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Abstract

The nanofluid flow between two plates is a common

topic of research. However, studies dealing with the

flow between two vertical plates moving in different

directions have not been largely accounted for. The

main aim of this study is to analytically and statisti-

cally investigate the MHD flow of water‐based na-

nofluid between two vertical porous plates moving in

opposite directions using perturbation technique and

multiple linear regression, respectively. The con-

sequence of various parameters on concentration,

temperature, and velocity are examined via graphs

using MATLAB software. It is observed that the main

flow velocity profile is greater when the magnetic

field is applied on the upward moving plate as com-

pared to the main flow velocity when the magnetic

field is applied on the downward‐moving plate. The

physical quantities are scrutinized using statistical

tools like probable error and multiple linear regres-

sion and an excellent agreement is noted. It is noted

that the Nusselt number is highly positively corre-

lated with the injection parameter and highly nega-

tively correlated with nanoparticle volume fraction.

Furthermore, the simultaneous effects of parameters
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on drag coefficients are studied with the aid of three‐
dimensional surface plots.
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1 | INTRODUCTION

Magnetohydrodynamics (MHD), the area which deals with the study of dynamics of electrically
conducting fluids under the influence of magnetic field, has raised quite an interest over the
years due to its versatile number of application in various fields; like in geophysics, engineering,
biomedical engineering, magnetic drug targeting, and many others.

MHD is commonly paired with convective flows, which can either be natural, forced, or
mixed. Natural or free convection is the type of flow where the motion is not generated by an
external source. Natural convection has called in a lot of attention from the researchers with its
applications ranging from engineering to nature. Sabu et al.1 studied the behavior of hydro-
magnetic convective ferro‐nanofluid flow through an inclined channel with porous medium
and observed an increase in velocity with respect to Hall current. Kumar et al.2 employ a
numerical model to investigate the influence of thermal radiation on the nanofluid flow from
an infinite vertical plate considering viscous dissipation and magnetic field. It is noted that an
augmentation in radiation parameter causes an enhancement in the temperature and velocity
profiles. MHD convective flow with various attributes are explained in References [3–10].

Plates containing voids (holes) are known as porous plates. The flow through porous plates
has applications in chemical engineering (for filtration and clarification), agriculture (in the
study of underwater resources), and petroleum industry (to study the movement of natural gas,
oil, and water). Biswal et al.11 elucidated the influence of transverse magnetic effect on the flow
of water‐based fluid with added silver and copper nanoparticles in a semiporous channel using
the least square method. A great deal of studies has been carried out in problems dealing with
the MHD flow in a porous channel as well as parallel plates.12–21

Nanofluids have been a hot topic for a while now. Using nanofluids instead of the normal
base fluids has yielded many awarding results. It is seen that nanofluids have better convective
heat transfer capabilities. Kiyani et al.22 semianalytically investigated the bidirectional
Williamson nanofluid flow in porous space using optimal homotopy asymptotic method
(OHAM) and observed that space‐ and temperature‐dependent heat sources have a positive
effect on temperature. Kumar et al.23 studied magnetite water‐based nanofluid flow over a
rotating disk in the presence of an external magnetic field and Arrhenius activation energy
using fourth‐order Noumerov's method and noted that the thermophoresis parameter has a
negative impact on heat transfer rate. Hazarika et al.24 used the fourth‐order Runge‐Kutta‐
shooting technique to numerically investigate the MHD flow of a chemically reacting water‐
based nanofluid over a permeable stretching sheet involving chemical reaction, thermophoresis,
heat source, and viscous dissipation. Seth et al.25 examined the unsteady hydromagnetic
boundary layer flow of a thermally radiating nanofluid considering Navier's velocity slip and
external magnetic field past nonlinear stretching sheet placed in a porous medium using
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OHAM. Furthermore, linear and quadratic multiple linear regression analysis was exercised in
scrutinizing the effect of pertinent parameters on Nusselt number and drag coefficient.

The use of statistical tools for analyzing the effects of numerous physical parameters has
intrigued a lot of researchers. A countable number of works, where the ideas of correlation,
slope of linear regression, probable error, and regression analysis are used to compare and
analyze the outcome of various physical quantities,1,26–32 have been published.

Many researchers have analyzed the hydromagnetic flow between two vertical porous plates due
to free convection and varying geometrical shapes. However, only a countable number of works
involving MHD‐free convective flow between two vertical porous plates moving in differing
direction33–36 have been published. Previous studies were based on conventional (base) fluids,
whereas the present study extends the problem into nanoscale. The current problem finds its
application in several engineering, geophysical, and industrial fields. The problem is solved using the
perturbation technique. Results are presented with the help of tables and graphs. Mass and heat
transfer rates are analyzed and modeled using statistical tools like probable error and regression.

