Gap Tauberian theorem for generalized Abel summability

By V. K. KRISHNAN
St Thomas College, Trichur, India

(Received 25 November 1974)
Let $\alpha>-1$. For a given series $\sum_{0}^{\infty} a_{n}$, write

$$
\begin{aligned}
A_{n} & =\sum_{r=0}^{n} a_{r} \quad(n \geqslant 0) \\
a(t) & =\sum_{n=0}^{\infty} a_{n}\binom{n+\alpha}{\alpha} e^{-n t} \quad(t>0) \\
A(t) & =\sum_{n=0}^{\infty} A_{n}\binom{n+\alpha}{\alpha} e^{-n t} \quad(t>0)
\end{aligned}
$$

it being tacitly assumed that the series defining $a(t)$ and $A(t)$ converge for all $t>0$. Σa_{n} is said to be summable $\left(A_{\alpha}\right)$ to A if

$$
\left(1-e^{-t}\right)^{\alpha+1} A(t) \rightarrow A \quad \text { as } \quad t \rightarrow 0+
$$

The purpose of this note is to establish the following gap Tauberian theorem for (A_{α}) summability:

Theorem. If Σa_{n} satisfies a gap condition as follows:
$\left.\begin{array}{l}a_{n}=0 \text { for } n \neq n_{r} \text { where }\left\{n_{r}\right\} \text { is a sequence of positive integers such that } \\ n_{r+1} / n_{r} \geqslant c>1 \text { for all } r,\end{array}\right\}$
and if Σa_{n} is summable $\left(A_{\alpha}\right)$ to A, then Σa_{n} converges to A.
Since $\left(A_{\lambda}\right)$ summability implies $\left(A_{\mu}\right)$ summability for $\lambda>\mu>-1$ (1), Theorem 2, 319), we need to (and do) consider the case $-1<\alpha<0$. The well known gap Tauberian theorem for (A_{0}) summability (viz. the special case of (2), Theorem 114, where λ_{n} therein are integers) is, therefore, a special case of our Theorem.

We will say that a function $s(y)$ belongs to the Tauberian class T_{σ} if functions $\delta=\delta(\epsilon, x), \xi=\xi(\epsilon, x)$ can be defined for all x and $\epsilon>0$ such that

$$
\begin{gathered}
\delta>0, \quad|\xi-x| \leqslant \delta \\
|s(y)-s(x)| \leqslant \epsilon \quad \text { for } \quad|y-\xi|<\delta .
\end{gathered}
$$

This is a special case of the Tauberian class T_{β} considered by Pitt ((3); 7, 8; with Pitt's notation, we have taken $\mu=0$).

Lemma 1. Suppose that $k(x), k_{1}(x)$ are integrable over $(-\infty, \infty)$, that the Fourier transform $K(t)$ of $k(x)$ does not vanish for real t, that $s(x)$ is bounded and that

Then

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \int_{-\infty}^{\infty} k(x-y) s(y) d y=A \int_{-\infty}^{\infty} k(y) d y \\
& \lim _{x \rightarrow \infty} \int_{-\infty}^{\infty} k_{1}(x-y) s(y) d y=A \int_{-\infty}^{\infty} k_{1}(y) d y
\end{aligned}
$$

This is Wiener's theorem ((3); IV, Theorem 11, 51).
Lemma 2. Suppose $\sigma_{2}>\sigma_{1} \geqslant 0$,

$$
K(-i \omega)=K(t-i \sigma)=\int_{-\infty}^{\infty} e^{-\omega y} k(y) d y \neq 0 \quad\left(0 \leqslant \sigma \leqslant \sigma_{1}\right)
$$

Suppose also that $s(x)=O\left(e^{\sigma x}\right)$ for $x>0$ and each fixed σ in the range $\sigma_{1}<\sigma \leqslant \sigma_{2}$, while $s(x)=0$ for $x \leqslant 0$,

$$
g(x)=\int_{-\infty}^{\infty} k(x-y) s(y) d y \quad \text { is bounded }
$$

and $s(x)$ belongs to the Tauberian class T_{σ}. Then $s(x)$ is bounded.
This is a special case of a theorem of Pitt ((3), IV, Theorem 23, 72).
Lemma 3. If (1) is satisfied and $\left(1-e^{-t}\right)^{\alpha+1} A(t)=O(1) \quad(t \rightarrow 0+)$, then $A_{n}=O\left(n^{-\alpha}\right)$ ($n \rightarrow \infty$).

