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Abstract. A family (V¥ of summability methods, called generalized Valiron
summability, is defined. The well-known summability methods (Ba s (Ep), (Ty),
(Sp) and (V) are members of this family. In §3 some properties of the (Ba ¥)
and (V¥ transforms are established. Following Satz IL of Faulhaber (1956) it
is proved that the members of the (V¥) family are all equivalent for sequences of
finite order. This paper is a good illustration of the use of generalized Boral
summability. The following theorem is established :

Theorem. If s, (n > 0) is a real sequence satisfying

lim lim inf ( =>0(p=>0),
€-»04 mM-HC0 m<n<m+€\/m mp
and if s, = s(¥¥) then s, = 5(C,2p).

Keywords. Generalized Valiron summability ; Boral summability ; Rajagopal’s
theorem.

1. Introduction

Rajagopal ([4], Theorem 2) proved the following theorem connecting Borel and
Cesaro summabilities; and, after him, Sitaraman ([5], Theorem II) proved the
theorem with Borel summability replaced by summability (Sg) defined as usual
in§s:

Theorem A. If s,(n>0) is a real sequence satisfying

lim limiof min (S"ms"' >0 (> 0), o)

€39+ mIR  mKISM-em
and if s, - s(B), then s, = s (C, 2p).

In this paper we prove (Theorem 4) that Theorem A is extensible to a family
(V¥ of summability methods which include as special cases generalized Borel
summability (B,,y) defined in §2 and the well-known summabilities (E,), (T5),
(Sg) defined in the usual notation in§ 5. Of course Theorem A itself obviously
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includes the similar theorem for summability (E)) instead of summability (B),
since (E,) C (B). Valiron summability (V,) is also a special case of summability
(V%), as pointed out in § 5, and the latter is the generalized Valiron summability
of the title,

The Tauberian condition (1) reduces to a classic special case when g = 0. A
different special case of (1) and its further specialization are respectively

Sy — Sy = OL (nP-ll 2)’ (1 a)
Sp = 8Spq =0 (np-—1/2)_ (1 b)

Hardy and Littlewood originally proved the special case of Theorem A with
(1 b) instead of (1), as stated by Hardy ([3], note on §§9-6-7). Their result was
extended by Borwein [1] to generalized Borel summability, and an idea of his
(Lemma 7) is used in the sequel.

2. Definjtions
The V* transform of a (generally complex) scquence s, (n > 0) is the function

defined by

0
VE@x)= X cu(%) 80 x>0,

n=p
where ¢, (x) satisfies the following three conditions :
(@) ea®) >0 for n=0,1,2,-++,x>0;
(ii) there exist a > 0 and & with 3 < & < § such that, for every positive integer
k, ¢, (x) can be expressed as

a\l/2
¢, (X) = (n—x> exp{—ax1(n —x)?* + g, + R}

whenever x is sufficiently large and | n — x| < x°, and where

2k—1 41 ( )i
n—x
& = lU X > l12 = 03

=0 j=0

1,; being independent of n and bounded as x — oo,

—_ 2k+1
R,:O(‘n x)lzk + 1 as x - o

uniformly in n for |n — x|< x0
(iii) for every o >0
2 (e, =0(l)as x - 0.

|p=—z|>2

We say that s, is summable (V%) to s (finite), and write 5, — s (V¥ if V(x) > s
as x — 0.
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The (B,,,) transform (« > 0, y real) of s, is the function defined by

0
B(x) = aexp(— ax) z % S, X >0,

n=N
N being the least positive integer such that Na + y > 1. Wesay that s, is summable
(Ba,y) to s (finite), and write s, — 5(B,,) if B(x) > s as x > o0.
The nth Cesaro sum and the mth Cesaro mean of s,, each of order r > — 1,
are denoted by S; and s, respectively. Thus

N n—v+r—1 n+r
S =50 =5, S,’.=> ( p— v Sy=S£< " )

Ll
=0

We say that s, is summable (C, r) to s (finite), aud write 5, > s(C, r)if s, - 5
as n — oo.

