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Abstract

This study focuses on analyzing the response of

a magnetohydrodynamic convective Carreau nanofluid

flow over a bilateral nonlinear stretching sheet in the

presence of a heat source and zero mass flux condition.

The problem has been solved numerically using the

MATLAB built‐in function bvp5c. The findings of ve-

locity, temperature, and concentration profiles based

on the various parameters are illustrated using graphs.

The impact of various parameters on the heat transfer

rate is scrutinized using statistical techniques, like,

correlation coefficient, probable error, and regression.

The effect of various parameters on skin friction coef-

ficients is studied via tables and slope of linear re-

gression. It is observed that the statistical results

coincide with the numerical results. It is also noticed

that the stretching ratio parameter increases the

Y‐directional velocity profile. Accuracy of the numer-

ical procedure has been validated through a restrictive

comparison of the present work with previous pub-

lished results and is found to be in good agreement.
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1 | INTRODUCTION

The natural convection magnetohydrodynamic (MHD) flow has been studied by many re-
searchers theoretically and experimentally, and it has applications in scientific, engineering,
and medical fields. It plays a pivotal role in the field of microelectronics, solar technology, glass
fibers, hot rolling, paper production, and plasma studies.1–3 Naga et al.4 studied magneto
Carreau nanofluid numerically under slip condition and obtained suppressed velocity profiles
through augmented values of the Hartmann number. Abbas et al.5 analyzed the MHD flow on a
stretching sheet using Carreau fluid. They deployed a Runge–Kutta fourth‐order method for
solving the problem numerically.

Among the seven slip mechanisms introduced by Buongiorno, Brownian motion and
thermophoresis effects are of great importance. Goudarzi et al.6 investigated the impact of
thermophoresis and Brownian motion due to the natural convection on hybrid Ag–MgO water
nanofluid. They found out that the Nusselt number increases due to thermophoresis diffusion.
Sardar et al.7 investigated the Carreau nanofluid in the presence of thermophoresis and
Brownian motion over a wedge. They observed a reduction in the Nusselt number due to an
enhancement in the Brownian motion parameter. Hayat et al.8 studied the effects of thermo-
phoresis and the Brownian motion of Carreau nanofluid under Newtonian conditions using
homotopy analysis method (HAM). Iqbal et al.9 investigated the thin‐film Carreau nanofluid
flow on a stretching surface and observed an increased profile due to the thermophoresis
parameter.

The stretched surface has intrigued many researchers due to its diverse applications in
industrial and engineering fields, like, production of plastic and rubber plates, cooling of
metallic plate in a bath, metal extrusion, and so forth. Khan et al.10 studied the heat
transfer over a bilateral stretched nonlinear surface numerically with the aid of optimal
homotopy asymptotic method (OHAM) and Runge–Kutta coupled with shooting method.
Hussain et al.11 analyzed the effect of heat generation of carbon nanotubes (CNTs) na-
nofluids over a nonlinear bilateral stretched surface. A reduced thermal layer due to the
rate of stretching was noted. Nandeppanavar and Siddalingappa12 analyzed the con-
sequence of thermal radiation and viscous dissipation on heat transfer over a nonlinear
stretching sheet through a porous medium, and they inferred a positive and negative
effect on temperature due to the Eckert number and thermal radiation parameter, re-
spectively. Tlili et al.13 investigated the three‐dimensional flow over a stretched surface
using the Williamson fluid, and they established that the velocity along the Y‐direction
enhanced due to stretching. Hayat et al.14 investigated the Carreau nanofluid flow in-
duced by a bilateral stretched surface. They tackled the nonlinear differential equations
using NDsolve. Shakunthala and Nandeppanavar15 studied the boundary layer flow and
Cattaneo–Christov heat flux of a nonlinear stretching sheet with suspended CNTs.

Patel and Singh16 studied the micropolar fluid over a stretched sheet with convective
boundary conditions in the presence of Brownian motion and thermophoresis effects. An
improvement in heat transfer due to increased Biot numbers was observed. Tlili et al.17 carried
out numerical investigations on the MHD flow, heat and mass transfer, and rate of entropy
generation over a wedge. Nayak et al.18 studied the combined effects of slip and convective
boundary condition on the MHD three‐dimensional stretched flow of a nanofluid through
porous media under nonlinear thermal radiation. Ray et al.19 studied the nonsimilar solution of
the Eyring–Powell fluid flow and heat transfer with the convective boundary condition
using HAM.
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Mass flux corresponds to the rate of mass flow per unit area perpendicular to the
direction of flow. Zero mass flux20,21 is the condition when the normal flux of
nanoparticles is zero at the boundary. Ramzan et al.22 examined the flow of
couple stress nanofluid past an exponential stretched surface and observed that for
growing values of Brownian motion and thermophoresis parameters, the concentration
profile exhibits decreasing and increasing behavior, respectively. Uddin et al.23

investigated the impact of buoyancy forces on the stagnation point flow of magneto‐
nanoparticles under zero mass flux condition. Characteristics of a thermally stratified
flow of a Sutterby nanofluid along with zero mass flux condition were analyzed by
Saif‐ur‐Rehman et al.24

Hayat et al.25 numerically studied the flow of the Carreau–Yasuda nanofluid in the
presence of mixed convection and Hall current, and they observed an inverse effect for
concentration profiles under thermophoresis and Brownian motion parameters. Khan
et al.26 investigated the unsteady slip flow of a Carreau nanofluid over a wedge.
Nandeppanavar et al.27 scrutinized the Carreau nanofluid flow over an exponentially
stretching sheet in a saturated porous medium using the fourth‐order Runge–Kutta
shooting method. Khan et al.28 numerically analyzed the Carreau fluid flow for gen-
eralized Fourier's and Fick's laws. They observed that the horizontal velocity enhances
with an increase in wall thickness parameter, power‐law index, Weissenberg number,
thermal Grashof parameter, and bioconvection Rayleigh number.