2 | PROBLEM STATEMENT

An unsteady hydromagnetic fluctuating flow of a water‐based nanofluid between two insulated
vertical porous plates is considered (Figure 1). The problem is studied under the following
assumptions:

(i) Plates are moving in opposite directions with uniform velocity.
(ii) The upward moving plate is subjected to a transverse sinusoidal injection velocity,

whereas the downward‐moving plate is subjected to a constant suction velocity.
(iii) A magnetic field of uniform strength is applied perpendicular to the plane of the plate.
(iv) The induced magnetic field has been neglected due to the assumption of a small magnetic

Reynolds number.
(v) The nanofluid constants are taken in accordance with Table 1.
(vi) The injection velocity distribution is of the form

TABLE 1 Nanofluid constants

Effective dynamic viscosity = =
A

μ

μ ϕ

1 1

(1− )

nf

f1
2.5

Effective density ⎜ ⎟⎛
⎝

⎞
⎠A ϕ ϕ= = (1 − ) +

ρ

ρ

ρ

ρ2
nf

f

s

f

Effective electrical conductivity

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

A = = 1 +
σ

σ

ϕ

ϕ
3

3 − 1

+ 2 − − 1

nf

f

σs
σf

σs
σf

σs
σf

Effective coefficient of thermal expansion ⎜ ⎟⎛
⎝

⎞
⎠A ϕ ϕ= = (1 − ) +

β

β

β

β4
nf

f

s

f

Effective specific heat ( )A ϕ ϕ= = (1 − ) +
ρC

ρC

ρC

ρC5
( )

( )

( )

( )

p nf

p f

p s

p f

Effective thermal conductivity A = =
κ

κ

κ κ ϕ κ κ

κ κ ϕ κ κ6
+ 2 − 2 ( − )

+ 2 + 2 ( − )

nf

f

s f f s

s f f s
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v z V ε πz d( ) = (1 + cos( / )).⁎ ⁎
0 1

⁎

(vii) Without loss of generality, the distance d between the plates is taken equal to the
wavelength of the injection velocity.

(viii) The temperature of the upward moving plate fluctuating with time is given as

T t T ε T T e( ) = + ( − ) .iω t⁎ ⁎
0 2 0 1

⁎ ⁎

(ix) The concentration of the upward moving plate fluctuating with time is given as

  C t ε e( ) = + ( − ) .iω t⁎ ⁎
0 3 0 1

⁎ ⁎

(x) The temperature and concentration of the downward‐moving plate are at constant tem-
perature T1 and constant concentration  ,1 respectively.

Using the above assumptions and Boussinesq's approximation, the governing equations33

takes the form:

∂

∂

∂

∂

v

y

w

z
+ = 0,

⁎

⁎

⁎

⁎
(1)



⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

u

t
v

u

y
w

u

z ρ

p

x
μ

u

y

u

z
σ B u gβ T T

gβ C

+ + = −
1

− + + + ( − )

+ ( − ),

⁎

⁎
⁎

⁎

⁎
⁎

⁎

⁎
nf

⁎

⁎ nf

2 ⁎

⁎2

2 ⁎

⁎2 nf 0
2 ⁎

nf
⁎

1

nf
⁎

1
(2)

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

v

t
v

v

y
w

v

z ρ

p

y
μ

v

y

v

z
+ + = −

1
− + ,

⁎

⁎
⁎

⁎

⁎
⁎

⁎

⁎
nf

⁎

⁎ nf

2 ⁎

⁎2

2 ⁎

⁎2
(3)

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

w

t
v

w

y
w

w

z ρ

p

z
μ

w

y

w

z
σ B w+ + = −

1
− + + ,

⁎

⁎
⁎

⁎

⁎
⁎

⁎

⁎
nf

⁎

⁎ nf

2 ⁎

⁎2

2 ⁎

⁎2 nf 0
2 ⁎ (4)

⎡
⎣⎢

⎤
⎦⎥

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

T

t
v

T

y
w

T

z

κ

ρc

T

y

T

z
+ + =

( )
+ ,

p

⁎

⁎
⁎

⁎

⁎
⁎

⁎

⁎

nf

nf

2 ⁎

⁎2

2 ⁎

⁎2
(5)


⎛
⎝⎜

⎞
⎠⎟

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

C

t
v

C

y
w

C

z
D

C

y

C

z
K C+ + = + − ( − ).B l

⁎

⁎
⁎

⁎

⁎
⁎

⁎

⁎

2 ⁎

⁎2

2 ⁎

⁎2
⁎

1
(6)

The boundary conditions for the problem are:

  