3. Preliminary results

In this section we study some properties of the (B, ,) and V¥ transforms.
Lemma 1. The (B,,y) transform is a V% transform with a = af2.

Proof. Borwein ([1], Lemma 2 (d)) has proved that ¢, (x) defined as below satis-

fies condition (iii) :

na-+y—1
¢y (¥) = aexp (— ax)% for nz N and ¢, () =0 for n< N.

To verify condition (ii), let + < § < %, x be large, | n — x| < x%, and k be any
positive integer, Writing A =n — x +(» — 1)Ja and using the formula

; 1 1 — 1y
loglF(y +1) = ilog(Zn) +(y +§> logy —y + EZr _) l)gr —2r41

+ O(y~%1) as y — co,

with ¥ = ax + «h we see that

log{ (x)<2n ) } = élog(Zn) —aX + (ax + oh + %) log (ax)

—logI{ax +ah + 1)
= A; + A2+ 4,
where
4, = ah + (ax +ah + P 1og(ax) — (ax + ak + 3) log(ax + ah), (2

z )f;; gr (ax + ah)-2r+l (3)
| 431 < M (ax + ah)-%-1 )

P.(A)—2
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for some constant M. By Taylor’s theorem,

2k
— 1yt 2k+1
log(1 + y) = . (__r_)_yf + ZJI; =i el
1

r=

where 0 < 0 =0 (k, y) < 1. Therefore, from (2),

4, = ah —(ax + ol +%>10g<1 +’;>
=ah—-ax{——— 2 (=1y2 (h)}

P 2k—1( 1y £ By 121.;—1( -1 Ry
““"{ﬁE 2 (d }‘QZ ; (;) +4

h2 ‘1 hl’+]_ 2k~1 h'
a
=—§';C‘+ Z u,~35,.-~+ z ’U,.;, +A4

r=2 =1

where u,, v, are independent of 4, x and

g BEH Iilz_”‘_(ax+ah+%)(h ml( -1
s =5 5w T35 3 % + 1 x) “’032) :

Again, Taylor’s theorem gives

S ~1
(W apre= D =1y (KFT Ty oy (U7

Q)

x (1 + @yy*m-1,

where 0< 0 =0(u,my)<1l. Using this with y=h/x, pg=2r—1,
2k—2)‘,r=1,"',k, we getfrom (3))

m =

k
4= S CB

= ZJ T 2rr a2 x—2rH {%Z” (- 1y (2" -1 :' v— 1) (g)y
(= ys-rn (h)wrﬂ <2k v ]) (1 +9, )'2"}

k 2k—2r
SN Y"\ hy

= Z Z/ Wy v x2r+r-1 + Aﬁ’

r=3x y=0

where w,,, are independent of h, x and

©)

( )r+lB - h2k—2r+1 k —1 ( ~2k
4= 2 e-nr 2% — 2 +1) 10,7
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Thus we have proved that

2 ¥\ 172 B2 R 2

7T -

log{C..(X)(-ﬂic }=—§x—+ g E Iy g+ 4s +Aa+ 4,
fom1 i=0

where [, are independent of &, x and J,, = 0. Noting that &= n — x + (y — Dfa
and writing « = 20 we get

log c, (%) = log 7%)1'2 -2 {(n ~ %)% +2(n = %) (y—;—l> + (Z;——IY}

2k—1 i+1 )
-1 /) L (7 — N2
+ L 141554 Z v)(""'x) T) + d; + Ay + A4s

=1 =0 v=0
e 2k=1 it1 ,
a n-—
= log (77:32) —axl(n — x)? + Z z I ( = x) +As+ A 445,
i=1 j=0

@

where [,; are independent of n, x and l, = [;, = 0.
Since k. =n—x +(y — 1)Je, we have | k|/x < + and 1 + 0 A/x > % whenever
0<0< 1, x is large and | » — x| < x%. Moreover,

—_ 2k+1
[A]r <{]n— x| +1}{1 +L27il} » v=0,1,-++,2k + 1.