The flow of Newtonian and non‐Newtonian fluids over a bilateral nonlinear stretching
sheet has been studied10,11,13,14 in the literature. However, the MHD Carreau nanofluid
flow over a bilateral stretching nonlinear surface with zero mass flux condition has not
been a subject of study till date. This study makes an effort to fill this gap. In this paper,
magnetic and heat source effects are accounted to analyze the effects of velocity and heat
transport of Carreau nanofluid over a nonlinear stretching sheet. To increase the novelty
of the present work, effects of various parameters on skin friction coefficients and heat
transfer rate are scrutinized using statistical techniques,29–31 like, slope of linear regres-
sion, correlation coefficient, probable error, and regression.

2 | MATHEMATICAL FORMULATION

Here, a three‐dimensional, steady MHD Carreau nanofluid flow due to a bilateral
stretching sheet with velocities u a x y v b x y a b m= ( + ) , = ( + ) , , , > 0m m

W W along
the X‐ and Y‐directions, respectively, is considered. Velocity, temperature, and con-
centration equations are investigated with convective and zero mass flux condition at the
surface. A nonuniform magnetic field B B x y= ( + )0

m−1
2 is applied along the Z‐direction

(see Figure 1). In addition, a nonuniform heat generation\absorption Q Q x y= ( + )m0
−1 is

implemented. The boundary layer equations10,14,32 are given by the following:

u v w+ + = 0,x y z (1)

⎡⎣ ⎤⎦uu vu wu ν u β β u ν n

β u u u
σB u

ρ

+ + = + (1 − ){1 + Γ ( ) } + ( − 1)(1

− )Γ ( ) {1 + Γ ( ) } − ,

x y z zz z f

zz z z

f
⁎ ⁎ 2 2

⁎ 2 2 2 2
2

n

n

−1
2

−3
2 (2)
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⎡⎣ ⎤⎦uv vv wv ν v β β v ν n

β v v v
σB v

ρ

+ + = + (1 − ){1 + Γ ( ) } + ( − 1)(1

− )Γ ( ) {1 + Γ ( ) } − ,

x y z zz z f

zz z z

f
⁎ ⁎ 2 2

⁎ 2 2 2 2
2

n

n

−1
2

−3
2 (3)

⎡
⎣⎢

⎤
⎦⎥∞

∞

uT vT wT α T
Q

ρc
T T τ D T C

D

T
T+ + = +

( )
( − ) + + ( ) ,x y z zz z z

T
zf

f
B

2 (4)

∞

uC vC wC D C
D

T
T+ + = + .x y z zz

T
zzB (5)

The respective boundary conditions are given as follows:

⎪

⎪⎫⎬
⎭∞

u u a x y v v b x y w

k T h T T D C T
z

= = ( + ) , = = ( + ) , = 0,

− = ( − ), + = 0,
at = 0,

m m

z z
D

T z

W W

f f W B
T

(6)

→ → → → → ∞∞ ∞u v T T C C z0, 0, , as . (7)

The following similarity variables are implemented in converting the above system of
partial differential equations into a system of ordinary differential equations:

⎡⎣ ⎤⎦

⎫
⎬
⎪⎪

⎭
⎪⎪

u a x y f ζ

v a x y g ζ

w aν x y f ζ g ζ ζ f ζ g ζ

= ( + ) ′( ),

= ( + ) ′( ),

= − ( + ) ( ( ) + ( )) + ( ′( ) + ′( )) ,

m

m

m m
f

+ 1

2

− 1

2

m−1
2

(8)

∞

∞

∞

∞

θ ζ
T T

T T
ϕ ζ

C C

C
ζ

a

ν
z x y( ) =

−

−
, ( ) =

−
, = ( + ) .

W f

m−1
2 (9)

The transformed boundary layer equations are given as follows:

⎡⎣ ⎤⎦f β β We f nWe f Mf m f mf g

m
f f g

′′′ + (1 − )(1 + ( ′′) ) (1 + ( ′′) ) − ′ − ( ′) − ′ ′

+
+ 1

2
′′( + ) = 0,

⁎ ⁎ 2 2 2 2 2n−3
2

(10)

FIGURE 1 Geometry of the problem [Color figure can be viewed at wileyonlinelibrary.com]
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⎡⎣ ⎤⎦g β β We g nWe g Mg m g mf g

m
g f g

′′′ + (1 − )(1 + ( ′′) ) (1 + ( ′′) ) − ′ − ( ′) − ′ ′

+
+ 1

2
′′( + ) = 0,

2⁎ ⁎ 2 2 2 2n−3
2

(11)

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥θ Pr Sθ Nbϕ θ Nt θ

m
f g θ′′ + + ′ ′ + ( ′) +

+ 1

2
( + ) ′ = 0,2 (12)

⎜ ⎟
⎛
⎝

⎞
⎠ϕ

Nt

Nb
θ Scϕ

m
f g′′ + ′′ + ′

+ 1

2
( + ) = 0. (13)

The corresponding boundary conditions are given by the following:

f g f g δ

θ γ θ ϕ θ

(0) = 0, (0) = 0, ′(0) = 1, ′(0) = ,

′(0) = − (1 − (0)), ′(0) + ′(0) = 0,
Nt

Nb

(14)

∞ → ∞ → ∞ → ∞ →f g θ ϕ′( ) 0, ′( ) 0, ( ) 0, ( ) 0, (15)

where the nondimensional parameters are taken as follows:

∞

∞

∞

We M Pr Sc δ

Nt Nb τ S

= , = , = , = , = ,

= , = , = , = .

a x y

γ

σB

ρ a

ν

α

ν

D

b

a

τD T T

T ν

τD C

ν

ρc

ρc

Q

a ρc

Γ ( + )

( − ) ( )

( ) ( )

m

p

2 3 3 −1
o
2

f

f

f

f

B

T W

f

B

f f

0

f

(16)

Skin friction coefficients, local Nusselt number, and local Sherwood number measure the
surface drag, heat transfer rate, and mass transfer rate, respectively. They are defined32,33 as follows:

Local Nusselt number
∞

Nu =
x y q

k T T

( + )