Proof. Since the series defining $a(t)$ and $A(t)$ are power series in e^{-t} we can write for all $t>0$,

$$
\begin{aligned}
a(t) & =\sum_{n=0}^{\infty}\binom{n+\alpha}{\alpha} e^{-n t}\left(A_{n}-A_{n-1}\right) \quad\left(A_{-1}=0\right) \\
& =A(t)-\sum_{n=0}^{\infty}\binom{n+\alpha}{\alpha}\left(1+\frac{\alpha}{n+1}\right) e^{-(n+1) t} A_{n} \\
& =A(t)-e^{-t} A(t)-\alpha \int_{i}^{\infty} e^{-u} A(u) d u
\end{aligned}
$$

By hypothesis, there is a constant M such that

$$
\left|\left(1-e^{-t}\right)^{\alpha+1} A(t)\right| \leqslant M \quad \text { for all } \quad t>0
$$

Hence

$$
\begin{aligned}
|a(t)| & \leqslant M\left(1-e^{-t}\right)^{-\alpha}+|\alpha| \int_{t}^{\infty} e^{-u} M\left(1-e^{-u}\right)^{-(\alpha+1)} d u \\
& =M\left(1-e^{-t}\right)^{-\alpha}-M \alpha\left[\frac{1-\left(1-e^{-t}\right)^{-\alpha}}{-\alpha}\right]=O(1) \quad(t \rightarrow 0+) .
\end{aligned}
$$

Applying Theorem 116 in (2) to $\Sigma b_{n} e^{-n t}$ where $b_{n}=a_{n}\binom{n+\alpha}{\alpha}$ it now follows that $a_{n}\binom{n+\alpha}{\alpha}=O(1)$ and hence that $a_{n}=O\left(n^{-\alpha}\right)$.

Now, if $n_{k} \leqslant n<n_{k+1}$ we have, by (1),

$$
\left|A_{n}\right| \leqslant \sum_{r=1}^{k}\left|a_{n_{r}}\right| \leqslant M_{1} n_{k}^{-\alpha} \sum_{r=1}^{k}\left(\frac{n_{k}}{n_{r}}\right)^{\alpha} \leqslant M_{1} n^{-\alpha} \sum_{r=1}^{k} c^{(k-r) \alpha}=O\left(n^{-\alpha}\right) .
$$

Lemma 4. If $A_{n}=o(n)(n \rightarrow \infty), \Sigma a_{n}$ is summable $\left(A_{\alpha}\right)$ to A and

$$
\begin{equation*}
\Psi(t)=\frac{t^{\alpha+1}}{\Gamma(\alpha+1)} \int_{0}^{\infty} u^{\alpha} e^{-t u} \bar{A}(u) d u \quad(t>0) \tag{2}
\end{equation*}
$$

where $\bar{A}(u)=A_{n}$ for $n \leqslant u<n+1$, then
(i) $\Psi(t) \rightarrow A(t \rightarrow 0+)$, and
(ii) $\Psi(t)$ is bounded for $0<t<\infty$.

Proof. Part (i) is a special case of an unpublished result of C.T. Rajagopal who has kindly supplied this proof to me. Supposing that $A_{0}=0$ we can write $\Psi(t)=\sum_{n=1}^{\infty} d_{n}(t) A_{n}$ where

$$
\begin{aligned}
d_{n}(t) & =\frac{t^{\alpha+1}}{\Gamma(\alpha+1)} \int_{n}^{n+1} u^{\alpha} e^{-t u} d u, \\
& =\frac{t^{\alpha}}{\Gamma(\alpha+1)}\left[n+\theta_{n}(t)\right]^{\alpha}\left[e^{-n t}-e^{-(n+1) t}\right] \quad\left(0<\theta_{n}(t)<1\right), \\
& =\frac{t^{\alpha}}{\Gamma(\alpha+1)} n^{\alpha}\left[1+\frac{w_{n}(t)}{n}\right] e^{-n t}\left(1-e^{-t}\right) \quad\left(\left|w_{n}(t)\right| \leqslant M\right), \\
& =t^{\alpha}\binom{n+\alpha}{\alpha}\left(1+\frac{w_{n}^{\prime}}{n}\right)\left[1+\frac{w_{n}(t)}{n}\right] e^{-n t}\left(1-e^{-t}\right) \quad\left(\left|w_{n}^{\prime}\right| \leqslant M^{\prime}\right), \\
& =t^{\alpha}\left(1-e^{-t}\right)\left[1+\frac{\delta_{n}(t)}{n}\right]\binom{n+\alpha}{\alpha} e^{-n t} \quad\left(\left|\delta_{n}(t)\right| \leqslant M^{\prime \prime}\right),
\end{aligned}
$$

