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Abstract

The hydromagnetic convective flow between two

parallel plates has been analyzed frequently.

However, only a countable number of studies are

accounted for the flow between parallel plates

moving in opposite directions. The present work

aims to analytically explore the three‐dimensional

(3D) convective hydromagnetic hybrid nanoliquid

(with suspended Al O2 3 and Fe O3 4 nanoparticles)

flow between two oppositely moving vertical por-

ous plates utilizing the perturbation technique.

The consequence of effectual parameters on the

flow profiles is analyzed with the aid of graphs

using MATLAB software. It is perceived that na-

noparticle volume fraction ascends drag coeffi-

cient and descends temperature and main flow

velocity. Furthermore, the rate of heat transfer is

statistically scrutinized utilizing response surface

methodology and sensitivity analysis. It is noted

that the Nusselt number is most sensitive with the

injection parameter. 3D surface plots are used to

illustrate the parallel effect of pertinent para-

meters on the drag coefficient. Moreover, the

present study finds applications in several
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engineering, geophysical, and industrial fields,

such as in heat exchangers and faulting.
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hybrid nanoliquid, magnetohydrodynamics, opposite moving

plates, porous plate, response surface methodology, sensitivity

analysis

1 | INTRODUCTION

The latest nanotechnology research works focus on finding practices that help in boosting the
efficiency and transfer properties of the considered nanoliquid (fluids suspended with nano-
particles). This is where hybrid nanoliquid (colloidal suspension of two or more nanomaterials)
comes into the scene. The collaborative effect alters the nanoliquid's heat transfer rate proving
to be beneficial in many engineering and industrial fields (like solar energy systems, car ra-
diators, nuclear system cooling, micromanufacturing processes, etc.). Junoh et al.1 numerically
explored the consequence of induced magnetic field (IMF) on the heat transfer and hydro-
magnetic stagnation point flow over a lengthening/shortening sheet and revealed that the heat
transfer rate was higher for the hybrid nanoliquid. Acharya and Mabood2 employed the fourth‐
order Runge–Kutta method to numerically inspect the hybrid nanoliquid flow over a slippery
permeable bent structure. They perceived that the hybrid nanoliquid exhibits a lower drag
coefficient and higher Nusselt number. Some recent studies concerning hybrid nanoliquid can
be seen in References [3–6].

Employment of magnetic fields assures prospective significance in the field of geophysics,
industrial engineering, and biomedical fields. Jha and Aina7 theoretically explored the influence
of IMF on free convective flow in a vertical microchannel and reported that augmenting
magnetic Prandtl number and Hartmann number causes a decrease in volume flow rate. Dash
and Ojha8 discussed the MHD viscoelastic fluid flow between two infinite horizontal permeable
plates involving sinusoidal pressure gradient and noted a decline in velocity profile on ampli-
fying Hartmann number. A few studies reporting the consequence of magnetic field can be seen
in References [9–12].

A porous plate corresponds with a plate having frequently distributed void spaces in it.
They are found to be beneficial in oil reservoirs, agricultural engineering, petroleum
technology, and so forth. Nayak et al.13 numerically analyzed the three‐dimensional (3D)
hydromagnetic nanoliquid flow through an exponentially lengthening porous sheet with
the aid of the fourth‐order Runge–Kutta method. They noticed a rise in velocity with
augmenting porosity parameter values. Das et al.14 inspected the impact of the transverse
magnetic field, slip condition, and Hall current on an unsteady hydromagnetic rotating
flow over a periodically accelerated horizontal porous plate. They noted that increasing
Hall current has a positive effect on the velocity profile close to the plate and a negative
effect on the velocity profile away from the plate. Studies dealing with porous plates
considering different attributes are explained in References [15–19].

Analysis of physical quantities (heat transfer rate/drag coefficient/mass transfer rate)
utilizing statistical techniques (like correlation, regression, sensitivity analysis) has re-
cently trended in the research world due to its efficiency in producing accurate
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quantitative results. response surface methodology (RSM) analyzes the conjoint impact of
effectual parameters (independent variables) on the physical quantity of interest (re-
sponse/dependent variable). Sensitivity analysis, on the other hand, measures the extent
and nature of dependency exhibited by the effectual parameters on the physical quantity
of interest. Some recent explorations on RSM and sensitivity analysis can be viewed in
References [20–23].