( − )
w

f w
, where ∂

∂( )q k= −
T

z z
w f

=0

Reduced form of Nusselt
number

Re Nu θ= − ′(0)x
−1
2 ,

where Re =x
u x y

ν

( + )w

f
is the local Reynolds number along the x‐direction

Local Sherwood number Sh( )
∞

Sh =
x y m

D C C

( + )

( − )
w

B w
, where ∂

∂( )m D= −
C

z z
w B

=0

Reduced form of Sh Re Sh ϕ= − ′(0)x
−1
2

Skin friction coefficients Cf =x
τ

ρ u

zx

f w
2 ,

where
⎡
⎣⎢

⎤
⎦⎥

∂

∂

∂

∂( )( ) ( )τ μ β β= + (1 − ) 1 + Γzx
u

z

u

zf
⁎ ⁎ 2

2
n−1
2

Cf =y

τ

ρ v

zy

f w
2 ,

where
⎡
⎣⎢

⎤
⎦⎥

∂

∂

∂

∂( )( ) ( )τ μ β β= + (1 − ) 1 + Γzy
v

z

v

zf
⁎ ⁎ 2

2
n−1
2

Reduced form of skin friction ⎡⎣ ⎤⎦Re Cf f β β We f= ′′(0) + (1 − )(1 + ( ′′(0)) )x x
⁎ ⁎ 2 2 n1

2 −1
2 ,

⎡⎣ ⎤⎦Re Cf δ g β β We g= ′′(0) + (1 − )(1 + ( ′′(0)) ) ,y y
−1.5 ⁎ ⁎ 2 2 n1

2 −1
2

where Re =y
v x y

ν

( + )w

f
is the local Reynolds number along the y‐direction
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3 | NUMERICAL SOLUTION

Equations (10)–(13) with boundary conditions (14) and (15) are solved numerically using bvp5c
solver, a MATLAB built‐in function. To accomplish this, we consider

f y f y f y g y g y= , ′ = , ′′ = , = , ′ = ,1 2 3 4 5

g y θ y θ y ϕ y ϕ y′′ = , = , ′ = , = , ′ = .6 7 8 9 10

Accordingly, Equations (10)–(15) take the form

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )( )

( )
y y y y y

my my y y y y My

β β We y nWe y

′ = , ′ = , ′ =
+ − + +

+ 1 − 1 + 1 +

,

m

1 2 2 3 3

2
2

2 5
+ 1

2 3 1 4 2

⁎ ⁎ 2
3
2 2

3
2

n−3
2

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )( )

( )
y y y y y

my my y y y y My

β β We y nWe y

′ = , ′ = , ′ =
+ − + +

+ 1 − 1 + 1 +

,

m

4 5 5 6 6

5
2

2 5
+ 1

2 6 1 4 5

⁎ ⁎ 2
6
2 2

6
2

n−3
2

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥y y y Pr Sy Nby y Nt y

m
y y y y y′ = , ′ = − + + ( ) +

+ 1

2
( + ) , ′ = ,7 8 8 7 8 10 8

2
1 4 8 9 10

⎜ ⎟ ⎜ ⎟
⎧⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎫⎬⎭y
Nt

Nb
Pr Sy Nby y Nt

m
y y y Scy

m
y y′ = + + (y ) +

+ 1

2
( + ) −

+ 1

2
( + ) ,2

10 7 8 10 8 1 4 8 10 1 4

∞ ∞y y y y y δ y(0) = 0, (0) = 1, ( ) = 0, (0) = 0, (0) = , ( ) = 0,1 2 2 4 5 5

∞ ∞y y γ y y y
Nt

Nb
y( ) = 0, (0) = − (1 − (0)), ( ) = 0, (0) + (0) = 0.7 8 7 9 10 8

Accuracy of the code and the validation of the current problem has been accounted through
a restrictive comparison of the present work with previous published10 results and is found to
be in good agreement (described in Table 1).

4 | RESULT AND DISCUSSION

The impact of viscosity ratio parameter β( *), Weisssenberg number (We), Hartmann number
(M), heat generation/absorption parameter (S), power‐law index (n), Biot number (γ),
stretching ratio parameter (δ), Brownian motion parameter (Nb), and thermophoresis

TABLE 1 Comparison of f g′′(0) and ′′(0) when β M= 1 and = 0⁎

m δ f ′′(0) (present paper) f ′′(0)10 g′′(0) (present paper) g′′(0)10

1 0 −1.000172394 −1 0 0

1 0.5 −1.22478775 −1.224745 −0.612393875 −0.612372

1 1 −1.414226121 −1.414214 −1.414226121 −1.414214

3 0 −1.624368157 −1.624356 0 0

3 0.5 −1.989423631 −1.989422 −0.994711816 −0.994711

3 1 −2.297186414 −2.297186 −2.297186414 −2.297186

3646 | SABU ET AL.



parameter (Nt) on the X‐direction velocity f ζ( ′( )), Y‐direction velocity g ζ( ′( )), temperature
(θ ζ( )), and concentration (ϕ ζ( )) profiles is carefully analyzed through Figures 2–10. The
Prandtl number (Pr) and Schmidt numbers (Sc) are fixed at 5 and 2, respectively.

Figure 2A and 2B depicts the variation of f ζ′( ) and g ζ′( ) due to the increments in β⁎. The
analysis has been carried out for shear‐thinning (n < 1) and shear‐thickening (n > 1) cases. Both
f ζ′( ) and g ζ′( ) exhibit an increase (shear‐thinning case) with an increase in β⁎, whereas the results
are reversed for the shear‐thickening case. The effect of We on f ζ′( ) and g ζ′( ) is elucidated in
Figure 3A and 3B. A contrasting behavior is observed on the velocity profiles for different values of
n. An increase inWe improves the elastic forces, which hence causes a reduction in the velocity
profiles in a shear‐thinning fluid. Figure 4A and 4B illustrates the impact of variation of M on f ζ′( )

and g ζ′( ). An increment in M generates the Lorentz force, which retards f ζ′( ) and g ζ′( ) profiles.
Figure 5 exhibits the influence of δ on g ζ′( ). With an increase in δ, g ζ′( ) also increases, as the
vertical downward flow is accelerated due to the bidirectional stretching of the sheet.

