution, we performed electro-
chemical studies on (Ni/Pd)17Se15 to generalize the high
stability of Pd-based chalcogenides. We believe that the
asymmetric distribution of electron density on such
chalcogenide systems generates an adsorption site that favors
the coupling of two *H to form a H−H bond.

■ RESULTS AND DISCUSSION
In the following sections, we discussed the following three
scientific points:

(1) The effect of the electronic structure on the oxidation
state, electronic structure, and charge distribution on the
catalyst surface.

(2) The driving force for enhancement of the activity.
(3) The reason for the higher stability of the electrocatalyst.

We synthesized Pd17Se15 and were able to achieve a reversal
of activity by tuning Pd to be more electropositive and Se to be
more electronegative. Pd in its 2+ state has a weaker
adsorption toward hydrogen and hence becomes deactivated
for the HER. Because of its 2− state, Se has extra electron
density near the Fermi level and hence becomes active for
HER.4,31 Alloying with Ni further tunes the electronic structure
of the catalyst to have optimized adsorption of H on the
chalcogen site.
The catalysts were synthesized by the colloidal method using

Ni(acac)2, Pd(acac)2, and selenous acid as the precursors at a
stoichiometric ratio of 1:2:2, respectively. The temperature was
fixed at 220 °C for 3 h. To understand the nature of the doped
Pd17Se15, we carried out characterization using scanning
electron microscopy (SEM), transmission electron microscopy
(TEM), X-ray diffraction (XRD), EDAX, and X-ray absorption
spectroscopy (XAS).
In order to reflect the inverse strain behavior, as we

proposed in our previous work, we collected powder XRD
(PXRD) at a very slow scan rate for a longer duration of time,
as shown in Figures 1 and S1. We emphasize here an expected
shift of the PXRD peak position toward a higher 2θ. However,
this observation is contrary to the trend observed in
(CuPd)17Se15. A shift toward a higher 2θ is representative of
a decrease in the unit cell size of the substituted compound.
Figures 1b and 1c show the aggregated nature of the

nanoparticles due to the NaBH4 reduction method used during
the synthesis process. This method results in the formation of
small-sized nanoparticles of higher surface area due to the
presence of dangling bonds. Such small-sized particles tend to
agglomerate to reduce their high surface energy and hence
form connected nanostructures.32,33 Such particles also
confirm the polycrystalline nature, as evidenced from the
selected area electron diffraction (SAED) pattern shown in
Figure 1d. As per the EDAX analysis, the atomic percentages of
Ni, Pd, and Se are ∼8.8, ∼35.5, and ∼55.7%, respectively. To
understand the oxidation state on Se, XANES spectroscopy
was recorded at a synchrotron facility at RRCAT Indore, India,
as shown in Figure S2. Se foil and CoSe/NiSe with a zero and
−2 oxidation state were used as the references for under-
standing the relative oxidation state on (Ni/Pd)17Se15. Both
(Cu/Pd)17Se15 and (Ni/Pd)17Se15 have been found to have

closer to a −2 oxidation state in comparison to the near zero
oxidation state on Pd17Se15, indicating similar behavior upon
the substitution of Cu or Ni in the Pd17Se15 lattice.

Electrochemical Activity and Stability. Electrochemical
activation of the catalyst was performed for 100 cycles in
nitrogen-purged 0.5 M H2SO4 with a scan rate of 50 mV/s.
The catalyst exhibited better onset after the activation process,
as shown in Figure S3a, which may be attributed to the surface
rearrangement or dissolution of Ni from the catalyst.
Apparently, the onset potential and the overpotential at 10
mA/cm2 are frequently used to directly evaluate the HER. The
onset overpotential is defined as the overpotential (vs RHE) of
the current density at 1 mA/cm2. The catalyst exhibited an
onset potential of 92 mV, and a current density of 10 mA/cm2