⎜ ⎟
⎛
⎝

⎞
⎠

⎫

⎬
⎪⎪

⎭
⎪⎪

y u U v z V ε
πz

d
w

T t T ε T T e C t ε e

y d u U v z V w T T C

= 0, = , ( ) = 1 + cos , = 0,

( ) = + ( − ) , ( ) = + ( − )

= , = − , ( ) = , = 0, = , =

iω t iω t

⁎ ⁎
0

⁎ ⁎
0 1

⁎
⁎

⁎ ⁎
0 2 0 1

⁎ ⁎
0 3 0 1

⁎ ⁎
0

⁎ ⁎
0

⁎ ⁎
1

⁎
1

⁎ ⁎ ⁎ ⁎ (7)
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Introducing the following nondimensional quantities

y
y

d
z

z

d
t t ω u

u

U
v

v

V
w

w

V
= , = , = , = , = , = ,

⁎ ⁎
⁎ ⁎

⁎

0

⁎

0

⁎

0



 
ω

ω d
p

p

ρ V
θ

T T

T T
C

C
=

ϑ
, = , =

−

−
, =

−

−

⁎ 2 ⁎

nf 0
2

⁎
1

0 1

⁎
1

0 1

into Equations (1)–(7), excluding (2) we get:

∂

∂

∂

∂

v

y

w

z
+ = 0, (8)

⎛
⎝⎜

⎞
⎠⎟

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

ω

Re

v

t
v
v

y
w

v

z

p

y A A Re

v

y

v

z
+ + = − +

1
+ ,

1 2

2

2

2

2
(9)

⎛
⎝⎜

⎞
⎠⎟

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

ω

Re

w

t
v
w

y
w

w

z

p

z A A Re

w

y

w

z

A

A Re
H w+ + = − +

1
+ − ,

1 2

2

2

2

2

3

2

2 (10)

⎛
⎝⎜

⎞
⎠⎟

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

ω

Re

θ

t
v
θ

y
w
θ

z

A

A PrRe

θ

y

θ

z
+ + = + ,6

5

2

2

2

2
(11)

⎛
⎝⎜

⎞
⎠⎟

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

ω

Re

C

t
v
C

y
w

C

z ReSc

C

y

C

z

Kr

Re
C+ + =

1
+ − .

2

2

2

2
(12)

Equation (2) reduces to the following partial differential equations based on the two cases:
Case 1: Magnetic field is applied on the upward moving plate (at y= 0)

⎛
⎝⎜

⎞
⎠⎟

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

ω

Re

u

t
v
u

y
w

u

z A A Re

u

y

u

z

A

A Re
H u A GrReθ A GmReC.+ + =

1
+ − ( − 1) + +

1 2

2

2

2

2

3

2

2
4 4

(13)

Case 2: Magnetic field is applied on the downward‐moving plate (at y= 1)

⎛
⎝⎜

⎞
⎠⎟

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

ω

Re

u

t
v
u

y
w

u

z A A Re

u

y

u

z

A

A Re
H u A GrReθ A GmReC,+ + =

1
+ − ( + 1) + +

1 2

2

2

2

2

3

2

2
4 4

(14)

where the nondimensional parameters are explained in the nomenclature.
The boundary conditions in the nondimensional form are given by

}y u v z ε πz w θ ε e C ε e

y u v w θ C

= 0, = 1, ( ) = 1 + cos , = 0, = 1 + , = 1 +

= 1, = − 1, = 1, = 0, = 0, = 0

it it
1 2 3 (15)

3 | METHODOLOGY

Since ε ε ε ε= min { , , }1 2 3 is very small, we assume that the solution of the problem is of the form

f y z t f y εf y z t O ε( , , ) = ( ) + ( , , ) + ( ).0 1
2 (16)
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3.1 | Steady flow solution

When ε = 0, the current problem contracts to a steady two‐dimensional hydromagnetic flow
between two vertical porous plates moving in different directions with uniform injection/
suction, which is governed by the following equations:

Case 1: Magnetic field is applied on the upward moving plate (at y= 0)

u A A Reu A A H u A A A Re Grθ A A A Re GmC− − ( − 1) + + = 0.″ 0
′

0 1 2 1 3
2

0 1 2 4
2

0 1 2 4
2

0
(17)

Case 2: Magnetic field is applied on the downward moving plate (at y= 1)

u A A Reu A A H u A A A Re Grθ A A A Re GmC− − ( + 1) + + = 0,′″ 00 1 2 1 3
2

0 1 2 4
2

0 1 2 4
2

0
(18)

with v w p= 1, = 0, = constant0 0 0 and

θ
A PrRe

A
θ− = 0,″ ′0

5

6
0

(19)