Even though many investigations concerning hydromagnetic convective flow between two
parallel plates have been carried out, only a handful of studies discusses the flow between
parallel plates moving in different directions.24–27 Neethu et al.28 analytically inspected the 3D
hydromagnetic nanoliquid flow between two vertical porous plates moving in different direc-
tions with the aid of the perturbation technique. They perceived that injection parameter
enhances the temperature profile whereas nanoparticle volume fraction diminishes the tem-
perature profile.

Impelled by previous studies, it is heeded that 3D hydromagnetic hybrid nanoliquid flow of
hybrid nanoliquid between two vertical porous plates moving in opposite directions has not yet
been explored. The current work aims at filling this gap. The present study finds applications in
several engineering, geophysical, and industrial fields like heat exchangers and faulting.
Moreover, sensitivity analysis on the rate of heat transfer is also incorporated to boost the
novelty of the present work.

2 | PROBLEM STATEMENT

An unsteady convective hybrid nanoliquid flow between two vertical porous plates involving a
magnetic field (of uniform strength, B0 applied normal to the plane of the plate) is considered
(see Figure 1). The problem is developed utilizing the following conditions:

FIGURE 1 Physical configuration
[Color figure can be viewed at
wileyonlinelibrary.com]
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(i) Parallel plates are traveling in different directions with uniform velocity.
(ii) The upward and downward‐moving plates are subjected to transverse sinusoidal injection

velocity and constant suction velocity, respectively.
(iii) An IMF has been neglected due to the assumption of a small magnetic Reynolds number.
(iv) The injection velocity distribution is of the form:

⎜ ⎟
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(v) Without loss of generality, the distance d between the plates is taken equal to the wave-
length of the injection velocity.

(vi) The temperature of the downward‐moving plate is at constant temperature T1 and that of
the upward‐moving plate fluctuating with time is given as:

T t T ε T T e( ) = + ( − ) .iω t⁎ ⁎
0 2 0 1

⁎ ⁎

Utilizing Boussinesq's approximation and the above assumptions, governing equations are
given by24,28:
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subject to the boundary conditions:
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The following dimensionless quantities are introduced into Equations (1)–(6) (except 2),
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The reduced equations take the form:
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Equation (2) permutes to the following cases:
Case I: When the magnetic field is along the upward‐moving plate (at y= 0)
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Case II: When the magnetic field is along the downward‐moving plate (at y= 1)

⎛
⎝⎜

⎞
⎠⎟

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

ω

Re

u

t
v
u

y
w

u

z C C Re

u

y

u

z

C

C Re
H u C GrReθ+ + =

1
+ − ( + 1) + .

1 2

2

2

2

2

3

2

2
4

(12)

The reduced boundary conditions take the form:
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and the hybrid nanoliquid constants are explained in Table 1.

3 | METHOD OF SOLUTION

The reduced forms of the governing equations are resolved using the perturbation method. For
this, let ε ε ε= min { , }1 2 be very small and suppose that solution is of the format
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f y z t f y εf y z t ε f y z t( , , ) = ( ) + ( , , ) + ( , , ) +….0 1
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(14)

3.1 | Steady flow solution

Letting ε = 0, the current problem narrows to a steady 2D flow which is governed by the
ensuing equations:

Case I: When the magnetic field is along the upward‐moving plate (at y= 0)
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where prime notates the derivative with respect to y.
The analogous boundary conditions take the form:
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Solving Equations (15)–(17) with respect to (18) yields:
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Case I: When the magnetic field is along the upward‐moving plate (at y= 0)
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Case II: When the magnetic field is along the downward‐moving plate (at y= 1)
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3.2 | Cross flow solution