Supplying these estimates in (4), (5) and (6), we find that
x2k[|A3| +‘A4l +1A5|] < Ml[ln_x|2k+1 +1)

if | n — x | < x% and x is large, M’ being a constant. This,in view of (7), completes
the proof of the lemma.
Lemma 2. If ¢, (x) satisfies the conditions of a V% transform, then for ¢ > 0,

@ @@ =1+ om0y (5) e l- e r - 9o,

© () a@ =1 + a6 j(,,ix)' exp [~ @1 (¢ — x)% d

where (1, X), €;(n, x) =0 as x — oo uniformly in n for |n — x|< x%;

el o~
(c) Z (}) c(x)—»1as x - ©0;
n=1

(d) 0y (N, %) = i &) eetvn-vmy o,

a=iN

(©) 02 (N ) = i &) e -0,

nuly
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(N 60t => (2 aw-o,

n=1

as x, N, s/N — /%, M, A/x — A/M = 0. (c) foro = 0 shows that V* is a positive
regular transform of Sa.

Proof. (a) Taking k = 1 in condition (i) on ¢, (x), we see that
_ he n-=x (l"—xl3+1‘
exp (g, + Ry = exp {E th — *+0 —_}2—-_>}

—_ — 3
X X X

which proves (a), since J < 2/3.
(b) Noting that (n/x)” =1 + €' (n,x) and that

"Pexp[— axt(t — %2 dr = exp[— axt (n — %7 { + " (n, x)}

we deduce (b) from (a).

(¢) Write the sum in (c) as

(3,5 2@ wses

|ﬂ—'|<06 [n—2|>a

From (b) it follows that

4¢3
3 a /2
S, = f (n—x) exp{— ax1(t — x)% dt +o(l)

a-—ma

,6—%

1/2
= f (g) exp (— au? du + o (1),

—ad—3

which tends to 1 as x — oo since § > 4. On the other hand, S; —» 0 as x — o
by our condition (iii) on ¢, (x).

(d) Write /N — 4/x =u so that N —x =u (/N + /%) > u+/x.
In view of condition (iii) on ¢, (x) it suffices to prove that
L
S = z (g) e (9 (v — /N) - 0,
N<n<a+o®
as X, u 00, Since v/n — /N < (n - X){y/x for n>N > x, it follows from

(b) that, for all large x,

nt1 ’
— 1/2
§< z n\/xef ﬂ—‘; exp[— ax1(t — x)? dt

N <n<c+.r5 -
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x>1/2 2 fl t\—;xx exp[— ax-1(z — x)?] dt

Ngnsx-}-za n

{
<2\

SRS

/A

0
/ —
<2 %yzhf tvxexp[—arl(t—x)ﬁjdt

X

a\1/2 °
=2 <n> f v exp (— av?) dv

N—a
vV
o0
a1/2
<2(&> f”eXN—avﬂ)dv

which tends to 0 as u — oo,

Proofs of (¢) and (f) are similar to that of (d).

Lemma 3. If s, is a real sequence satisfying (1) then there exist positive con-
stants K, K, such that, for n>=m>=1,

Sy — Sm > — K, 0P (W1 — /m) — KmP.

This is proved exactly like Theorem 239 of Hardy [3] (see Rajagopal [4], Lemma 1).
Lemma 4. If s, is a real sequence satisfying (1), and if

Vi(x) = 0 (x) (x = ), ®
then s, = O (n°) (n - ).

Proof. It may be remarked that the proof is applicable to any positive regular
transform, in place of V7§ (x), for which the ¢, (x) satisfy (c)~(f) of Lemma 2. We
proceed on, the lines of the proofs of Theorem 1 of Rajagopal [4] and Theorem
238 of Hardy [3]. Write, for n>1

Sp
g, = —, gy(n) = max o, and o,(n) = max -
n np 3 1( ) ISrS'n 4 2( ) 1S7Sn ( a.')’

and assume, for convenience, that s, = 0. Since
2]
x?Vi(x) = 2 (n/x)f ¢, (X) 0y,
ne=1

it follows from (8) and Lemma 2 (c) that neither o, — o0 norg, — — oo is possible.
The lemma is proved by showing that each of the following two cases contradicts