C ScReC KrScC− − = 0,′″ 00 0
(20)

where primes denote the derivative with respect to y.
The corresponding boundary condition for the above two cases reduce to:

⎫⎬⎭
y u θ C

y u θ C

= 0, = 1, = 1, = 1

= 1, = −1, = 0, = 0
0 0 0

0 0 0

(21)

The solutions of Equations (17)–(20) subject to (21) are:

θ
e

e e=
1

− 1
( − ),

a
a ay

0
(22)

C
e e

e e e e=
1

( − )
( − ).

m m
m m y m m y

0
2 1

2 1 1 2 (23)

Case 1: Magnetic field is applied on the upward moving plate (at y= 0)

u
e e

α e β e β α e e B e B e B e B=
1

( − )
(( − ) + ( − ) ) + + + + + 1

m m
m m y m m y ay m y m y

0 1 1 1 1 1 2 3 4
4 3

4 3 3 4 1 2

(24)

Case 2: Magnetic field is applied on the downward moving plate (at y= 1)

u
e e

α e β e β α e e B e

B e B e B

=
1

( − )
((( + 2) − ( + 2)) + (( + 2) − ( + 2) ) ) +

+ + + − 1.

m m
m m y m m y ay

m y m y

0 1 1 1 1 1

2 3 4

4 3

4 3 3 4

1 2 (25)
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3.2 | Cross flow solution

When ≠ε 0, substituting Equation (16) in Equations (8)–(10) and comparing the coefficients of
ε and neglecting the terms with O ε( ),2 we obtain the following first‐order equations:

∂

∂

∂

∂

v

y

w

z
+ = 0,1 1 (26)

⎛
⎝⎜

⎞
⎠⎟

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

ω

Re

v

t

v

y

p

y A A Re

v

y

v

z
+ = − +

1
+ ,1 1 1

1 2

2
1

2

2
1

2
(27)

⎛
⎝⎜

⎞
⎠⎟

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

ω

Re

w

t

w

y

p

z A A Re

w

y

w

z

A

A Re
H w+ = − +

1
+ − .1 1 1

1 2

2
1

2

2
1

2

3

2

2
1

(28)

Corresponding boundary conditions are

⎫⎬⎭
y v πz w

y v w

= 0, = cos , = 0

= 1, = 0, = 0
.

1 1

1 1

(29)

These are the linear partial differential equations describing the three‐dimensional cross‐
flow, which is independent of the main flow component, u1, temperature field, θ1, and con-
centration field, C1.

Assume that the solutions for v w p, ,1 1 1 are of the form:

v y z t v y e v y πz( , , ) = ( ) + ( )cos ,it
1 11 12

(30)

⎜ ⎟
⎛
⎝

⎞
⎠w y z t zv y e

π
v y πz( , , ) = − ( ) +

1
( )sin ) ,′ ′it

1 11 12
(31)

p y z t p y e p y πz( , , ) = ( ) + ( )cos ,it
1 11 12

(32)

where prime denotes the derivative with respect to y. Expressions (30) and (31) are chosen in
such a way that the continuity Equation (26) is precisely satisfied. Substituting these into
Equations (27) and (28) and applying Equation (29), we obtain the solutions of v w p, ,1 1 1 as:

∑v
D

D e πz=
1

cos ,
i

i
r y

1

=1

4

i (33)

∑w
πD

r D e πz= −
1

sin ,
i

i i
r y

1

=1

4

i (34)

∑p
A A Reπ D

D r A A Rer A A H π r e πz=
1

( − − ( + ) ) cos .
i

i i i i
r y

1
1 2

2
=1

4
3

1 2
2

1 3
2 2 i (35)

3.3 | Temperature and concentration field

Similarly, using Equation (16) when ≠ε 0, the first‐order equation for temperature and
concentration fields are
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⎛
⎝⎜

⎞
⎠⎟

∂

∂

∂

∂

∂

∂

∂

∂

ω

Re

θ

t

θ

y

A

A PrRe

θ

y

θ

z
+ = + ,1 1 6

5

2
1

2

2
1

2
(36)

⎛
⎝⎜

⎞
⎠⎟

∂

∂

∂

∂

∂

∂

∂

∂

ω

Re

C

t

C

y ReSc

C

y

C

z

Kr

Re
C+ =

1
+ − ,1 1

2
1

2

2
1

2 1
(37)

with corresponding boundary conditions

⎫⎬⎭
y θ e C e

y θ C

= 0, = , =

= 1, = 0, = 0
.

it it
1 1

1 1

(38)

Equations (36)–(38) are solved with an assumption that the solutions are of the form:

θ y z t θ e θ πz( , , ) = + cos ,it
1 11 12

(39)

