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«©

Let « > — 1. For a given series 3 a,,, write
0

a, (n:a) e (¢t > 0),

i n+a)
A(t)=nz=‘,0An( . )e £ (t > 0),

it being tacitly assumed that the series defining a(t) and A(t) converge for all £ > 0.
2a, is said to be summable (4,) to 4 if

(l—etyatl4(f) - 4 as t—>0+.

The purpose of this note is to establish the following gap Tauberian theorem for (4,)
summability:

TrrorREM. If Xa, satisfies a gap condition as follows :
a, =0 for n % n, where {n,} is a sequence of positive integers such that}
Nyyqfr, =2 ¢ > 1 for all r,

(1)

and if Za, is summable (4,) to A, then Za,, convergesto 4.

Since (4,) summability implies (4,) summability for A > x > —1 ((1), Theorem 2,
319), we need to (and do) consider the case — 1 < a < 0. The well known gap Tauberian
theorem for (A4,) summability (viz. the special case of (2), Theorem 114, where A,
therein are integers) is, therefore, a special case of our Theorem.

We will say that a function s(y) belongs to the Tauberian class 7., if functions
& = 8(e, ), § = &(¢, x) can be defined for all x and € > 0 such that

0>0, |E—z| <56,
ls(y)—s(z)| <e for |y—§| <6

This is a special case of the Tauberian class Tﬂ considered by Pitt ((3); 7, 8; with Pitt’s
notation, we have taken x = 0).
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LemMA 1. Suppose that k(x), k,(x) are integrable over (— o0, 00), that the Fourier trans-
Jorm K(t) of k(x) does not vanish for real t, that s(x) is bounded and that

@

lim | ka-ysy)dy =4[ ky)dy.

Then lim N /cl(x—,’q)s(?/)dy=AJ\°o ky(y) dy.

This is Wiener’s theorem ((3); IV, Theorem 11, 51).
LevMma 2. Suppose oy > 0y > 0,

K(—iw) = K(t—i0) =J‘no e Vk(y)dy =0 (0< o <oy).

Suppose also that s(z) = O(e’®) for x > 0and each fixed o in the range oy < o < T, while
s(x) =0 forx <0, ©
g(x) =f Ex-vy)sly)dy is bounded

and s(z) belongs to the Tauberian class T,. Then s(x) is bounded.
This is a special case of a theorem of Pitt ((3), IV, Theorem 23, 72).

Lemma 3. If (1) is satisfied and (1 —e~t)*+H1A(t) = O(1) (¢ > 0+), then A, = O(n2)
(n — o).

Proof. Since the series defining a(t) and A4 (t) are power series in e~* we can write for all
t>0,

0

at) = 5 ("1F)erdn= o) (44=0)

n=0

= A(t)— % (nl—a) (1_’_%11) ety

n=0

=A(t)—eTA() —ocfa° e~ A(u) du.
t

By hypothesis, there is a constant M such that
[(1—et)y 1 A@#) < M forall t>0.

Hence la(t)] < M(1—ety=+ laIJ‘we—“M(l_e-uy(aH)du
t
= M(l—e"t)‘“—Ma[ll(l_%ft)j] =0(1) (t—>0+).

Applying Theorem 116 in (2) to Zb, e where b, =a, (n:a) & o follows that
a, (n:a) = O(1) and hence that a, = O(n—*).

Now, if n;, < n < n;,, we have, by (1),

k k a k
|4, < 2 |@n,| < Mymig® T (%) < Myn—= 3 kN = O(n=).
r=1

r=1 r r=1
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Lemma 4. If A, = o(n) (n > ), Za,, is summable (4,) to A and
foe+1 ® —
Y(t) = F_(Orl)fo u*et A(u)du (t > 0), (2)

where A(u) = A, for n<u<n+1,then
i) Y(¢) >4 —~0+), and
(it) W'(t) is bounded for 0 < t < co.

Proof. Part (i) is a special case of an unpublished result of C. T. Rajagopal who has

kindly supplied this proof to me. Supposing that 4, = 0 we can write V'(t) = §] d, )4,
where n=1

d(t fa+l n+1 —tug
"()“F(a+1)fn ure au,

e [n 4 O, [ — e (0 < 6,(t) < 1),

I'ae+1)
_ mn[1 +”’T‘”] et (1—et) (o, (t)] < M),
=t“<n:a)(1+w7”‘)[1+i-0”7(t)]6‘”t(1—6“t) (lwy] < B,

- t“(l—e—t)[l +8"—(t)](n:a) et ([8,(t)] < M),

n

M, M’, M" being independent of » and ¢. This shows that W(¢) exists for all £ > 0 and
that

l(l _te_t)a‘F(t) —(1- e—t)““A(t)\ =

s 2 n+a) 8,.(t)
(1 —et)atl EAn( . )e A

n=1 n

< M'(1—e byl 3 Ann‘l(n:a)e—”t—>0 as t—>0+,
1

n=

since 4, 7! — 0 and the (4,) method is regular. This proves (i).
It can be directly verified that ¥'(t) = O(1) ( = o0); and hence (ii) holds.

LemmMa 5. If A, = O(n—=), W(t), defined by (2), 18 bounded in (0,00) and (1) is satisfied,
then 4, = O(1) (n — o0).

Proof. Writing u = ¢? and ¢t = ¢~* we have
1 © -
-2y — (y—z) (@+1) — oV
Y(e—=) P(a+1)f_wey z exp{—ev—=} A(e¥) dy.

e @tVzexp{—e=}, A(e) = s(y)

1
Let k(x) = Tat1)
and g(z) = ¥(e=). Then

9@ = | ka—y)s)dy.

-0



500 V. K. KrisgnaAN

Now the gap condition (1) implies that s(y) is constant in some interval of length not
less than 26 = logc (closed on the left, open on the right) which contains z. Hence we
can choose £ with |£ —xz| < & such that s(y) = s(z) for |y —§| < 6. This means that s(y)
belongs to the Tauberian class 7, defined earlier. The Fourier transform of k(x) is
K(t) = I'(ec + 1 +14¢)[T'(ee + 1) which does not vanish for any ¢. Further, the boundedness
of W'(t) implies that of g(x) and 4, = O(n—*) implies that s(y) = O(e~*¥). Thus the
hypotheses of the lemma imply the hypotheses of Lemma 2 with oy = —a.

Lemma 6. If Sa, satisfies the hypotheses of our theorem and if A,, = O(1) (n — o0) then
Za,, converges to A.

Proof. Tt follows from Lemma 4 that

tim [ kw-p)s)dy =4[~ Hpdy
in the notation used in the proof of Lemma 5. Taking &,(x) = e* for x > 0, k() = 0,
for x < 0, we deduce from Lemma, 1 that A (u) - A(C, 1). The lemma now follows from
the fact that (1) is a gap Tauberian condition for (C, 1) summability.

The theorem is obviously obtained by combining Lemmas 3, 4, 5 and 6.

I am indebted to the Referee for simplifying the use of Pitt’s Tauberian classes and
thereby correcting a mistake in my original proof of Lemma 5. I thank Professor
Rajagopal and Dr M. S. Rangachari for their help in the preparation of this note.
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