Letting ≠ε 0, applying Equation (14) into Equations (7)–(9) and equating like powers of ε and
ignoring the higher powers of ε2, the following equations are derived:
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Corresponding boundary conditions are
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These are the linear partial differential equations reporting the 3D cross flow, which is
independent of the temperature field and the main flow component. The solutions for v w p, ,1 1 1

are assumed to be of the form:
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where prime notates the derivative with respect to y. Expressions (26) and (27) have been
chosen so that the equation of continuity (22) is trivially satisfied. Applying these into
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Equations (23) and (24) and employing Equation (25), the solutions for v w p, ,1 1 1 are
obtained as:
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3.3 | Temperature field

Comparably letting ≠ε 0, applying Equation (14) to Equation (10) and comparing like powers
of ε, the equation for temperature field is given by:
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Equation (32) along with Equation (33) is solved with a supposition that the solution is of
the format:
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Resolving Equation (35) and (36) utilizing Equation (37), the solution is given by:
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3.4 | Main flow solution

Letting ≠ε 0, the first‐order equation for the main flow deduced with the help of Equation (14)
and equating like powers of ε is given by:
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Resolving Equation (42) and (43) utilizing Equation (44), the solution is derived as:
Case I: When the magnetic field is along the upward‐moving plate (at y= 0)
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Case II: When the magnetic field is along the downward‐moving plate (at y= 1)
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4 | DRAG COEFFICIENT AND HEAT TRANSFER RATE

Physical quantities like skin friction Cf( ) and Nusselt number Nu( ) measuring surface drag and
rate of heat transfer, respectively, are given by:24,28

Case I: When the magnetic field is along the upward‐moving plate (at y= 0)
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(47)

Case II: When the magnetic field is along the downward‐moving plate (at y= 1)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟Cf

d

μ U
μ

du

dy C

du

dy
ε
du

dy
= =

1
+ ,

f
hnf

y d y y0

⁎

⁎
= 1

0

=1

1

=1⁎

(48)
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(49)

5 | RESULT AND DISCUSSIONS

The significance of effectual parameters on velocity u( ), surface drag Cf( ), and temperature θ( )

profiles are depicted through Figures 2–11. The physical properties of nanoparticles (Al O2 3

and Fe O3 4) and the conventional fluid (water) are identified in Table 2.
ϕ ϕ ω Re H Pr Gr t π= 0.1, = 0.1, = 10, = 1, = 2, = 7, = 7, and = /21 2 are the base values of

FIGURE 2 Deviation in u with Gr
[Color figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 3 Deviation in u with H

[Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 4 Deviation in u with ϕ1
[Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 5 Deviation in u with ϕ2
[Color figure can be viewed at
wileyonlinelibrary.com]

MATHEW ET AL. | 11

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 8 Deviation in θ with ϕ2
[Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 7 Deviation in θ with ϕ1
[Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 6 Deviation in u with Re

[Color figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 10 (A) Parallel deviation
in Cf with ϕ1 and Re on an upward‐
moving plate (at y= 0). (B) Parallel
deviation in Cf with ϕ1 and Re on a
downward‐moving plate (at y= 1)
[Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 9 Deviation in θ with Re

[Color figure can be viewed at
wileyonlinelibrary.com]
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parameters employed (unless specified) throughout the analysis. Furthermore, the validation of
the obtained results is achieved through a comparative study with the work of Neethu et al.28

(see Table 3) and a good agreement is noted.
Figure 2 explains the positive effect of Grashof number Gr( ) on u meaning that an aug-

mentation in Gr will increase the velocity. Physically, on magnifying Gr the buoyancy forces
become prominent, which results in ascending the velocity profile. Figure 3 manifests the
consequence of Hartmann number H( ) on u. The introduction of a magnetic field produces a
drag force (Lorentz force), which sets up an opposite reaction on upward‐ and downward‐
moving plates. On varying H , it is noted that u ascends on an upward‐moving plate whereas u
descends on a downward‐moving plate. The negative influence of volume fraction of