@®:
(D) 0y, (n) =0, (n) for infinitely many n and o, (n) > o0 ;
(1) oy (n) < 02 (n) for all but & finite number of values of n and o, (1) — oo,

Case I. Corresponding to a large positive number H, choose the least
M = M(H) for which oy =0, (M) > 2H and 0, (M)>0,(M), and then the
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least N = N(H) > M for which oy <30y Define x = x(H) by 24/x = /M
+ 4/N and write

M- N—-1 e
V@ =(Z + I + Z)0Pamo =S +5+5 ©

If (M/NY <2/3 then
VN = /M= {1 — (2[3)V%} /N. (10)
If (M/N) > 2/3 it follows from Lemma 3 that
oy —on(M|NY > — K, (/N — v/M) - K, (M/NY,
K (VN = vV/M)> —oy +oy (M|NY - K,
> —30y + %0y — K,
>3 H - K,

by the choice of M, N. This, together with (10), shows that 4/N — 4/M - ©
as H— . Hence 4/N — +/x, v/x — /M > 0 as H— 0.

The estimates which follow are when H — o and so x, M, N, +/x — /M,
/N — 4/x > 0 as in Lemma 2. By the choice of N, M,

s = (N =~ Doy > (N = Dhoy > (N - 1P H.
Hence, by Lemma 3, we have for n> N,
S > = Kinf {a/n — A/ (N = 1)} =K, (N = 1) + 54,
> — K {y/n — /(N — D},
and, therefore, by Lemma 2 (d), (¢)

=2
83> — K “é'n (BIxY ¢, (X) {vr — A/(N - 1)}
= — K0, (N—-1, x).
On the other hand, by Lemma 2 (c), (€), (f) and the choice of M, N,

S, > Yoy N@’: (%P cu (%) = 3ou {l +0 (1) = 8, (N, %) — 0, (M — 1, x)},

S, — oy (M) '3; (X c0 ()= — 0y (M) 0, (M — 1, ).

Combining these estimates for S;, Sy, S; we find from (9) that x* 7% (x) » o as
H - oo contradicting (8).

Case II. Corresponding to a large positive number H choose the least N =
N(H) such that o,(n) >0, (n) for n> N and oy = —0,(N) < — 2H; and then
the last M = M(H) < N for which oy =40y = — }6, (V). Define x as in
case I, and write

HPVE@D =(Z + 3 + 3 )P ea(¥)o, =S5, + S + 5. (1)

n=1 a=M+4+1 n=N41



Generalized Valiron summability and Cesaro summability 189
Using Lemma 3 we find, as in case I, that
K, (WN — VM) > —oy +o4(M{N) — K, (M[N)P
> —oy{l ~ 3 (M|NY} - K,
> H — K,
and that /N — v/x, /x — /M — c0 as H — .
From Lemma 3, it follows that, for n>=> N,
o, > — {— oy + K} (N/n)® — K, (v/n — 4/N)
=~ {e: (V) + K} — K, (v — +/N)

= "'t,p

say. Thus —o,< t, for n>N; while —0,< —0oy< ty for » < N by our
choice of N and definition of o, (#). Since ¢, is an increasing function of n, we
thus have —o0,<t,<t, for nZ2m=N, and —0, < ty<t, for n>=N>m.
This implies that z, > 6, (n) for n>> N by the definition of o, (n). Hence, by the
choice of N and Lemma 2 (d), (e)

G (M <o, (ML, =02(N) + K, + K, (v/n— +/N) (n=N),

o0

Sy << §+1 (n/x) ¢, (x){o (N) + K; + K, (vt — v/N)}
< {02 (N) + Kz} 02 (N, x) + K101 (Ns x)‘
On the other hand, by Lemma 2 (c), (¢), (f) and by the choice of M, N,
Si< — 30, (M) Z (P ca(®
n=M41
= ~ 3o (M {l +0(1) = 0,(N + 1,%) — 0, (M, x)},