FIGURE 2 (A) Variation of f ζ′( ) for various values of β⁎ and (B) variation of g ζ′( ) for various values of
β⁎ [Color figure can be viewed at wileyonlinelibrary.com]
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With a rise in the magnitude of γ , the temperature profile is enhanced, as shown in
Figure 6. Physically, this can be attributed to the fact that an increase in the Biot number
enhances the heat transfer coefficient, which, in turn, increases θ. Figure 7 displays the effect of
S on θ ζ( ). θ ζ( ) is observed to increase as S is increased. Figure 8 reveals the change in θ ζ( ) with
an increase in Nt . Nt is found to have a positive effect. The mounting of Nt promotes an
increment in the thermophoresis force, which enforces the movement of nanoparticles from a
hot region to a cold region, and hence θ ζ( ) is increased. Figure 9 describes the variation of ϕ ζ( )
with Nb. Nb shows a negative influence with ϕ ζ( ). Physically, an increase in Nb improves the
random motion of nanoparticles, which, in turn, lowers the concentration of nanofluid.
Figure 10 shows that ϕ ζ( ) increases when Nt is increased.

The effect of various parameters on the local Nusselt number for n = 0.7 and 1.7 is studied
using Table 2. The increment/decrement rate denotes the percentage change of the current

FIGURE 3 (A) Variation of f ζ′( ) for various values ofWe and (B) variation of g ζ′( ) for various values ofWe

[Color figure can be viewed at wileyonlinelibrary.com]
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value with respect to the previous value of the local Nusselt number. A positive sign represents
an increment, whereas a negative sign represents a decrement in the heat transfer rate. From

Table 2, it is deduced that Re Nux
−1
2 (both cases) increases with δ and decreases for

Nt S M, , and . It is further noted that Re Nu n( = 0.7)x
−1
2 increases with β⁎ and decreases with

We, whereas the results are reversed for Re Nu n( = 1.7)x
−1
2 . The slope of linear regression is used

to study the trend of variation in the skin friction coefficient. A negative slope with respect to a
parameter indicates that the parameter has a negative effect on skin friction, implying that an
increase in that parameter will diminish the surface drag. The magnitude of slope represents
the rate of change of the skin friction coefficient per unit value of the corresponding parameter.
The impact of various parameters on skin friction coefficients for m = 1 and 3 at
n = 0.7 and 1.7 is illustrated in Tables 3 and 4.

FIGURE 4 (A) Variation of f ζ′( ) for various values of Mand (B) variation of g ζ′( ) for various values of M
[Color figure can be viewed at wileyonlinelibrary.com]
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From Tables 3 and 4, it is inferred thatWe has a positive and negative impact on both skin
friction coefficients Re Cf Re Cf m{ and } ( = 1 and 3)x x y y

1
2

1
2 when n = 0.7 and 1.7, respectively,

and β⁎ has a reverse impact on skin friction coefficients when compared with We. It is observed
that M has a reducing effect on the surface drag. It is also observed that the skin friction
coefficient decreases with increasing δ Re Cf(for )x x

1
2 and increases with increasing δ Re Cf(for )y y

1
2 .

The respective rate of change (slope) for each parameter is shown in Tables 3 and 4.

5 | STATISTICAL ANALYSIS

Statistical techniques, like, correlation and regression, are widely used by researchers to
identify the nature of impact of independent variables (various parameters) on the dependent
variable (physical quantities, like, Nusselt number, drag coefficient, or Sherwood number). The

FIGURE 5 Variation of g ζ′( ) for various values of δ [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Variation of θ ζ( ) for various values of γ [Color figure can be viewed at wileyonlinelibrary.com]

3650 | SABU ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


regression analysis helps in quantifying the variation of dependent variable due to the change
in independent variables. It eliminates the need for solving the problem repeatedly, thereby
simplifying the calculation process. An approximate value of dependent variable can be
faultlessly predicted for the chosen range of independent variables.

5.1 | Correlation and probable error

Correlation is a statistical technique which helps in determining the degree of relation-
ship between two variables. The sign of correlation coefficient r( ) determines the nature of
relationship, whereas the magnitude of r indicates the magnitude of the relationship.

FIGURE 7 Variation of θ ζ( ) for various values of S [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Variation of θ ζ( ) for various values of Nt [Color figure can be viewed at wileyonlinelibrary.com]

SABU ET AL. | 3651

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


A positive value of the correlation coefficient implies that an increase in independent
variable will fuel an increase in the dependent variable, and a negative value of the
correlation coefficient indicates that an increase in independent variable will reduce the
dependent variable. The reliability of the calculated correlation coefficient values is

guaranteed using probable error PE( ). Correlation is said to be significant34 if

> 6
r

PE
, where ( )PE = 0.6745

r

ε

1− 2

and ε is the number of observations.

From Table 5, it is inferred that Re Nux
−1
2 (both cases) is positively correlated with δ and

negatively correlated with S M, , and Nt . It is observed that We exhibits a negative and β⁎

exhibits a positive correlation for Re Nu n( = 0.7)x
−1
2 . It is also noted that the nature of corre-

lation forWe and β⁎ is reversed when Re Nu n( = 1.7)x
−1
2 . Using r

PE
values, it can be concluded

that all parameters of Re Nux
−1
2 (both cases) are significant.