TABLE 2 Physical properties of nanoparticles and base fluid3,9,30

Physical properties H2O Al2O3 Fe3O4

ρ 997.1 3970 5180

Cp 4179 765 670

β 21 × 10−5 0.85 × 10−5 1.3 × 10−5

σ 5 × 10−5 35 × 106 25,000

k 0.613 40 9.7

FIGURE 11 (A) Parallel deviation
in Cf with H and Gr on an upward‐
moving plate (at y= 0). (B) Parallel
deviation in Cf with H and Gr on a
downward‐moving plate (at y= 1)
[Color figure can be viewed at
wileyonlinelibrary.com]
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nanoparticles (ϕ1 and ϕ2) on u is elucidated in Figures 4 and 5, respectively. This decrease in
velocity can be physically attributed to the fact that increasing volume fraction of nanoparticles
swells the viscosity of hybrid nanoliquid, which causes a drop in velocity. The influence of the
injection/suction parameter Re( ) on u is depicted in Figure 6. Velocity profile experiences an
exponential augmentation when Re values are improved.

Figures 7 and 8 reveal that intensification in the volume fraction of nanoparticles brings
about a reduction in θ. The impact of Re on θ is displayed using Figure 9 and it is noted that Re
causes an improvement in θ. Physically, this increase in temperature can be associated with the
fact that with increasing Re values the heated nanoparticles enter the opposite moving plates
and the cold nanoparticles exit the opposite moving plates.

The parallel effect of effectual parameters on drag coefficient Cf( ) is illustrated in Figures 10
and 11 with the aid of 3D surface plots. The (A) and (B) parts of Figures 10 and 11 discuss the
parallel effect on the upward‐ and downward‐moving plate, respectively. From Figures 10 and
11, it is seen that surface drag ascends with ϕ Re, ,1 H, and Gr on the upward‐moving plate.
Furthermore, surface drag ascends with ϕ ,1 Re, and Gr and descends with H on the downward‐
moving plate.

6 | STATISTICAL ANALYSIS

6.1 | Response surface methodology

RSM is a statistical approach employed in analyzing the conjoint impact of effectual parameters
(independent variables) on the physical quantity of interest (response/dependent variable). In

TABLE 3 Comparison of Nu with augmenting Re values when ϕ ϕ ω= 0, = 0, = 10,1 2

t π Pr Gr H= /2, = 7, = 5, and = 2

Re

Nu

Neethu et al.28 Present study

0.5 3.606813361 3.606813361

1 6.997602314 6.997602314

1.5 10.47713887 10.47713887

2 13.96647291 13.96647291

2.5 17.48348401 17.48348401

TABLE 4 Effective parameter levels

Parameter Symbol

Levels

−1 (low) 0 (medium) 1 (high)

ϕ1 A 0.02 0.05 0.08

ϕ2 B 0.02 0.05 0.08

Re C 1 1.5 2
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this problem, Nu is chosen as the response variable and nanoparticle volume fraction of
≤ ≤ϕAl O (0.02 0.08)2 3 1 , the nanoparticle volume fraction of ≤ ≤ϕFe O (0.02 0.08)3 4 2 and in-

jection/suction parameter ≤ ≤Re(1 2) are chosen as the influential parameters. Table 4 be-
speaks the effective parameters and their levels. The general model (adopting central composite
design) for response variable involving linear, interactive, and quadratic terms is expressed by:

λ λ A λ B λ C λ AB λ BC λ AC λ A λ B λ CResponse = + + + + + + + + + + ,0 1 2 3 4 5 6 7
2

8
2

9
2

(50)

where λ i( = 0,1, …, 9)i represents the regression coefficients. The experimental design and the
response for the 20 runs (according to CCD) are given in Table 5.

The analysis of variable table (Table 6) illustrates the efficiency of the estimated model. A
parameter is claimed as significant if the corresponding F value is greater than 1 and the
corresponding p value is less than .05. It is observed that the quadratic terms in ϕ1 and ϕ2 are
not significant. Hence, these terms are removed from the model. The coefficient of determi-
nation R( )2 for the model is found to be 100% which boosts the model accuracy.