M
S, <01 (M) X (n[x)f ¢y () <03 (N) 0, (M, x),
nw=1
since 6y (M) <o, (N) < 6,(N). Combining these estimates for S, S,, S, we find
from (11) that x? V¥(x) > — oo as H - o contradicting (8). This completes

the proof.
Lemma 5. If s(t) = s, for n<{t < n+1 and 5, = O(1) (n - c0), then

VE@) — | (amx)texp {— ax(t = )8 5(t)dt >0 (x - co).
]
Proof. It suffices to prove that

é?o | ea (%) — ?(a/nx)l’ texp{-ax(t —0)%dt| >0 (x> 0). (12)
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Denoting the summand in (12) by 4, (x), we find from the condition (iii) on ¢, (x)
with ¢ =0 that, as x -

> ad <o) +( j‘ + j‘ ) (@a/nx)1/? exp {— ax-1 (¢t — X)%} dt

n—a|>a 47+¢
| P
=0 +( T+ [ Y@mresp(- ) du=o();

on the other hand, using Lemma 2(b) with ¢ =0,

> d,x< ¥ e "fd (ajnx)/2exp{— ax 1 (t — x)%} dt < ¢,

In—z|<e n—e|<e i
for x > x,(¢). This proves (12).
Lemma 6. If s, is @ real sequence satisfying
lim lim inf min (s, — 5,) =0, (13)
€30+ MI0 mEAEmHEN/m

(a/nx)\/2 fo exp{— ax1(t — x)*} s(t) dt > s(x - ©),

where s(f) = s, for n<t < n + 1 and if 5, = O (1) (n > ), then s, - 5 (n - ©).
Taking s = 0 this lemma is proved exactly like its case @ = % ([3], pp. 313-314).
Lemma 7. If s, = $(Bq,y) then, for r=0,

a1 (r + 1) exp(— ax) z ﬁ%) - §(x > ), (19
n=N

_ L+ DI +7),

t'(n)::a F(ﬂa+y+r) S

= 5(Ba,v). )

(14) is known ([1], Lemma 4) and (15) follows readily from (14).

Lemma 8. If s, = s(Ba,y) and s, = O(n°) for some r=0, 0> 1, then si =
O (n°-1/?), and, more generally, for aninteger 4 Such that 1 < 4 < 20, s;+9= 0 (n7-9/2),

Proof. We have identically, for m < n,

n
— —_ 1y —
s:+1 — s'rn+1 = 2 (S;+1 ;t1 = 2 5
Va1 v=mt1

(see [3], p. 122). By hypothesis, s, = O (1) 35 v > o0 and so s, = O (¥9),
Hence as m — 00, we have uniformly for m<n<m + e v/m, 0< e < 1,

S g = 2" 0 (") = €0 (m"?). (16)

Vem4l

By the definition of ¢, (#) in (15) and Stirling’s approximation,

t,(n) = s, {1 + %z w, (n)} ,w,(n) = 0(1), 17
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so that we can write

ttr (1) — L (m) = s34 — 5P + ;1'1 s Wy (n) — lms»'nﬂ Wena (m).  (18)

Using (16) in (18), we get uniformly for m<n<m + e A/m,0< e < 1,85 m - ©
tr+1 (n) - tr|-1 (m) =€ O(M"'—l,z) + O(ma"l);

Lim lim sup max |t (#) — tyy (m)| mo+1/2 = Q,
€20 m-300  mEnSmt-e/m

This and ¢,(n) = s(B,,y) which is a consequence of the hypothesis s, — s(Bq,~)
by Lemma 7, together imply ¢, (n) = O (n°~/%) on appeal to Lemma 4 with ¢, (n),
o — 1 instead of s, p respectively and with the /% transform specialized to the
(Bg,v) transform. Finally, we have also s;*' = O(n°~V/2) because of (17).

The more general conclusion of the lemma follows from successive repetitions
g times of the above argument.

4. Theorems

Theorem 1. Suppose that s, =0 (n°) (n —» ) for someoc > 0. Then s, - s(V%)
if and only if

a\¥2 o
- 2 expl—axi(n — %)% 5, - s(x = 0).
n=0

The proof is exactly like that of Satz II of Faulhaber [2]. Combining Theorem 1
with Lemma 1 we have

Theorem 2. Suppose that s,=0 (n°) (n - o0) for somec>0. Then s, - s(V¥)
Jand only if 5, — s(By, «)-

Theorem 3. If s, is a real sequence satisfying (13) and s, - s (V%) then s, = s
(n— ®).

