
Math. Proc. Camb. Phil. Soc. (1975), 78, 497 4 9 7
MPCPS 78-48

Printed in Oreat Britain

Gap Tauberian theorem for generalized
Abel summability

B Y V. K. KRISHNAN

St Thomas College, Trichur, India

{Received 25 November 1974)

00

Let a > — 1. For a given series 2 an, write
o

An = £ «r (» > 0).
r=0

a(t)= £ an(
n + Ct\e-^ (* > 0),

7t=o V a /

•4(0 =
n=o

it being tacitly assumed that the series defining a(<) and 4̂(4) converge for all t > 0.
Sam is said to be summable (Aa) to -4 if

-> 4̂ as <->0 + .

The purpose of this note is to establish the following gap Tauberian theorem for (.4J
summability:

THEOREM. / / San satisfies a gap condition as follows :
an = 0 for n + nr where {nT} is a sequence of positive integers such that]

nr+1/nr ^ c > 1 for all r, J

and ifZan is summable (Aa) to A, then Sam converges to A.
Since (Ax) summability implies (A^) summability for A > fi > — 1 ((l), Theorem 2,

319), we need to (and do) consider the case —1 < a < 0. The well known gap Tauberian
theorem for (̂ 40) summability (viz. the special case of (2), Theorem 114, where An

therein are integers) is, therefore, a special case of our Theorem.
We will say that a function s(y) belongs to the Tauberian class Tff if functions

8 = 8(e, x), £ = g(e, x) can be denned for all x and e > 0 such that

8>0, | £ - sc |<* ,

\s(y)-s(x)\ ^ e for \y-£\ < 8.

This is a special case of the Tauberian class Tp considered by Pitt ((3); 7, 8; with Pitt's
notation, we have taken /i = 0).
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LEMMA 1. Suppose that k(x), k±(x) are integrable over (— oo, oo), that the Fourier trans-
form K(t) of k(x) does not vanish for real t, that s(x) is bounded and that

/ * OO / • GO

Mm k{x-y)s(y)dy = A\ k(y)dy.
iC—>oo J — co J — co

/* oo f* co

Then lim kx(x - y) s(y) dy = A I h(y)dy.
X—>co J — co J — co

This is Wiener's theorem ((3); IV, Theorem 11, 51).

LEMMA 2. Suppose a2 > o~x ^ 0,
/•oo

isr(-iw) = K(t-icr) = e-u»k(y)dy j= 0 (0 ^ o-^ cr^.
J -00

(
Suppose also that s(x) = O(e"x)for x > 0 <md! each fixed a in the range &x< o~ ^ cr2,
s(x) = Oforx ^ 0,

^(x) = &(a; -1/) s(y) dy is bounded
J - o o

s(a;) belongs to the Tauberian class Ta. Then s{x) is bounded.
This is a special case of a theorem of Pitt ((3), IV, Theorem 23, 72).

LEMMA 3. / / (1) is satisfied and (1 -e'^^Ait) = 0(1) (t -> 0 +), <fterc ^re = O(n~«)
(n -> oo).

Proof. Since the series defining a(<) and A (t) are power series in e~* we can write for all
t>0' - /% + a\

( I ) _i = 0),

(•00

By hypothesis, there is a constant M such that

|(1 _e-t)a+i^( < ) | ^ M for all t > 0.

Hence \a(t)\ < Jf(l-e-*)-a+ |a| f"e

1~ ( 1~^ ^"l =0(1)

Applying Theorem 116 in (2) to S6 e~wt where bn = a I I it now follows that

( \ \ a /
I = 0(1) and hence that am = 0(w~a).

Now, if %fe < n < nk+1 we have, by (1),

l ̂  S K l < -^i%a S (—V < Min~« J
r=l r = l \ " T / r=l
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LEMMA 4. If An = o(n) (n -> oo), San is summable (Aa) to A and

Jo *) du {t > 0), (2)

where A(u) = An for n < u < n +1, then
(i) y¥{t)-*A{t-+0 + ),and
(ii) T(t) is bounded for 0 < t < co.

Proof. Part (i) is a special case of an unpublished result of C. T. Rajagopal who has

kindly supplied this proof to me. Supposing that Ao = 0 we can write Y(£) = 2 <?„(<) An

where n = 1

(0 < dn(t) < 1),

JfeT, Jlf', Jf" being independent of n and £. This shows that T(<) exists for all t > 0 and
that

n=l V a / as

since Ann~x -> 0 and the (Aa) method is regular. This proves (i).
It can be directly verified that XF(<) = 0(1) (t -> oo); and hence (ii) holds.

LEMMA 5. If An = 0(n~a), T(£), defined by (2), is bounded in (0, oo) and (1) is satisfied,
then An = 0(1) (n -> oo).

Proof. Writing u = ev and t = e~x we have

Y(e-*) = 1 f °° e^-^(a+1) exp { -

Let &(a;) =

and g-(a;) = Y(e-Z). Then

= k(x-y)s(y)dy.
J —00
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Now the gap condition (1) implies that s(y) is constant in some interval of length not
less than 28 = log c (closed on the left, open on the right) which contains x. Hence we
can choose £ with |£ — x\ < 8 such that s(y) = s(x) for \y — g| < 8. This means that s(y)
belongs to the Tauberian class Ta defined earlier. The Fourier transform of k(x) is
K(t) — T(a + i + it)/T(a +1) which does not vanish for any t. Further, the boundedness
of T(£) implies that of g{x) and An = O(n~a) implies that s(y) = 0{e~av). Thus the
hypotheses of the lemma imply the hypotheses of Lemma 2 with crx = — a.

LEMMA 6. If 2an satisfies the hypotheses of our theorem and if An = 0(1) (n -> oo) then
2a n converges to A.

Proof. I t follows from Lemma 4 that

/• oo /*co

lim k(x-y)s{y)dy = A\ k(y)dy
X—»-00 J — 00 J — 00

in the notation used in the proof of Lemma 5. Taking k^x) = e~x for x ^ 0, kx{x) = 0,
for x < 0, we deduce from Lemma 1 that A(u) -*• A(C, 1). The lemma now follows from
the fact that (1) is a gap Tauberian condition for (C, 1) summability.

The theorem is obviously obtained by combining Lemmas 3, 4, 5 and 6.

I am indebted to the Referee for simplifying the use of Pitt's Tauberian classes and
thereby correcting a mistake in my original proof of Lemma 5. I thank Professor
Rajagopal and Dr M. S. Rangachari for their help in the preparation of this note.
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