$M, M^{\prime}, M^{\prime \prime}$ being independent of n and t. This shows that $\Psi(t)$ exists for all $t>0$ and that

$$
\begin{gathered}
\left|\left(\frac{1-e^{-t}}{t}\right)^{\alpha} \Psi(t)-\left(1-e^{-t}\right)^{\alpha+1} A(t)\right|=\left|\left(1-e^{-t}\right)^{\alpha+1} \sum_{n=1}^{\infty} A_{n}\binom{n+\alpha}{\alpha} e^{-n t} \frac{\delta_{n}(t)}{n}\right| \\
\leqslant M^{\prime \prime}\left(1-e^{-t}\right)^{\alpha+1} \sum_{n=1}^{\infty} A_{n} n^{-1}\binom{n+\alpha}{\alpha} e^{-n t} \rightarrow 0 \text { as } t \rightarrow 0+
\end{gathered}
$$

since $A_{n} n^{-1} \rightarrow 0$ and the $\left(A_{\alpha}\right)$ method is regular. This proves (i).
It can be directly verified that $\Psi(t)=O(1)(t \rightarrow \infty)$; and hence (ii) holds.
Lemma 5. If $A_{n}=O\left(n^{-\alpha}\right), \Psi(t)$, defined by (2), is bounded in $(0, \infty)$ and (1) is satisfied, then $A_{n}=O(1)(n \rightarrow \infty)$.

Proof. Writing $u=e^{y}$ and $t=e^{-x}$ we have

$$
\Psi\left(e^{-x}\right)=\frac{1}{\Gamma(\alpha+1)} \int_{-\infty}^{\infty} e^{(y-x)(\alpha+1)} \exp \left\{-e^{y-x}\right\} \bar{A}\left(e^{y}\right) d y .
$$

Let

$$
k(x)=\frac{1}{\Gamma(\alpha+1)} e^{-(\alpha+1) x} \exp \left\{-e^{-x}\right\}, \quad \bar{A}\left(e^{y}\right)=s(y)
$$

and $g(x)=\Psi\left(e^{-x}\right)$. Then

$$
g(x)=\int_{-\infty}^{\infty} k(x-y) s(y) d y .
$$

Now the gap condition (1) implies that $s(y)$ is constant in some interval of length not less than $2 \delta=\log c$ (closed on the left, open on the right) which contains x. Hence we can choose ξ with $|\xi-x| \leqslant \delta$ such that $s(y)=s(x)$ for $|y-\xi| \leqslant \delta$. This means that $s(y)$ belongs to the Tauberian class T_{σ} defined earlier. The Fourier transform of $k(x)$ is $K(t)=\Gamma(\alpha+1+i t) / \Gamma(\alpha+1)$ which does not vanish for any t. Further, the boundedness of $\Psi(t)$ implies that of $g(x)$ and $A_{n}=O\left(n^{-\alpha}\right)$ implies that $s(y)=O\left(e^{-\alpha \nu}\right)$. Thus the hypotheses of the lemma imply the hypotheses of Lemma 2 with $\sigma_{1}=-\alpha$.

Lemma 6. If Σa_{n} satisfies the hypotheses of our theorem and if $A_{n}=O(1)(n \rightarrow \infty)$ then Σa_{n} converges to A.

Proof. It follows from Lemma 4 that

$$
\lim _{x \rightarrow \infty} \int_{-\infty}^{\infty} k(x-y) s(y) d y=A \int_{-\infty}^{\infty} k(y) d y
$$

in the notation used in the proof of Lemma 5. Taking $k_{1}(x)=e^{-x}$ for $x \geqslant 0, k_{1}(x)=0$, for $x<0$, we deduce from Lemma 1 that $\bar{A}(u) \rightarrow A(C, 1)$. The lemma now follows from the fact that (1) is a gap Tauberian condition for ($C, 1$) summability.

The theorem is obviously obtained by combining Lemmas 3, 4, 5 and 6.
I am indebted to the Referee for simplifying the use of Pitt's Tauberian classes and thereby correcting a mistake in my original proof of Lemma 5. I thank Professor Rajagopal and Dr M.S. Rangachari for their help in the preparation of this note.

REFERENCES

(1) Borwein, D. On a scale of Abel-type summability methods. Proc. Cambridge Philos. Soc. 53 (1957), 319-322.
(2) Hardy, G. H. Divergent series (Oxford, 1949).
(3) Pirt, H. R. Tauberian theorems (Tata Institute Monographs No. 2, Bombay, 1958).