FIGURE 9 Variation of ϕ ζ( ) for various values of Nb [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Variation of ϕ ζ( ) for various values of Nt [Color figure can be viewed at
wileyonlinelibrary.com]
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TABLE 2 Variation in the local Nusselt number at ζ = 0 when
m Nt S M We δ β Nb γ= 1, = 1, = 0.2, = 0.5, = 3, = 0.8, = 0.1, = 0.5, and = 0.4⁎

Nt S M δ We β⁎

Re Nux
−1
2 Increment/decrement rate

n= 0.7 n= 1.7 n= 0.7 (%) n= 1.7 (%)

0.5 0.3220801 0.3299969

0.875 0.3199708 0.3286018 −0.655 −0.423

1.25 0.3175703 0.3270705 −0.750 −0.466

1.625 0.3147927 0.325376 −0.875 −0.518

2 0.3115088 0.3234827 −1.043 −0.582

0.08 0.3262050 0.3327401

0.14 0.3229700 0.3305449 −0.992 −0.660

0.2 0.3192066 0.3281077 −1.165 −0.737

0.26 0.3147406 0.3253792 −1.399 −0.832

0.32 0.3092984 0.3222934 −1.729 −0.948

0.4 0.3198040 0.3282712

0.7 0.3180105 0.3277891 −0.561 −0.147

1 0.3162062 0.3273291 −0.567 −0.140

1.3 0.3143798 0.3268877 −0.578 −0.135

1.6 0.3125207 0.3264619 −0.591 −0.130

0.25 0.2972953 0.3094536

0.4375 0.3071497 0.3172612 3.315 2.523

0.625 0.3141479 0.3234272 2.278 1.944

0.8125 0.3195285 0.3284102 1.713 1.541

1 0.3238713 0.3325305 1.359 1.255

2 0.3204980 0.3271069

3.5 0.3186733 0.3284715 −0.569 0.417

5 0.3173661 0.3292629 −0.410 0.241

6.5 0.3163448 0.3297959 −0.322 0.162

8 0.3155017 0.3301881 −0.266 0.119

0.1 0.3192066 0.3281077

0.3 0.3205573 0.3276043 0.423 −0.153

0.5 0.3216038 0.3269473 0.326 −0.201

0.7 0.3224475 0.3260304 0.262 −0.280

0.9 0.3231473 0.3245935 0.217 −0.441
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5.2 | Multiple linear regression

The regression analysis is a statistical modeling technique used to establish a relationship be-
tween a dependent (Nusselt number) and one or more independent (various parameters con-
sidered) variables. The local Nusselt number for n = 0.7 and 1.7 is estimated using multiple
linear regression models (as all correlations are significant). The estimated models are as follows:

Nu r S r M r δ r We r β r Nt c= + + + + + + ,n
S M δ We β Ntest

=0.7 ⁎⁎

Nu r S r M r δ r We r β r Nt c= + + + + + + ,n
S M δ We β Ntest

=1.7 ⁎⁎

where r r r r r r, , , , ,S M δ We β Nt⁎ , and c are the estimated regression coefficients.
Re Nux

−1
2 is estimated from 30 sets of values chosen in the range [0.08,0.32] for S, [0.4,1.6]

for M , [0.25,1] for δ, [2,8] for We, [0.1,0.9] for β⁎, and [0.5,2] for Nt , and the regression

TABLE 3 Variation in skin friction coefficients at ζ = 0 when
m Nt S M We δ β Nb γ= 1, = 1, = 0.2, = 0.5, = 3, = 0.8, = 0.1, = 0.5, and = 0.4⁎

We β⁎ M δ

−Re Cfx x

1
2 −Re Cfy y

1
2

n= 0.7 n= 1.7 n= 0.7 n= 1.7

2 1.33511 1.86889 1.52449 2.02782

4 1.22088 2.15347 1.39943 2.32086

6 1.15550 2.36256 1.32533 2.54024

8 1.11123 2.52993 1.27460 2.71707

Slope −0.03685 0.10961 −0.04119 0.11436

0.2 1.30295 1.98544 1.48571 2.14815

0.4 1.36500 1.90031 1.54612 2.06399

0.6 1.42028 1.80114 1.60037 1.96670

0.8 1.47045 1.67999 1.64987 1.84939

Slope 0.27889 −0.50776 0.27337 −0.49678

0.4 1.24376 1.97236 1.42361 2.13213

0.8 1.33935 2.17465 1.53495 2.34492

1.2 1.42665 2.36590 1.63649 2.54627

1.6 1.50737 2.54804 1.73028 2.73812

Slope 0.21953 0.47958 0.25539 0.50483

0.25 1.12977 1.70474 2.51655 2.89424

0.5 1.19716 1.84841 1.81195 2.36941

0.75 1.25722 1.99478 1.49662 2.20445

1 1.31215 2.14103 1.31215 2.14103

Slope 0.24288 0.58209 −1.57142 −0.96983

Note: The bold values denote the slope of linear regression.
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TABLE 4 Variation in skin friction coefficients at ζ = 0 when
m Nt S M We δ β Nb γ= 3, = 1, = 0.2, = 0.5, = 3, = 0.8, = 0.1, = 0.5, and = 0.4⁎

We β⁎ M δ

−Re Cfx x

1
2 −Re Cfy y

1
2

n= 0.7 n= 1.7 n= 0.7 n= 1.7

2 1.91894 3.05400 2.19540 3.30479

4 1.74778 3.56384 2.00299 3.83948

6 1.65419 3.92644 1.89571 4.22410

8 1.59169 4.21322 1.82361 4.52954

Slope −0.05377 0.19201 −0.06113 0.20294

0.2 1.88497 3.25976 2.14958 3.52184

0.4 2.00493 3.09201 2.27040 3.35199

0.6 2.11052 2.89401 2.37747 3.15268

0.8 2.20561 2.64641 2.47432 2.90610

Slope 0.53376 −1.01903 0.54065 −1.02327

0.4 1.80207 3.29733 2.06412 3.55888

0.8 1.86302 3.44808 2.13524 3.71650

1.2 1.92130 3.59477 2.20316 3.87005

1.6 1.97723 3.73779 2.26826 4.01989

Slope 0.14593 0.36702 0.17009 0.38415

0.25 1.58658 2.71252 3.59345 4.50058

0.5 1.69935 2.99380 2.58371 3.81117

0.75 1.79885 3.27865 2.14315 3.61699

1 1.88932 3.56095 1.88932 3.56095

Slope 0.40309 1.13206 −2.22118 −1.20522

Note: The bold values denote the slope of linear regression.