was obtained at an overpotential of 197 mV (Figure 2a). An
accelerated degradation test (ADT) was performed at a higher
scan rate of 100 mV/s, and a negligible shift was observed after
20000 electrochemical cycles. This indicates the better stability
of the catalyst, which is due to the reversal of the activity
center, as described in the subsequent section. Electrochemical
impedance data were collected at a regular interval to keep
track of the charge-transfer resistance (Rct) during the ADT. A
smaller Rct of ∼75 Ω was obtained at the end of the ADT
(Figure 2b).
The electrochemical surface area of a catalyst is in general

directly correlated to the catalyst activity, and it was evaluated
for our samples using cyclic voltammetry (CV) to obtain
double-layer capacitive currents (Figures 2c and S3). The
double-layer capacitance was calculated by fitting the linear
plot of the capacitive current versus the scan rate. A change in
the Cdl of the catalyst from 1.30 to 1.21 mF/cm2 was observed
after the stability test with 20000 electrochemical cycles. Thus,
no significant surface area change was observed during the
course of ADT. A chronoamperometry test was performed for
24 h at an overpotential of 200 mV. No significant decrease in
the current density was observed at the end of 24 h, indicating
the high stability of the catalyst (Figure 2d). The overlapping
polarization curve after the CA test also corroborates with the
better stability of the catalyst (Figure S4). To understand the
reaction mechanism, the Tafel slope was extracted by plotting
log j versus the overpotential and fitting its linear portion at a

Figure 1. (a) PXRD pattern of substituted (Ni/Pd)17Se15, (b)
morphology as obtained from SEM images, (c) TEM images, and (d)
selected area electron diffusion (SAED) pattern of (Ni/Pd)17Se15.
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low overpotential. A Tafel slope of 91.5 mV/dec was extracted
from the polarization curve and reported in Figure S5. As
shown previously,34,35 a Tafel slope close to ∼120 mV/dec
indicates the Volmer adsorption process as the rate-
determining step. Figure S5 shows the change in the Tafel
slope value after CA and ADT tests. The robust catalytic
performance mainly arose from the less vulnerable chalcoge-
nide site.

Theoretical Calculation. In order to gain insight into the
change of the electronic structure and charge distribution upon
Ni substitution, we performed DFT calculations. Three input
models were designed, namely NiA, NiB, and NiC, with three
different sites of Ni substitution, as shown in Figure S6.
Energy-optimized Pd17Se15, NiA, NiB, and NiC have a lattice
parameter of 10.7403, 10.7228, 10.6358, and 10.6944 Å,
respectively. A decrease in the cell parameter of the unit cell is

Figure 2. (a) HER polarization plots of (Ni/Pd)17Se15 surface in 0.5 M H2SO4 as a function of cycling number. (b) Variation of the
electrochemical impedance data for the sample with cycle number. (c) Linear fitting of the capacitive currents of samples in 0.5 M H2SO4 vs scan
rates. (d) Time dependence of current density of (Ni/Pd)17Se15 in 0.5 M H2SO4 under a static overpotential of 0.2 V vs RHE.

Figure 3. (a) Bonding information in the crystal. 2D electron localization function mapping of the (100) surface of Pd, NiA, NiB, and NiC with an
isosurface value of 0.8. (b) Bonding information in the crystal. 2D electron localization function mapping of the (110) surface of Pd, NiA, NiB, and
NiC with an isosurface value of 0.8.
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clearly reflected by the shift in the PXRD peak position toward
a higher 2θ. Because the radius of the Ni atom is smaller than
that of the Pd atom, Ni doping produces strain in the lattice.
The ligand effect caused by Ni doping in Pd17Se15 also has the
potential to affect H adsorption and desorption through
modification of the electronic structure. This subtle mod-
ification in the d-band electronic structure, caused by both the
strain and ligand effect, may result in an amplified change in
the electrocatalytic activity and stability.36 The change in the
electronic structure is clearly reflected by probing the charge
distribution and density of states of an electrocatalyst.
In order to understand the effect on the electronic structure