C y z t C e C πz( , , ) = + cos .it
1 11 12

(40)

Substituting Equations (39) and (40) in (36) and (37), respectively we get

θ
A PrRe

A
θ

A Prωi

A
θ− − = 0,″ ′11

5

6
11

5

6
11

(41)

θ
A PrRe

A
θ π θ− − = 0,″ ′12

5

6
12

2
12

(42)

C ScReC Scωi KrSc C− − ( + ) = 0,″ ′11 11 11
(43)

C ScReC ScKr π C− − ( + ) = 0,″ ′12 12
2

12
(44)

with the corresponding transformed boundary conditions

⎫⎬⎭
y θ θ C C

y θ θ C C

= 0, = 1, = 0, = 1, = 0

= 1, = 0, = 0, = 0, = 0
.

11 12 11 12

11 12 11 12

(45)

Solving Equations (41)–(44) under the boundary condition (45), the solutions are
obtained as

θ y z t
e e

e e e e e( , , ) =
1

−
( − ) ,

n n
n n y n n y it

1
2 1

2 1 1 2 (46)

C y z t
e e

e e e e e( , , ) =
1

−
( − ) .

m m
m m y m m y it

1
6 5

6 5 5 6 (47)

3.4 | Main flow solution

When ≠ε 0, with the aid of Equation (16) and comparing coefficients of ε, we deduce the first‐
order equation for the main flow component, u1 as:

⎛
⎝⎜

⎞
⎠⎟

∂

∂

∂

∂

∂

∂

∂

∂

ω

Re

u

t

u

y
v u

A A Re

u

y

u

z

A

A Re
H u A GrReθ A GmReC+ + =

1
+ − + + .1 1

1 0
′

1 2

2
1

2

2
1

2

3

2

2
1 4 1 4 1

(48)
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The corresponding boundary conditions are:

⎫⎬⎭
y u

y u

= 0, = 0

= 1, = 0
.

1

1

(49)

To solve the above differential equation for the main flow velocity component, u y z t( , , )1 , we
assume that the solution is of the form:

u y z t u e u πz( , , ) = + cos .it
1 11 12

(50)

Substituting Equation (50) in (48) and neglecting terms of O ε( )2 we obtain:

u A A Reu A A ωi A A H u A A A Re Grθ A A A Re GmC− − ( + ) = − − ,′″ 1111 1 2 1 2 1 3
2

11 1 2 4
2

11 1 2 4
2

11
(51)

u A A Reu π A A H u A A Rev u− − ( + ) = ,″ ′ ′12 1 2 12
2

1 3
2

12 1 2 12 0
(52)

with
⎫⎬⎭

y u u

y u u

= 0, = 0, = 0

= 1, = 0, = 0
.

11 12

11 12

(53)

Solving Equations (51) and (52) considering (53) and using (50), we derive the solutions as:
Case 1: Magnetic Field is applied on the upward moving plate (at y= 0)

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪∑

u y z t

e e
α e β e β α e e K e

K e K e K e

e

e e
α e β e β α e e

K e K e K e K e K e
πz

( , , )

=

1

−
[( − ) + ( − ) ] +

+ + +

+

1

−
[( − ) + ( − ) ]

+ ( + + + + )
cos

r r
r r y r r y n y

n y m y m y

it

n n
n n y n n y

i

i
r m y

i
r m y

i
r a y

i
r m y

i
r m y

1

2 2 2 2 1

2 3 4

3 3 3 3

=1

4

1
( + )

2
( + )

3
( + )

4
( + )

5
( + )i i i i i

6 5

6 5 5 6 1

2 5 6

4 3

4 3 3 4

3 4 1 2

(54)

Case 2: Magnetic Field is applied on the downward moving plate (at y= 1)

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪∑

u y z t

e e
α e β e β α e e K e

K e K e K e

e

e e
α e β e β α e e

M e M e M e M e M e
πz

( , , )

=

1

−
[( − ) + ( − ) ] +

+ + +

+

1

−
[( − ) + ( − ) ]

+ ( + + + + )
cos

r r
r r y r r y n y

n y m y m y

it

n n
n n y n n y

i

i
r m y

i
r m y

i
r a y

i
r m y

i
r m y

1

2 2 2 2 1

2 3 4

4 4 4 4

=1

4

1
( + )

2
( + )

3
( + )

4
( + )

5
( + )i i i i i

6 5

6 5 5 6 1

2 5 6

4 3

4 3 3 4

3 4 1 2

(55)
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4 | DRAG COEFFICIENT AND TRANSFER RATES

For practical analysis of the problem, scientists, and engineers are always interested in un-
derstanding the physical quantities like Sherwood number, Nusselt number, and skin‐friction
coefficients as they measure the rate of mass and heat transfer and surface drag, respectively.
Their modified form33 are given by:

 

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

Sh
d

D
D

dC

dy

dC

dy
ε
dC

dy
=

−
= + ,

B

B

y d y y0 1

⁎

⁎
=

0

=1

1

=1⁎

(56)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟Nu

d

κ T T
κ

dT

dy
A

dθ

dy
ε
dθ

dy
=

( − )
= + .

f
nf

y d y y0 1

⁎

⁎
=

6
0

=1

1

=1⁎

(57)

Case 1: Magnetic field is applied on the upward moving plate (at y= 0)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟Cf

d

μ U
μ

du

dy A

du

dy
ε
du

dy
= =

1
+ .

f y d y y0
nf

⁎

⁎
= 1

0

=1

1

=1⁎

(58)

Case 2: Magnetic field is applied on the downward moving plate (at y= 1)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟Cf

d

μ U
μ

du

dy A

du

dy
ε
du

dy
= =

1
+ .

y d y yf 0
nf

⁎

⁎
= 1

0

=1

1

=1⁎

(59)

FIGURE 1 Figurative representation [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Change in u with Gr [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Change in u with Gm [Color figure can be viewed at wileyonlinelibrary.com]
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5 | RESULTS AND DISCUSSIONS

The impact of various nanofluids, the volume fraction of nanoparticle ϕ( ), Grashof number
Gr( ), chemical reaction parameter Kr( ), injection/suction parameter Re( ), Schmidt number Sc( ),
Hartmann number H( ), and modified Grashof number Gm( ) on concentration C( ), temperature

FIGURE 4 (A) Change in u with H for plate at y= 0. (B) Change in u with H for plate at y= 1 [Color
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 (A) Change in u with Re for plate at y= 0. (B) Change in u with Re for plate at y= 1 [Color
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6 Change in u with ϕ [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Change in u with different nanofluids [Color figure can be viewed at
wileyonlinelibrary.com]
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θ( ), and velocity u( ) profiles are analyzed in Figures 2–10. The analysis has been carried out for
Cu–H2O nanofluid at z t π= 0, = /2 and Pr = 7. The thermophysical properties of the base
fluid and nanoparticles are given in Table 2.

FIGURE 8 Change in θ with ϕ [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Change in θ with Re [Color figure can be viewed at wileyonlinelibrary.com]
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The consequence of Gr , the ratio of buoyancy force to viscous force, on u is presented in
Figure 2. An increase in Gr causes augmentation in u for both cases (magnetic field fixed with
the upward and downward moving plate). Physically, an increase inGr paves to the increase in
buoyancy force, which, in turn, increases the velocity. Figure 3 confirms that u increases in both
cases when Gm is increased, the physical reason being the increase in buoyancy force due to a
concentration difference. The influence of H , ratio of electromagnetic force to the viscous force,
on u is graphed in Figure 4A,B. It is evident that a rise in H drastically reduces the velocity in
the case of a downward moving plate. Physically, this is due to the fact that the presence of a
magnetic field induces a Lorentz force against the fluid flow, which retards the velocity profile.
However, in the case of an upward‐moving plate, H expresses a mixed behavior on u. In the
beginning, an increase in H reduces the velocity, but after a certain distance, the behavior is
reversed. Figure 5A,B illustrates the exponential increase in u {both cases} corresponding to the
augmentation in Re. Figure 6 depicts the positive impact of ϕ on u. The impact of various
nanofluids (water‐based Cu/Fe3O4/TiO2 nanofluid) on u is depicted in Figure 7.

FIGURE 10 Change in C with Sc [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Thermophysical properties of base fluid and nanoparticles

Physical properties H2O
1 Cu30 TiO2

30 Fe3O4
1

ρ 997.1 8933 4250 5180

Cp 4179 385 686.2 670

β 21 × 105 1.67 × 105 0.9 × 105 1.3 × 105

σ 5 × 10−2 5.96 × 107 2.38 × 106 25000

κ 0.613 400 8.9538 9.7
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The effect of ϕ on θ is elucidated in Figure 8. ϕ has a negative impact on the temperature
profile, meaning an increase in ϕ fuels a decrease in θ. Figure 9 depicts the consequence of Re
on temperature. It is observed that Re induces an increase in θ. The influence of Sc on C is
illustrated in Figure 10. Concentration profile C( ) experiences a slight increase when Sc values
are improved.

The consequence of heat and mass transfer rate on fluctuating parameters along with the
slope of linear regression via data points and the enhancement/decrement rate is assessed in
Tables 3 and 4, respectively. A negative sign in slope and enhancement/decrement rate sym-
bolizes that the corresponding parameter has a negative impact on heat and mass transfer,
meaning augmentation in parameter reduces the heat and mass transfer rate, while the mag-
nitude of slope represents the quantity of change.