TABLE 5 Correlation coefficient r( ), probable error PE( ), and r

PE
of the reduced Nusselt number at ζ = 0

when γ = 0.4 and Nb = 0.5

Parameter

Re Nux
−1
2 when n= 0.7 Re Nux

−1
2 when n= 1.7

r PE
r

PE
r PE

r

PE

S −0.9947 0.0032 311.6281 −0.9977 0.0014 732.2152

M −1 0 63550.2092 −0.9997 0.0002 5508.9911

δ 0.9866 0.0080 122.7986 0.9920 0.0048 207.3562

We −0.9879 0.0072 136.5306 0.9689 0.0185 52.4026

β⁎ 0.9915 0.0051 194.3342 −0.9780 0.0131 74.4632

Nt −0.9962 0.0023 430.4705 −0.9982 0.0011 909.9878
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coefficients are calculated using MATLAB software. As the p values for all physical
parameters are less than 0.05, the regression coefficients are significant. A positive re-
gression coefficient represents that the corresponding parameter has an increasing effect
on the local Nusselt number, and a negative regression coefficient implies that the local
Nusselt number decreases with respect to the corresponding parameter. The estimated
regression models are expressed as follows:

Nu S M δ We β Nt= −0.07007 − 0.00566 + 0.03556 − 0.00072 + 0.00583 − 0.00697

+ 0.31579,

n
est
=0.7 ⁎

FIGURE 11 Actual and estimated values of Re Nux
−1
2 when n = 0.7 [Color figure can be viewed at

wileyonlinelibrary.com]

FIGURE 12 Actual and estimated values of Re Nux
−1
2 when n = 1.7 [Color figure can be viewed at

wileyonlinelibrary.com]
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Nu S M δ We β Nt= −0.04343 − 0.00128 + 0.03116 + 0.00051 − 0.00352 − 0.00428

+ 0.31540.

n
est
=1.7 ⁎

The accuracy of the estimated regression model is illustrated using Figures 11 and 12. It is
conclusive that δ βand * have a positive impact and S M We Nt, , , and have a negative impact on
the Nusselt number when n = 0.7. It can also be concluded that δ Weand have a positive
impact and S M β Nt, , *, and have a negative impact on the Nusselt number when n = 1.7. This
is in agreement with the results seen in Table 2.

6 | CONCLUDING REMARKS

The major conclusions drawn from the current analysis are as follows:

• The velocity profiles are directly proportional to the viscosity ratio parameter in the shear‐
thinning case and inversely proportional in the shear‐thickening case.

• The Weissenberg number enhances the velocity profiles in case of shear‐thickening fluids
and retards the velocity profiles for shear‐thinning fluids.

• An exponential increase is observed in the temperature profile due to an increase in the Biot
number, heat generation/absorption, and thermophoresis parameters.

• The Hartmann number has a destructive effect on surface drag and the velocity profiles.
• An increase in the stretching ratio parameter improves the Y‐directional velocity profile.
• The concentration profile is enhanced and depleted with an increase in thermophoresis and
Brownian motion effects, respectively.

• The regression models are found to be in synchronization with the numerical results for the
chosen values of parameters.
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NOMENCLATURE
a b m, , constants
B0 strength of magnetic field
C fluid concentration (moles/kg)
CW nanoparticle concentration near the wall (moles/kg)

∞C ambient nanoparticle concentration (moles/kg)
DB Brownian diffusion coefficient (m2 s−1)
DT thermophoretic diffusion coefficient (m2 s−1)
f ζ g ζ′( ), ′( ) velocity components
hf convective heat transfer coefficient (WK−1 m−2)
H Hartmann number
kf thermal conductivity of fluid (Wm−1 K−1)
n power‐law index
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Nb Brownian motion parameter
Nt thermophoresis parameter
Nu Nusselt number
Pr Prandtl number
Q0 intensity of heat source
Rex local Reynolds number
S heat generation/absorption parameter
Sc Schmidt number
T fluid temperature (K)
TW temperature of the fluid near the wall (K)

∞T temperature of the ambient fluid (K)
u v w, , velocity components (m/s)
u v,W W stretching velocities (m/s)
We local Weissenberg number
x y z, , Cartesian coordinates

GREEK SYMBOLS
α thermal diffusivity (m2 s−1)
β⁎ viscosity ratio parameter
δ stretching ratio parameter
γ Biot number
Γ time material constant s( )

ν kinematic viscosity (m2 s−1)
ϕ dimensionless concentration
ρ density (kg m−3)
ρC( )f heat capacity of the fluid
σ electrical conductivity
τ effective heat capacity ratio
θ dimensionless temperature
ζ dimensionless variable

SUBSCRIPTS
f fluid
w condition at the wall

ORCID
Sujesh Areekara http://orcid.org/0000-0001-7860-8268
Alphonsa Mathew http://orcid.org/0000-0002-3810-4484

REFERENCES
1. Vinita V, Poply V. Impact of outer velocity MHD slip flow and heat transfer of nanofluid past a

stretching cylinder. Mater Today Proc. 2019;26(3):3429‐3435. https://doi.org/10.1016/j.matpr.2019.
11.304

2. Rabbi KM, Sheikholeslami M, Karim A, Shafee A, Li Z, Tlili I. Prediction of MHD flow and entropy
generation by artificial neural network in square cavity with heater‐sink for nanomaterial. Phys A:
Stat Mech Appl. 2020;541:123520. https://doi.org/10.1016/j.physa.2019.123520

3658 | SABU ET AL.

http://orcid.org/0000-0001-7860-8268
http://orcid.org/0000-0002-3810-4484
https://doi.org/10.1016/j.matpr.2019.11.304
https://doi.org/10.1016/j.matpr.2019.11.304
https://doi.org/10.1016/j.physa.2019.123520


3. Sulaiman Alsagri A, Hassanpour A, Alrobaian AA. Simulation of MHD nanofluid flow in existence of
viscous dissipation by means of ADM. Case Stud Therm Eng. 2019;14:100494. https://doi.org/10.1016/j.
csite.2019.100494

4. Naga Santoshi P, Venkata Ramana Reddy G, Padma P. Numerical Study of Carreau Nanofluid Flow Under
Slips. Int J Appl Comput Math. 2019;5. https://doi.org/10.1007/s40819-019-0706-z

