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Abstract. A family (Va ~) of summability methods, called generalized Valiron 
summability, is defined. The well-known summability methods (Ba, 7), (Er (Ta), 
(SI~) and (Va) are members of this fami!y. In w some properties of the (Ba,~,) 
and (V~) transforms are established. Following Satz II of Faulhaber (1956) it 
is proved that the members of the (V~) family are all equivalent for sequences of 
finite order. This paper is a good illustration of the use of generalized Boral 
summability. The following theorem is established: 

Theorem. / f  s n (n ~ 0) is a real sequence satisfying 

lira lim inf min ( s ,  ~ sin" ~ e->0+ ~-~o ,.~<.~,,+ex/., \ - -m-P- . />  o (p ~> 0), 

and if s n --* s (V~) then s, ---> s (C, 2p). 

Keywords. Generalized Valiron summability ; Boral summability ; Rajagopal's 
theorem. 

1. Introduction 

Rajagopal ([4], Theorem 2) proved the following theorem connecting Borel and 
Ces/~ro summabitities; and, after him, Sitaramaa ([5], Theorem II) proved the 
theorem with Borel summability replaced by summability (Sp) defined as usual 
i n w  

Theorem A. I f  s~ (n ~ 0) is a real sequence satisfying 

lira fig in/" rain (s.  - s , )  �9 --)o+ ,,~o ,,,<~,,~<,,,+~v'~ ~ > 0 6o > 0), (1) 

and i f  s, ~ s (B), then s, ~ s (C, 2p). 

In this paper we prove (Theorem 4) that Theorem A is extensible to a family 
(V]) of summability methods which include as special cases generalized Borel 
summability (B~,7) defined in w 2 and the well-known summabilities (Ep), (T~), 
(Sp) defined in the usual notation in w 5. Of course Theorem A itself obviously 
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includes the similar theorem for summability (E~) instead of summability (B), 
since (E~) C (B). Valiron summability (V,) is also a special case of summability 
(V~), as pointed out in w 5, and the latter is the generalized Valiron summability 
of the title. 

The Taaberian condition (1) reduces to a classic special case when p = 0. A 
different special case of (1) and its further specialization are respectively 

s .  - s ._~ = O,. (nP-1/~) ,  (1 a)  

s .  - s . - 1  = o ( n O - 1 / 2 ) .  (1 b) 

Hardy and Littlewood originally proved the special case of Theorem A with 
(1 b) instead of (1), as stated by Hardy ([3], note on w167 Their re~utt was 
extended by Borwein [1] to generalized Borel summability, and an idea of his 
(Lemma 7) is used in the sequel. 

2. Definitions 

The V~ transform of a (generally complex) sequence s. (n ~ 0) is the function 
defined by 

v~ (x) = X c.  (x) s., x > 0, 

where c. (x) satisfies the following three conditions : 

(i) c . ( x ) > l O  for  n = 0 , 1 , 2 ,  . . . , x  > 0; 

(ii) there exist a > 0 and 6 with �89 < 5 < ~ such that, for  every positive it,~teger 
k, e. (x) can be expressed as 

= (  a'~ 1/2 
c. (x) \ ~ j  exp { - ax -1 (n - x) 2 + gg + R~} 

whenever x is sufficiently large and I n -  x [ <~ x ~, and where 

2k--1 ~+1 

g~ = ~ ~ ,  l .  (n - x)] 112 = , 

t=O t=0 

l,j being independent of  n and bounded as x ~ <>o, 

R,  = O (  I n - x l 2 ~ + l  + 1 )  
�9 X2t~ aq  X --~ 

uniformly in n for I n -- x [ <~ x ~ ; 

(iii) for  every er ~ 0 

X n ( n - k - 1 ) ' c . ( x ) = o ( 1 )  as x ~ .  
In--xl >~ 

We say that s. is summable (V~) to s (finite), and write s,~ --> s(V~) if V ~ ( x ) .  s 
a s  x - ~  oo .  
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The (B~,~t) transform (a > 0. ~ real) of s. is the function defined by 

B (x) = a exp ( -  ax) ~ (ax)"~+'Y-1 l"(na + ?)s"' x > O, 
n ~ N  

N being the least positive integer such that Na + ? ~> 1. We say that s. is summable 
(B.,~) to s (finite), and write s. -* s(B.,~) if  B(x) ~ s as x ~ oo. 