TABLE 5 Experimental design with response

Run

Coded values Actual values Response

A B C ɸ1 ɸ2 Re Nu

1 −1 −1 −1 0.02 0.02 1 6.9437

2 1 −1 −1 0.08 0.02 1 6.8562

3 −1 1 −1 0.02 0.08 1 6.895

4 1 1 −1 0.08 0.08 1 6.8352

5 −1 −1 1 0.02 0.02 2 13.8524

6 1 −1 1 0.08 0.02 2 13.6411

7 −1 1 1 0.02 0.08 2 13.7266

8 1 1 1 0.08 0.08 2 13.53

9 −1 0 0 0.02 0.05 1.5 10.3412

10 1 0 0 0.08 0.05 1.5 10.19

11 0 −1 0 0.05 0.02 1.5 10.309

12 0 1 0 0.05 0.08 1.5 10.2216

13 0 0 −1 0.05 0.05 1 6.8773

14 0 0 1 0.05 0.05 2 13.6873

15 0 0 0 0.05 0.05 1.5 10.2646

16 0 0 0 0.05 0.05 1.5 10.2646

17 0 0 0 0.05 0.05 1.5 10.2646

18 0 0 0 0.05 0.05 1.5 10.2646

19 0 0 0 0.05 0.05 1.5 10.2646

20 0 0 0 0.05 0.05 1.5 10.2646
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The fitted quadratic model for Nu is given by:

Nu ϕ ϕ Re Re ϕ ϕ

ϕ Re ϕ Re.

= 10.2645 − 0.07064 − 0.0394 + 3.403 + 0.01807 + 0.0053

− 0.03258 − 0.0209

1 2
2

1 2

1 2
(51)

The reliability of the estimated model for Nu is further clarified using residual plots (see
Figure 12). All points in a normal probability plot situated beside a straight line with an
insignificant deflection and the residual histogram are approximately bell‐shaped confirming
the normal nature of residuals. Furthermore, a maximum error of 0.005 can be observed from
the fitted versus residual plot, which also contributes to the accuracy of the model.

From Equation (51), it can be inferred that ϕ1 and ϕ2 have a negative impact on Nu and Re has a
positive effect on Nu. The parallel interaction of two parameters on Nu is graphed using surface and
contour plots (see Figure 13) by fixing the third parameter at the medium level. From Figure 13A–C,
it is perceived that Nu is highest for smaller values of ϕ1 and ϕ2 and larger values of Re.

TABLE 6 Analysis of variable table

Degree of
freedom

Adjusted
sum of
squares

Adjusted
mean
squares

Regression
coefficient F value p Value

Model 9 115.884 12.876 924,250.49 .000

Linear 3 115.870 38.623 2,772,413.38 .000

ϕ1 1 0.050 0.050 −0.07064 3581.88 .000

ϕ2 1 0.016 0.016 −0.03940 1114.30 .000

Re 1 115.804 115.804 3.40300 8,312,543.94 .000

Square 3 0.002 0.001 46.00 .000

ϕ ϕ×1 1 1 0.000 0.000 0.00137 0.37 .556

ϕ ϕ×2 2 1 0.000 0.000 0.00107 0.23 .644

Re Re× 1 0.001 0.001 0.01807 64.47 .000

Two‐way
interaction

3 0.012 0.004 292.11 .000

ϕ ϕ×1 2 1 0.000 0.000 0.00530 16.13 .002

ϕ Re×1 1 0.008 0.008 −0.03258 609.35 .000

ϕ Re×2 1 0.003 0.003 −0.02090 250.84 .000

Constant 10.2645

Error 10 0.000 0.000

Lack‐of‐fit 5 0.000 0.000 * *

Pure error 5 0.000 0.000

Total 19 115.884

R = 100%2 Adjusted R = 100%2
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6.2 | Sensitivity analysis

Sensitivity analysis is a statistical technique that measures the extent and nature of de-
pendency exhibited by the effectual parameters on the physical quantity of interest. In
other words, sensitivity analysis accounts for the variation induced by the augmenting
parameter on the remaining effectual parameter. The sign of sensitivity (positive or ne-
gative) signifies the nature of the correlation between Nu and the influential parameters.
Furthermore, the magnitude of sensitivity indicates the intensity of the effect on Nu.