5. Abbas T, Rehman S, Shah RA, Idrees M, Qayyum M. Analysis of MHD Carreau fluid flow over a stretching
permeable sheet with variable viscosity and thermal conductivity. Phys A: Stat Mech Appl. 2020;551:124225.
https://doi.org/10.1016/j.physa.2020.124225

6. Goudarzi S, Shekaramiz M, Omidvar A, Golab E, Karimipour A, Karimipour A. Nanoparticles mi-
gration due to thermophoresis and Brownian motion and its impact on Ag–MgO/water hybrid na-
nofluid natural convection. Powder Technol. 2020;375:493‐503. https://doi.org/10.1016/j.powtec.
2020.07.115

7. Sardar H, Ahmad L, Khan M, Alshomrani AS. Investigation of mixed convection flow of Carreau nanofluid
over a wedge in the presence of Soret and Dufour effects. Int J Heat Mass Transfer. 2019;137:809‐822.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.132

8. Hayat T, Qayyum S, Alsaedi A, Shafiq A. Theoretical aspects of Brownian motion and thermophoresis on
nonlinear convective flow of magneto Carreau nanofluid with Newtonian conditions. Results Phys. 2018;10:
521‐528. https://doi.org/10.1016/j.rinp.2018.04.027

9. Iqbal K, Ahmed J, Khan M, Ahmad L, Alghamdi M. Magnetohydrodynamic thin film deposition of Carreau
nanofluid over an unsteady stretching surface. Appl Phys A: Mater Sci Process. 2020;126:1‐13. https://doi.
org/10.1007/s00339-019-3204-6

10. Khan JA, Mustafa M, Hayat T, Alsaedi A. On three‐dimensional flow and heat transfer over a non‐linearly
stretching sheet: analytical and numerical solutions. PLOS ONE. 2014;9:1‐11. https://doi.org/10.1371/
journal.pone.0107287

11. Hussain Z, Hayat T, Alsaedi A, Ahmad B. Three‐dimensional convective flow of CNTs nanofluids with heat
generation/absorption effect: a numerical study. Comput Methods Appl Mech Eng. 2017;329:40‐54. https://
doi.org/10.1016/j.cma.2017.09.026

12. Nandeppanavar MM, Siddalingappa MN. Effect of viscous dissipation and thermal radiation on heat transfer
over a non‐linearly stretching sheet through porous medium. Int J Appl Mech Eng. 2013;18:461‐474. https://
doi.org/10.2478/ijame-2013-0027

13. Tlili I, Bilal M, Qureshi M, Abdelmalek Z. Thermal analysis of magnetized pseudoplastic nano fluid flow
over 3D radiating non‐linear surface with passive mass flux control and chemically responsive species.
J Mater Res Technol. 2020;9:8125‐8135. https://doi.org/10.1016/j.jmrt.2020.05.073

14. Hayat T, Aziz A, Muhammad T, Alsaedi A. Numerical simulation for three‐dimensional flow of
Carreau nanofluid over a nonlinear stretching surface with convective heat and mass conditions.
J Braz Soc Mech Sci Eng. 2019;7:1‐11. https://doi.org/10.1007/s40430-018-1540-7

15. Shakunthala S, Nandeppanavar MM. Boundary layer flow and Cattaneo–Christov heat flux of a nonlinear
stretching sheet with a suspended CNT. Nanosci Nanotechnol—Asia. 2019;9:494‐503. https://doi.org/10.
2174/2210681208666180821142231

16. Patel HR, Singh R. Thermophoresis, Brownian motion and non‐linear thermal radiation effects on mixed
convection MHD micropolar fluid flow due to nonlinear stretched sheet in porous medium with viscous
dissipation, Joule heating and convective boundary condition. Int Commun Heat Mass Transfer. 2019;107:
68‐92. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.007

17. Tlili I, Hamadneh NN, Khan WA. Thermodynamic analysis of MHD heat and mass transfer of nanofluids
past a static wedge with Navier slip and convective boundary conditions. Arab J Sci Eng. 2018;44:1255‐1267.
https://doi.org/10.1007/s13369-018-3471-0

18. Nayak MK, Shaw S, Pandey VS, Chamkha AJ. Combined effects of slip and convective boundary condition
on MHD 3D stretched flow of nanofluid through porous media inspired by non‐linear thermal radiation.
Indian J Phys. 2018;92:1017‐1028. https://doi.org/10.1007/s12648-018-1188-2

19. Ray AK, Vasu B, Murthy PVSN, Gorla RSR. Non‐similar solution of Eyring–Powell fluid flow and heat
transfer with convective boundary condition: homotopy analysis method. Int J Appl Comput Math. 2020;6:
16. https://doi.org/10.1007/s40819-019-0765-1

SABU ET AL. | 3659

https://doi.org/10.1016/j.csite.2019.100494
https://doi.org/10.1016/j.csite.2019.100494
https://doi.org/10.1007/s40819-019-0706-z
https://doi.org/10.1016/j.physa.2020.124225
https://doi.org/10.1016/j.powtec.2020.07.115
https://doi.org/10.1016/j.powtec.2020.07.115
https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.132
https://doi.org/10.1016/j.rinp.2018.04.027
https://doi.org/10.1007/s00339-019-3204-6
https://doi.org/10.1007/s00339-019-3204-6
https://doi.org/10.1371/journal.pone.0107287
https://doi.org/10.1371/journal.pone.0107287
https://doi.org/10.1016/j.cma.2017.09.026
https://doi.org/10.1016/j.cma.2017.09.026
https://doi.org/10.2478/ijame-2013-0027
https://doi.org/10.2478/ijame-2013-0027
https://doi.org/10.1016/j.jmrt.2020.05.073
https://doi.org/10.1007/s40430-018-1540-7
https://doi.org/10.2174/2210681208666180821142231
https://doi.org/10.2174/2210681208666180821142231
https://doi.org/10.1016/j.icheatmasstransfer.2019.05.007
https://doi.org/10.1007/s13369-018-3471-0
https://doi.org/10.1007/s12648-018-1188-2
https://doi.org/10.1007/s40819-019-0765-1