The nth Ceshro sum and the nth Ceshro mean of s., each of order r > - 1, 
are denoted by S. ~ and s~. respectively. Thus 

S ~ = s  ~ = s . ;  5;] = n -  v sp =s~  n " 
/,'~0 

We say that s. is summable (C, r) to s (finite). attd write s. ~ s (C. r) if s. ~ -~ s 
a s  n --~ o 0 .  

3. Preliminary results  

In this section we study some properties of the (B., 7) and V, ~ transforms. 

Lemma 1. The (B.,.t) transform is a V~. transform with a = a/2. 

Pro@ Borwein ([1], Lemma 2 (d)) has proved that c. (x) defined as below satis- 
fies condition (iii) : 

(ax)""+~'-i 
c . ( x ) = a e x p ( - a x ) ~ - ~ 7 )  for n/> g a n d  c,(x)  = 0  for n <  N. 

To verify condition (ii), let �89 < ~ < 3, x be large, I n - x 1 ~< xa, and k be any 
positive integer. Writing h = n -  x + ( 7 -  1)/a and using the formula 

k 

+ log y -- y + (2r Z 1) 2r y-2,+1 logr(y  + 1 ) =  l log(2~)  + ( y  

+ 0 (y-2~-1) as y - ~  0% 

with y = ax q-ah  we see that  

where 

l o g ( c  ( x ) ( - ~ )  ~/~} 1 = ~ log (2r0 - 

- l o g  F ( ~ x  + ~h + I) 

=Ax +As-} -A  3 

ax + (ax  + ah + 2) log(cLx) 

A1 = ah + (eLx + ah + �89 log (ax) - (ax + ah + �89 log (ax + ah), 

It 

1 )  r - x  B r a h ) - 2 , + l ,  

r = l  

] Aa I <~ M ( a x  + ah) -~-1 

P.(A)--2 

(2) 

(3) 

(4) 
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for some constant M. By Taylor's theorem, 
g k  

log (1 + y) = ( -  1)'-~ y~ + ( t  + Oy) -2~-~, 
r 2W~-I  

r = l  

where 0 ~< 0 = 0 (k, y) ~< 1. Therefore, from (2), 

Aa = ~h - ~ x  + c~h + ~ ) l o g ( l  +h-x) 

2/~--1 2P~-1 

r 1 

r = 2  I'~'I 

+ A 4  

2k--1 2/~--1L 

+ Ur -X r- + vr X'-' 
r== 2 r ~ l  

- 2 x  

where u,, v, are independent of h, x and 

(~ h 2~+1 
A4 = 2-'-k x 2-~-  + 

l h + + �89 ( 
2 2k x 2~ 2k + 1 1 (5) 

Again, Taylor's theorem gives 

(1 + y ) - ~  ~ ( - 1 ) " ( p +  v -  l )  
= v Y~ 

Pm0 

(u + 
+ (-- 1)"~1Y'+1 k,m + l J  

x (1 + Oy) -~-"-~, 

where 0 ~ < 0 = 0 ~ , r e ,  y)<~ 1. Using this with y = h / x ,  p = 2 r -  1, m =  
:~: - 2r, r = 1 , . . . ,  k, we get from (3), 

k 2 k - - 2 r  
= N-" ( - 1 ) ' B ,  1 )  

r m l  V=O 

/ h \  2~- 2,+1 

k 2k-- : I r  

= Z w,, ~ X~+~_ ~ + As, 
r m l  P:-O 

where w,,v are independent of h, x and 

k 

J ' : l  

(6) 
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Thus we have proved that 

. . . .  

2 x  + 1~,~ 
t ~ l  J=O 

+A3 + A I + A s ,  

where/], are independent of h, x and 712 = 0. Noting that h = n - x + (? - 1)W 
and writing a = 2a we get 

~ a ' ~ ' ~  a {  ( W )  ( ~ ) ' }  b g  ~. (x) = log ~ , ~ )  - x (n - x)= + 2 (n - x)  + 

Z '-" 
i=l j--O ~=0 

,-or = log \ ~ x J  - ax  -1 (n -- x)  2 + i~ s (n 

i=i j = O  

- x)' 
-~ + A3 + A i  + A6, 

(7) 

where lis are independent of n, x and 112 = [1~ = 0. 
S i n c e h = n - x + ( ~ - l ) / a ,  w e h a v e l h l / x <  �89  1 + 0 h / x  > �89  

0~<0~< 1, x is large and [ n - x l ~ x a .  Moreover, 

I h t ' < < . { I n  x[  ~+1 + 1 } ( 1  + 1 2 - - 1 [ }  ~+1 - , v = 0 ,  1, . " , 2 k  + 1. 