It is observed that t and Re have a positive impact on Nu and ϕ, and ω have a negative
impact on Nu. The respective rates (slope) are shown in Table 3. For Sh, when all other
parameters are kept constant, Sh increases with an increase in ω at the rate of 0.000322, Re at
0.104051, and Sc at 0.355898. Also, when Kr and t increases Sh decreases at the rate of 0.03518
and 0.00751, respectively. Figures 11 and 12 describe the parallel effect of ϕ Re− and H Gr−

on Cf . From 11a and 12a, it can be deduced that ϕ, Re, H, and Gr promotes Cf on the upward
moving plate. From 11b and 12b, it can be summarized that ϕ Re Gr, ,and promotes Cf , while H
demotes Cf on the downward‐moving plate.

TABLE 3 Variation in Nu for differing parameter values at y = 1 when ϕ ω Re t π= 0.02, = 5, = 1, = /2,

z = 0 and Pr = 7

t ϕ ω Re Nu

Enhancement/
decrement rate (%)

0.5 6.967725

1 6.980359 0.18

1.5 6.994532 0.20

Slope 0.026808

0.01 7.004436

0.02 6.996461 −0.11

0.03 6.989177 −0.10

Slope −0.762966

5 6.996461

6 6.985502 −0.16

7 6.979319 −0.09

Slope −0.008571

1 6.996461

1.1 7.693704 9.97

1.2 8.393986 9.10

Slope 6.987624
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6 | STATISTICAL ANALYSIS

6.1 | Correlation and probable error

Correlation, a statistical technique, which enables the user to find the degree of relationship
between two or more variables, has gained a lot of interest in recent times. The effects of different
parameters on Nu and Sh are comprehensively carried out and established using tables. A more
detailed study is carried out with the help of correlation coefficient r( ) and probable error PE( ). The
nature and the intensity of the relationship are communicated through the sign and magnitude of r ,
respectively. PE of r helps in determining the accuracy and reliability of the calculated correlation
coefficient. According to Fisher,37 correlation is said to be significant if | | > 6,

r

PE
where probable

error, PE = ( )0.6745
r

n

1 − 2

and n is the number of observations.
From Table 5, we can infer that Nu is highly negatively correlated with ϕ and ω and highly

positively correlated with Re and t . From | |
r

PE
values, we can conclude that all parameters are

significant. Table 6 proposes that Sh is highly positively correlated with ω Re, , and Sc and highly
negatively correlated with Kr and t . As earlier, we can observe that all parameters are significant.

TABLE 4 Variation in Sh for differing parameter values at y = 1 when ω Re Sc Kr= 5, = 1, = 0.2, = 1,

t π z= /2, = 0 and Pr = 7

t ω Re Sc Kr Sh

Enhancement/
decrement rate

0.5 1.077447

1 1.074565 −0.27

1.5 1.069938 −0.43

Slope −0.00751

5 1.069202

6 1.069538 0.03

7 1.069867 0.03

Slope 0.000332

1 1.069202

1.1 1.079575 0.97

1.2 1.090013 0.97

Slope 0.104051

0.2 1.069202

0.4 1.139795 6.60

0.6 1.211562 6.30

Slope 0.355898

0.5 1.086993

1 1.069202 −1.64

1.5 1.051816 −1.63

Slope −0.03518
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6.2 | Regression analysis

All correlations are perceived to be significant and hence further analysis can be carried out
using regression. Nu and Sh are estimated using multiple linear regression models. The esti-
mated models are of the form:

FIGURE 11 (A) Parallel effect of ϕ Reand on Cf for plate at y= 0. (B) Parallel effect of ϕ Reand on
Cf for plate at y= 1 [Color figure can be viewed at wileyonlinelibrary.com]
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Nu b t b ϕ b ω b Re c= + + + +est t ϕ ω Re

Sh b t b ω b Re b Sc b Kr c= + + + + +est t ω Re Sc Kr

where c b b b b b, , , , ,t ϕ ω Re Sc and bKr are the estimated regression coefficients.
Nu and Sh is estimated from 30 sets of values chosen in the range [0,0.04] for ϕ, [5,15] for

ω, [1,1.2] for Re, [0.2,1] for Sc, [0.5,2] for Kr , and [0.5, ]
π

2
for t and the regression coefficients are

FIGURE 12 (A) Parallel effect of H and Gr on Cf for plate at y= 0. (B) Parallel effect of H and Gr on
Cf for plate at y= 1 [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 5 Correlation coefficient r( ), probable error PE( ) and r PE| / | values of Nu at y = 1 with respect to
the parameters ϕ ω Re, , , and t