20. Kuznetsov AV, Nield DA. The Cheng–Minkowycz problem for natural convective boundary layer flow in a
porous medium saturated by a nanofluid: a revised model. Int J Heat Mass Transfer. 2013;65:682‐685.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.054

21. Ul Haq R, Nadeem S, Hayat Khan Z, Sher Akbar N. Thermal radiation and slip effects on MHD stagnation
point flow of nanofluid over a stretching sheet. Phys E: Low‐Dimensional Syst Nanostruct. 2015;65:17‐23.
https://doi.org/10.1016/j.physe.2014.07.013

22. Ramzan M, Sheikholeslami M, Saeed M, Chung JD. On the convective heat and zero nanoparticle mass flux
conditions in the flow of 3D MHD couple stress nanofluid over an exponentially stretched surface. Sci
Reports. 2019;9:1‐13. https://doi.org/10.1038/s41598-018-37267-2

23. Uddin I, Altaf M, Ullah S, Islam S, Israr M, Hussain F. Characteristics of buoyancy force on stagnation
point flow with magneto‐nanoparticles and zero mass flux condition. Results Phys. 2018;8:160‐168. https://
doi.org/10.1016/j.rinp.2017.10.038

24. Saif‐ur‐Rehman NAMir, Farooq M, Rizwan M, Ahmad F, Ahmad S, Ahmad B. Analysis of thermally
stratified flow of Sutterby nanofluid with zero mass flux condition. J Mater Res Technol. 2020;9:1631‐1639.
https://doi.org/10.1016/j.jmrt.2019.11.088

25. Hayat T, Ahmed B, Alsaedi A, Abbasi FM. Numerical study for peristalsis of Carreau–Yasuda nanomaterial
with convective and zero mass flux condition. Results Phys. 2018;8:1168‐1177. https://doi.org/10.1016/j.
rinp.2017.12.070

26. Khan M, Azam M, Alshomrani AS. Unsteady slip flow of Carreau nanofluid over a wedge with nonlinear
radiation and new mass flux condition. Results Phys. 2017;7:2261‐2270. https://doi.org/10.1016/j.rinp.2017.06.038

27. Nandeppanavar M, Kemparaju M, Shilpa J. Heat and mass transfer analysis of Carreau nanofluid over an
exponentially stretching sheet in a saturated porous medium. J Nanofluids. 2018;8:990‐997. https://doi.org/
10.1166/jon.2019.1656

28. Khan M, Hussain A, Malik MY, Salahuddin T, Aly S. Numerical analysis of Carreau fluid flow for generalized
Fourier's and Fick's laws. Appl Numer Math. 2019;144:100‐117. https://doi.org/10.1016/j.apnum.2019.05.018

29. Mackolil J, Mahanthesh B. Exact and statistical computations of radiated flow of nano and Casson fluids
under heat and mass flux conditions. J Comput Des Eng. 2019;6:593‐605. https://doi.org/10.1016/j.jcde.
2019.03.003

30. Mahanthesh B, Mackolil J, Shehzad SA. Statistical analysis of stagnation—point heat flow in Williamson
fluid with viscous dissipation and exponential heat source effects. Heat Transfer. 2020;49(8):4580‐4591.
https://doi.org/10.1002/htj.21842

31. Mahanthesh B, Shankarappa N, Jayanna B, Lare I. Effectiveness of Hall current and exponential heat
source on unsteady heat transport of dusty TiO2‐EO nanoliquid with nonlinear radiative heat. J Comput
Des Eng. 2019;6:551‐561. https://doi.org/10.1016/j.jcde.2019.04.005

32. Khan M, Sardar H, Hashim. Heat generation/absorption and thermal radiation impacts on three‐
dimensional flow of Carreau fluid with convective heat transfer. J Mol Liq. 2018;272:474‐480. https://doi.
org/10.1016/j.molliq.2018.08.088

33. Mahanthesh B, Gireesha BJ, Subba R, Gorla R. Unsteady three‐dimensional MHD flow of a nano
Eyring–Powell fluid past a convectively heated stretching sheet in the presence of thermal radiation,
viscous dissipation and Joule heating. J Assoc Arab Univ Basic Appl Sci. 2017;23:75‐84. https://doi.org/10.
1016/j.jaubas.2016.05.004

34. Fisher R. On the “Probable Error” of a coefficient of correlation deduced from a small sample. Metron.
1921;1:1‐32. https://ci.nii.ac.jp/naid/10012392243/en/

How to cite this article: Sabu AS, Areekara S, Mathew A. Statistical analysis on three‐
dimensional MHD convective Carreau nanofluid flow due to bilateral nonlinear
stretching sheet with heat source and zero mass flux condition. Heat Transfer.
2021;50:3641–3660. https://doi.org/10.1002/htj.22045

3660 | SABU ET AL.

https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.054
https://doi.org/10.1016/j.physe.2014.07.013
https://doi.org/10.1038/s41598-018-37267-2
https://doi.org/10.1016/j.rinp.2017.10.038
https://doi.org/10.1016/j.rinp.2017.10.038
https://doi.org/10.1016/j.jmrt.2019.11.088
https://doi.org/10.1016/j.rinp.2017.12.070
https://doi.org/10.1016/j.rinp.2017.12.070
https://doi.org/10.1016/j.rinp.2017.06.038
https://doi.org/10.1166/jon.2019.1656
https://doi.org/10.1166/jon.2019.1656
https://doi.org/10.1016/j.apnum.2019.05.018
https://doi.org/10.1016/j.jcde.2019.03.003
https://doi.org/10.1016/j.jcde.2019.03.003
https://doi.org/10.1002/htj.21842
https://doi.org/10.1016/j.jcde.2019.04.005
https://doi.org/10.1016/j.molliq.2018.08.088
https://doi.org/10.1016/j.molliq.2018.08.088
https://doi.org/10.1016/j.jaubas.2016.05.004
https://doi.org/10.1016/j.jaubas.2016.05.004
https://ci.nii.ac.jp/naid/10012392243/en/
https://doi.org/10.1002/htj.22045