Supplying these estimates in (4), (5) and (6), we find that 

x~[I  a31 + I A,  I + I &  I1 ~ m ' [ l  n - x l ~ +  1 + 11 
if [ n - x [ ~< x ~ and x is large, M'  being a constant. This, in view of (7), completes 
the proof of the lemma. 

Lemma 2. I f  c ,  (x) satisfies the conditions o f  a V ~ , transform, then fo r  @ > O, 
/" a \ a / z  

(a) c, (x) = {1 + r (n, x)} C~x) exp [ -  ax --1 (n - x)~], 

s-I-1 

(;y j c<"' (b) a. (x) = {1 + % (n, x)} \ n x j  exp [ -  ax --1 (t - x) z] dt, 
m 

where q (n, x), % (n, x)  -~ 0 as x ~ ~ uniformly in n f o r  I n - x ] <~ x ~ ; 

O~ Z�9 (c) c . ( x ) ~  1 as x - +  ~ ;  
n = l  

O0 

n = N  

oO 

Z (7 (e) 0 3 (N,  x) =- c .  (x) ~ O, 
I t ~ N  
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M 
( n~ (r 

as x, N, X /N  - X/x, M, x / x  - v I M  ~ oo. (c) fo r  a = 0 shows that V] is a positive 

regular transform o f  s,. 

Proof. (a) Taking k = 1 in condition (ii) on c. (x), we see that 

(~o 111(n-x) (In-x[3 + 1)} 
exp (gx + R0 = exp + x + O x~ 

+ o(I +'"-X-ix +'~ 
which proves (a), since J < 2/3. 

(b) Noting that (n/x) ~ = 1 + ~' (n, x)  and that 

n+x 
$ exp [ -- ax -1 (t - x) ~] dt = exp [ - ax --a (n - x)2] {1 + E" (n, x)} 

we deduce (b) f rom (a). 

(c) Write the sum in (c) as 

+ ~ e.(x) = & + &. 
In ~ In--~l>m ~1 

From (b) it follows that 

w+| 

S1 = f ~ J  exp { -  ax --I (t - x) 2} dt + o (1) 

/ 4  (~a~l/2 = -~, _ - exp ( -  au ~) du + o (1), 

which tends to 1 as x ~ o o  since 8 > � 8 9  On the other hand, S 2 ~ 0 a s  x ~ o o  
by our condition (iii) on c. (x). 

(d) Write X / N -  x / x = u  so that N - x = u  ( X / N + X / x )  > u x /x .  

In view of cond2tion (iii) on c. (x) it suffices to prove that  

E s = e.  (x )  ( V n  - X / N )  --, O, 

as x, u --, oo. Since x /n  - X / N  < (n - x ) / x / x  for n ~> N > x, it follows from 
(b) that, for  all large x, 

n+1 

s< I ,,-x fCa'~l/~ exp[-  ax-1  ( t  - x)2] dt  
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1 
( a "~1/2 ~% t - -  X 

~< 2 \ ~ J  ~ %/x exp [ -  ax -q (t - x) z] at 
N~<n~<,+m # . 

CO 

~< 2 v r x j  ~ exp [ -  ax -x (t - x) ~1 dt 
/7 

oO 

V~ 

v exp ( -  av 2) dv 

oO 

< 2 ( ~ ) 1 ' ~ f  v e x p ( -  
u 

av 9 dv 

which tends to 0 as u ~ oz. 
Proofs of (e) and ( f )  are similar to that of (d). 
Lemma 3. I f  s, is a real sequence satisfying (1) then there exist positive con- 

stants K 1, Kz such that, for n ~ m>~ 1, 

s .  - sm > - K1 nt' (v/n - v 'm) - K2m p. 

This is proved exactly like Theorem 239 of Hardy [3] (see Rajagopal [4], Lomma I). 
Lemma 4. I f  s, is a real sequence satisfying (1), and i f  

v~ (x) = o (x0  (x -* oz), (8) 

then s = O(n 0 ( n ~ o z ) .  