Parameter r PE
r

PE

ϕ −0.998525054 0.000889166 1122.990857

ω −0.96135646 0.025561445 37.60962927

Re 0.999999168 5.02117E−07 1991567.608

t 0.999450864 0.000427575 2337.487341

TABLE 6 Correlation coefficient r( ), probable error PE( ) and r PE| / | values of Sh at y = 1with respect to the
parameters ω Re Sc Kr, , , , and t

Parameter r PE
r

PE

ω 0.999963802 2.44153E−05 40,956.47543

Re 0.999998301 1.02471E−06 975,880.9088

Sc 0.999968876 1.87766E−05 53,256.12316

Kr −0.999947742 3.52471E−05 28,369.64913

t −0.991117969 0.006887008 143.9112518

FIGURE 13 Actual Nu versus estimated Nu [Color figure can be viewed at wileyonlinelibrary.com]
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found using Microsoft Excel. As the p‐values for all the physical parameters are less than 0.05,
the regression coefficients are significant. The estimated regression models are given by:

Nu t ϕ ω Re= 0.014996 − 0.807981 − 0.006215 + 6.953733 + 0.065176est
1

Sh t ω Re Sc Kr= −0.007645 + 0.000344 + 0.103518 + 0.359017 − 0.034689 + 0.938922est
1

A negative sign of the estimated regression coefficient implies that the corresponding
parameter reduces the corresponding physical quantity. The estimated regression equation
corresponds to the results achieved in Tables 3 and 4. Figures 13 and 14 illustrate the accuracy
of the regression model for the chosen sample.

7 | CONCLUSION

The main conclusions drawn from the current study are listed below:

• The main flow velocity profile is directly proportional to Grashof number Gr( ), the volume
fraction of nanoparticle ϕ( ), and modified Grashof number Gm( ).

• The main flow velocity profile is greater when the magnetic field is applied on the upward
moving plate as compared to the main flow velocity when the magnetic field is applied on
the downward‐moving plate.

• The injection parameter Re( ) has a constructive effect on the main flow velocity.
• The injection parameter enhances the temperature profile, whereas the nanoparticle volume

fraction diminishes the temperature profile.

FIGURE 14 Actual Sh versus estimated Sh [Color figure can be viewed at wileyonlinelibrary.com]
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• On the upward moving plate, the main flow velocity profile exhibits a mixed behavior when
Hartmann number H( ) is increased. Initially, the velocity reduces and after traveling a
certain length the velocity increases.

• On the downward‐moving plate, the velocity profile is inversely proportional to the Hart-
mann number.

• Schmidt number has a constructive effect on the concentration profile.
• Nusselt number is highly positively correlated with the injection parameter and highly

negatively correlated with nanoparticle volume fraction.
• The regression models are found to be faultless for the chosen range of values of the

parameters.

NOMENCLATURE
B0 strength of the magnetic field
C⁎ fluid concentration (Moles/kg)
0 nanoparticle concentration near the plate at origin (Moles/kg)
1 nanoparticle concentration near the plate at d (Moles/kg)
Cp specific heat at constant pressure
d distance between the plates
DB chemical molecular diffusivity (m2/s)
g acceleration due to gravity (m/s2)
Kl chemical reaction parameter
p⁎ pressure
t⁎ time (s)
T⁎ fluid temperature (K)
T0 temperature of the fluid near the plate at origin (K)
T1 temperature of the fluid near the plate at d (K)
u v w, ,⁎ ⁎ ⁎ velocity components (m/s)
U0 velocity of the moving plates
V0 injection velocity

GREEK SYMBOLS
σ electrical conductivity
ϕ volume fraction of nanoparticles
μ dynamic viscosity (kg/m s)
ρ density (kg/m3)
ϑ kinematic viscosity (m2/s)
ω⁎ angular velocity
κ thermal conductivity (W/mK)
ε ε ε, ,0 1 2 very small reference constants

NONDIMENSIONAL QUANTITIES

Gm
 gβ

U V

ϑ ( − )f f 0 1

0 0
2

; Modified Grashof number

Gr
gβ T T

U V

ϑ ( − )f f 0 1

0 0
2

; Grashof number
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H B d
σ

ρ
0

ϑ

f

f f

; Hartmann number

Kr K d

ϑ
l

f

2

; chemical reaction parameter

Pr
μc

κ

( )p f

f

; Prandtl number

Re V d

ϑf

0 ; injection/suction parameter

Sc
D

ϑf

B

; Schmidt number

SUBSCRIPTS
f base fluid
nf nanofluid
s nanoparticle
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