Proof. Since (13) is the special case p = 0 of (1), it follows from Lemma 4 that
s, = O (1) and thereafter the desired conclusion is obvious from Lemmas 5 and 6.

Theorem 4. If s, is @ real sequence satisfying (1) and s, —» s(V%), then s, —
s(C, 2p).

Proof. After Theorem 3, we need prove only the case p > 0. Also, s, = O(nf)
by lemma 4, so that we may appeal to Theorem 2 and replace hypothesis
§p S(V’é) by Sp —> S(BZa, ’Y)'

If p is the greatest integer less than 2p + 1 then

O<u=2—-(p—-DN<I
and it follows from the more general conclusion of Lemma 8 with r = 0 that

s =0 (np—(n—l)l 2) = O (n*2).
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Hence, exactly as elsewhere ([4], proof of Theorem 2, 439-40) we obtain, for
m<ns<m+ev/m0< e <1, uniformly as m - o

$ - 52 = O(l) + € O(me-V2), s = 0 (m"Y). (19)
Further, the definition of ¢, (#) in (15) gives, by (17),

1 1
top (n) = top (m) = 537 — 2 + 2830 Wiy (m) — 52" v ()

=e*0O(l) + 0 (m(,u—l)lz) +0 (m"/ -1
on account of (19). Thus

lim lim su ma, to, () — t =0,

Jim Jim s pms,.s,.fe\/ml 20 (M) — typ (m) |
while our assumption s, — s (B,,, 1) implies , (n) - 5 (By,, o) by Lemma 7. Now
appealing to Theorem 3, with s, replaced by z,, (1) and summability (V%) by
summability (B, ~), we see that

tsp(n) > s whence s2¥ >

as required, by (17).

5. Some standard cases of summability method (V%)

In addition to the general Borel method (B,, ) and Borel method which is (By, 1),
the following are special cases of the method (V%).
I. The Valiron method (¥,) which corresponds to the transforms of s, given by

a 1/2 w" 9
Va(x)=<n~x> }exp[—ax—l(n—x)]s,,,x>0,

n=0

is a special case. For, V,(x) is V%(x) of §2, with g, + R, = 0 in condition
(ii) imposed on ¢, (), and with condition (iii) on ¢, (x) satisfied in consequence
of a result stated by Faulhaber (Hilfssatz 1 with p = 0).

II. The Euler method (E,), p > 0, the Hardy-Littlewood method (T,), 0<a<1,
and the method (Sg), 0 < f < 1, due to Meyer-Konig and Vermes, correspond
to transforms of s, which may be written

0
2 CoymSpy M= 1,23, -,

n=0

where for(E,) : ¢, m = 2- (’:) @ — 1y,
for (Tp) : cpym = (1 — )™ (;) o,

for (Sg) © ca,m = (1 = BY™ (’” ;’ ") g,
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with the convention that (:) = 0 for v < r. In all these cases we may define

Cp. o TOT X, <X < X
Cn(x)={"’m m == w1

0 for 0< x< x, (20)

where x,, = Am with 2 suitable constant 4 in each case. We can verify, using argu-
ments of Faulhaber (proof of Hilfssatz 5) with trivial modifications, that the c, (x)
of (20) satisfy for x = x,, the conditions required of the ¢, (x) in the definition
of V%(x) in §2, provided we choose

for (ED:a=2|2P"1 —2), A=27"
for (T :a=01-a)2a, A=(1-a),
for (S :a=(L— B2 2=p(—pr

Finally we can verify that, if the ¢, (x) of (20) satisfy the required conditions for
X = X, Where x, is any increasing unbounded sequence with X4 — X, = O (1)
then they satisfy the conditions for all x > 0. In particular, taking x,, = Aim we
see that the transforms E,, T,, Sp are all special cases of the V* transform.
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