Proof. It may be remarked that the proof is applicable to any positive regular 
transform, in place of V~ (x), for which the c, (x) satisfy (c)-(f) of Lemma 2. We 
proceed err the lines of the proofs of Theorem 1 of Rajagopal [4] and Theorem 
238 of Hardy [3]. Write, for n >~ 1 

Stl o'. = ~ ,  0-i(n)= max 0-, and o"3(n)= max ( - a , ) ,  

and assume, for convenience, that So = O. Since 

x-p v~ (x) = I (n/x)p e, (x) 0-,, 

it follows from (8) and Lemma 2 (c) that neither a. -} oz nor 0-. --. - oo is possible. 
The lemma is proved by showing that each of the following two cases contradicts 
(8): 

(I) 0-t (n) ~ 0- 2 (n) for infinitely many n and 0-1 (n) ~ oo ; 

(I1) 0-t (n) < 0-z (n) for all but a finite number o f  values of  n and 0-~ (n) -+ m .  

Case I. Corresponding to a large positive number H, choose the least 
M = M ( H )  for which 0-n =0-1(M) > 2H and 0-t(M)~0-z(M), and then the 
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least N = N(/-/) > M for which a~ < Sam. 
+ ~ N  and write 

R'--X /7--1 
x - , v ~ ( x ) = ( 2 7  + 27 + 

n~l nmM 

If (M]N)P <~ 2/3 then 

~/u  - ~ / M ~ >  {1 - (2 /3)~ 'v}  ~ / N .  

I f  (M/N)P > 2]3 it follows from Lemma 3 that 

a .  - a~, ( n / N ~  > - K~ ( ~ / N  - v ' M )  - K ,  ( M / ~ , ' ,  

K~ (~/~V - v ' M )  > - an +,r,,, (M/N)P - K~ 

> - �89 + { a , ,  - Ks 

> � 8 9  

Define x = x (H) by 2 ~/x = ~ /M 

O0 

27 ) (n/x), c. (x) a. = s~ + s~ + s,. (9) 

(10) 

n oo  

+ 27 + 27 ) ( n l x y ' c . ( x ) ~ r . = s ~ + s ~ + S ~ .  (11) 
n = M + X  n : N + l .  

H - ~  oo contradicting (8). 
Case 11. Corresponding 

N (H) such that as (n) > el  
the last M = M ( H ) <  N 
case I, and write 

19/ 

x-p v ~. (x) = ( I 
I t =1  

to a large positive number H choose the least N = 
(n) for n>~ N and cr, = - a~(N) < --  2H;  and then 
for which ~ r  1> �89 = - �89 (N). Define x as in 

by the choice of M, N. This, together with (10), shows that ~/N - ~ /M ~ oo 
as H ~  oo. Hence v t N -  ~/x, ~ / x -  v ' M ~  oo as H- - .  oo. 

The estimates which follow are when H - ~  oo and so x, M, N, ~/x - ~/M, 
v ' N -  ~ / x ~ o o  as in Lemma 2. By the choice of N, M, 

sN-~ = (N - 1)Pa,-1 > ( N - 1)P �89 > (N - 1)P H. 

Hence, by Lemma 3, we have for n i> N, 

s. > - KlnO{~n - ~ / ( N -  1)} - K 2 ( N -  1~ + sN-x 

> - K~nP {~/~ - ~ / ( N -  I)}, 
and, therefore, by Lemma 2 (d), (e) 

eo 

S~ > - K1 S (n[x)P c. (x) {x/n - .v/(N - 1)} 
n=lq  

= - K I O ~  ( N -  1. x). 

On the other hand, by Lemma 2 (c), (e), (f) and the choice of M, N, 

_r,/-- 1 

s2>~ �89 I (n/x)p c.  (x) = �89 {1 + o ( 1 )  - O~(N, x) - 0 3 ( M  - l ,  x)},  
t l=M 

ld--X 

S~ >~ - a ~ ( M )  Z (n]x)P c.(x)>~ --a~ ( M ) O 3 ( M  - l , x ) .  
rim1 

Combining these estimates for S 1, $2, $3 we find from (9) that  x - ,  V~. (x) ~ oo as 
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Using Lemma 3 we find, as in case I, that 

K 1 (%/N -- A/M) > - aN + ~ (M/N)P - K 8 (M/N) t' 

-- ate {1 - �89 (M/N) t'} - Ks 

> H - K  8, 

189  

and that a / N -  fix, ~/x - v ' M  ~ oo as H ~ oo. 
From Lemma 3, it follows that, for n>/N,  

o". > - { -  . ~  + K d  (N/n)P - K~ (a /n  - v ' N )  

>~ - {~8 (N)  + K,}  - K~ ( v ' n  - v ' N )  