The quadratic model (in coded form) after neglecting the insignificant terms is given by:

Nu A B C C AB AC

BC.

= 10.2645 − 0.07064 − 0.0394 + 3.403 + 0.01807 + 0.0053 − 0.03258

− 0.0209

2

(52)

Then the sensitivity functions are:

∂

∂

Nu

A
B C= −0.07064 + 0.0053 − 0.03258 , (53)

FIGURE 12 Residual plots [Color figure can be viewed at wileyonlinelibrary.com]
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∂

∂

Nu

B
A C= −0.0394 + 0.0053 − 0.0209 , (54)

∂

∂

Nu

C
C A B= 3.403 + 0.03614 − 0.03258 − 0.0209 . (55)

The sensitivity for Nu is tabulated in Table 7 keeping ϕ1 in the medium level. It is noted
that ϕ1 and ϕ2 exhibits negative sensitivity and Re exhibits a positive sensitivity toward Nu.
The sensitivity of Nu is also visualized using bar charts (Figure 14). It is seen that the
results of sensitivity analysis are in perfect harmony with the results inferred using RSM.
It is also noticed that Nu is most sensitive with Re.

FIGURE 13 Contour and surface plots for Nu [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 7 Sensitivity of response Nu when A = 0

B C

Sensitivity

∂
∂
Nu

A

∂
∂
Nu

B

∂
∂
Nu

C

−1 −1 −0.0434 −0.0185 3.3878

0 −0.0759 −0.0394 3.4239

1 −0.1085 −0.0603 3.4600

0 −1 −0.0381 −0.0185 3.3669

0 −0.0706 −0.0394 3.4030

1 −0.1032 −0.0603 3.4391

1 −1 −0.0328 −0.0185 3.3460

0 −0.0653 −0.0394 3.3821

1 −0.0979 −0.0603 3.4182

FIGURE 14 Bar charts depicting the sensitivity of Nu [Color figure can be viewed at
wileyonlinelibrary.com]
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7 | CONCLUDING REMARKS

The key observations are:

• Grashof number has a constructive effect on main flow velocity.
• Hartman number positively contributes toward the velocity profile on the upward‐moving
plate and negatively contributes toward the velocity profile on the downward‐moving plate.

• The main flow velocity profile is higher when a magnetic field is applied on the upward‐moving
plate.

• The drag coefficient is directly proportional to the volume fraction of nanoparticles.
• The rate of heat transfer is the most sensitive parameter with the injection/suction parameter.
• Augmentation of volume fraction of Al O2 3 nanoparticles has more influence on the flow profiles.
• The surface drag coefficient ascends with augmenting the Hartmann number on the upward‐
moving plate and descends on the downward‐moving plate.

• The volume fraction of nanoparticles exhibits a destructive effect on the heat transfer rate.

NOMENCLATURE
u v w, ,⁎ ⁎ ⁎ velocity components, m/s
T⁎ fluid temperature, K
t⁎ time, s
T0 temperature of the fluid near the plate at origin, K
T1 temperature of the fluid near the plate at d, K
g acceleration due to gravity, m/s2

U0 velocity of the moving plates
p⁎ pressure
Cp specific heat at constant pressure
B0 strength of magnetic field
Re injection/suction parameter
Pr Prandtl number
H Hartmann number
Gr Grashof number
V0 injection velocity

GREEK SYMBOLS
σ electrical conductivity
ϕ ϕ,1 2 nanoparticle volume fraction
k thermal conductivity, W/m·K
ϑ kinematic viscosity, m2/s
μ dynamic viscosity, kg/m·s
ω⁎ angular velocity
ρ density, kg/m3

ε ε ε, ,0 1 2 very small reference constants

SUBSCRIPTS
f base fluid
nf nanoliquid
hnf hybrid nanoliquid
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s1 Al O2 3 nanoparticle
s2 Fe O3 4 nanoparticle
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