upon Ni substitution, we performed cell (energy + lattice
parameter) optimization. A 2D electron localization function
(ELF) is then plotted for a few planes to observe the change in
the electron distribution. ELF yields the probability of finding
an electron near another electron with the opposite spin, which
is typical for chemical bonds and electron lone pairs.37 It is a
measure of localized electron density which can differentiate
between different types of bonding, e.g., metallic, ionic, or
covalent. The maximum ELF value of 1 denotes complete
electron localization (shown as red regions in Figures 3),
whereas an ELF value of 0.5 corresponds to a delocalized ideal
electron gas (green). Most of the space between atoms is blue
(ELF ≈ 0), indicating a localized electron cloud consistent
with polar covalent bonding. This additional ionic contribution
could explain the added stability of the compound over purely
metallic bonding in Pd.38 A high ELF value is colored red, and
the series descends through yellow, green, turquoise, and blue.
The localized charge distribution is different for NiA (100) and
NiC (100) in Figure 3a; NiA (110), NiB (110), and NiC
(110) in Figure 3b; and NiC (111) in Figure S7, which

demonstrates the change in ELF due to substitution by Ni.
There was no Ni substituted in the (100) plane of NiB, and
hence, it completely replicated the ELF of pristine Pd17Se15.
Figure 3a and 3b show that there is a polar covalent interaction
between the atoms. An increase in the electron density is
observed upon Ni substitution. This is represented by the
increase in the size of the red-colored density on Ni. This
signifies that Ni and Se interact strongly due to the greater
electron delocalization over the Ni−Se bond compared to the
Pd−Se bond.
In order to understand the role of Pd or Se in the activity of

the catalyst, the PDOS of Pd d and Se p states are plotted
along with their d-band centers. The shift of the d-band center
toward the Fermi level (Figures 4a and S8) strengthens the
adsorbate bonding. The distribution of the electron density
over the Ni−Se bond is clearly reflected by the shift of the d-
band center toward the Fermi level (Figure 4b), thus
strengthening the nonmetal−adsorbate bonding. This further
activates the Se sites for electrochemical HER by lowering the
ΔGads to a value near 0. A similar shift toward the Fermi level is
observed for the Pd d-band center, as shown in Figure 4c.
However, such a shift further lowers the ΔGads to have a more
negative value and hence deactivates it for HER. This clearly
explains the reversal of activity from the metal to nonmetal
center. A considerable contribution to the local density of
states (DOS) near the Fermi level could act as electron donors
for the adsorbed molecules. Thus, clear participation of Se in
the electrochemical HER was observed due to the significant
contribution of Se PDOS near the Fermi level (Figure 4d).39

The orbital analysis showed that the surface states mainly
comprise p-like electronic states from the Se.

Figure 4. (a) DOS, (b) Se-PDOS, and (c) Pd-PDOS of Pd17Se15, NiA, NiB, and NiC. (d) The combination of Pd-PDOS, Se-PDOS, and total DOS
shows that the Fermi level has a dominant contribution from both Pd and Se.
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To evaluate the effect of the strain, we built a model with the
same strain as (Ni/Pd)17Se15 but without Ni substitution by
fixing the bond length of (Ni/Pd)17Se15. Similarly, the ligand
effect was deconvoluted by constraining (Ni/Pd)17Se15 to have
a lattice parameter of Pd17Se15. Thus, now we have a ligand
incorporated into the lattice without any change in the lattice
parameter. This gives us the deconvoluted ligand and strain
effect. The effect on the DOS was recorded as a descriptor for
this deconvolution. The calculation results show that both the
compressive strain and ligand effects contribute to the
enhanced activity (Figure 5).

However, it can clearly be noticed that the trend of strain
and ligand effect for Pd is reversed compared to that in Se and
the total DOS. Thus, the contribution from Se to the total
DOS is appreciable compared to Pd.

■ CONCLUSION
In conclusion, we have synthesized a (Ni/Pd)17Se15 catalyst
that is stable for 20000 electrochemical cycles during a
hydrogen evolution reaction. The reversal of the active center
from Pd to Se is responsible for the higher stability of the
electrocatalyst. Se, due to its anionic nature, is highly resistant
toward the anionic intermediate. Furthermore, H adsorption is
optimal due to the tuning by Ni substitution. This concept of
the reversal of the activity center can be exploited to design a
catalyst with better stability, which is a major concern for the
prolonged production of hydrogen through electrochemical
water splitting.
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