= - t . ,  

say. Thus - a . <  t, for n>~N; while - a . < ~ - a r ~ <  tN for n <  N b y  our 
choice or" N and definition of 0"8 (n). Since t. is an increasing function of n, we 
thus have - a = ~ t , , ~ t ,  for n>~m>~N, and -o ' ,~< tN~<t, for n > ~ N > m .  
This implies that t. ~> 88 (n) for n >j N by the definition of o" 8 (n). Hence, by the 
choice of N and Lemma 2 (d), (e) 

a . < a x ( n ) < a s ( n ) < ~ t .  = g s ( N )  + K s  + K x ( v ' n -  f i N )  (n>~N), 

oo 

S 3 <~ ~ (n/x)P r (x) {er a (N) + K 8 + K~ ( V n  - v'N)} 
n--N+t 

<~ {% (N) + Ka} 02 (N, x) + KtO x (N, x). 

On the other hand, by Lemma 2 (c), (e), (f) and by the choice of M, N, 

N 

s8 <. - �89 (U)  Z (n/x)P c.  (x) 
n = M + l  

= - �89 ( N )  {1 + o (1) - 08 ( N  + 1, x)  - 08 ( M ,  x) ) ,  

M 

$1 < aa ( M)  ~, (nlx)P c. ( x) <~ ~8 ( N) 08 ( M, x), 
tSw X 

since r 1 (M) ~ a 1 (iV) < a2 (N). Combining these estimates for $1, S 8, Sa we find 
from (11) that x-p V~(x) ~ - oo as H-~  oo contradicting (8). This completes 
the proof. 

Lemma 5. I f  s ( t ) = s ,  for n<~t < n + l and s , = O ( 1 )  ( n ~ o o ) ,  then 

oo 
V] (x) - ~ (afizx) i ts  exp {-- ax -x (t -- x) 2) s( t )  dt -~ 0 (x ~ oo). 

0 

Proof. It suffices to prove that 

n + l  

I c. (x)  - l (a /~x)  ~ exp { -  ax-~ (t - x)~) at ! ~ o (x ~ oo). (12) 
~P=O . 
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Denoting the summand in (12) by d,  (x), we find from the condition (iii) on c, (x) 
with ~ r=O that, as x--~ oo 

~-m 8 oo 
22 d~(x)<<.o(1) +( ~ + ~§ 

ln--:l  >m ~ o 
) (a/=x) 1I~ exp { -  ax --1 (t - x) ~} dt 

- m ~ - t  ao 
= o (1) + ( J" -I- ~ ) (a/7~) 1/2 e x p  ( - -  au $) d u  = 0 (1) ; 

on the other hand, using Lemma 2 ( b ) w i t h  a = 0, 

n + l  

la_~l~<~8 in_ttl~<~ n 
(afizx)ll  z exp {-- ax  -1 (t - x) =}dt < E, 

for x > Xo (E). This proves (12). 
Lemma 6. I f  s,  is a real sequence satisfying 

lim lim inf rain (s. - s,.)~> O, (13) 
e--l,O + m-) ,  eO m <~ n ~ m + e r~/ ra 

o o  

(a/Irx) l l z  I exp { -- ax -1 (t -- x) 2} s ( t)  dt -+ s (x -+ m) ,  
o 

where s ( t )  = s ,  for  n<~ t < n + 1 and i f  s.  = O(1)(n ~ ~ ) ,  t hens .  ~ s ( n  ~ oo). 
Taking s = 0 this lemma is proved exactly like its case a = �89 ([3], pp. 313-314). 
Lemma 7. I f  s .  ~ s (Ba,,y) then, for  r >I O, 

co 

"' ~ (=x).-+~-i S" s(x --, 
O. r + l / " ( r  -~- 1 ) e x p  ( -  aX) V ( n a  + 7 + r) " -+ oo), (14) 

t , (n )  -~ a , F ( r  + 1) r ( n a  + r )  S ~ V(n~ +~ +r) --,s(B,,~). (15) 

(14) is known ([1], Lemma 4) and (15) foUows readily from (14). 

Lemma 8. I f  s ,  ~ s (Ba,.t) and s~ = 0 (n ~) for  some r >~ O, o >1 �89 then s~ +1 = 
0 (n ~-1/2), and, more generally, for  an integer q such that 1 ~ q <~ 2a, s', +~ = 0 (na-e/~). 

Proof. We have identically, for m < n, 

_ _ ~r+~ ~ Z~  s21 s2 ~= ~ (~;+~ ~_~,= 
~ m + l  ~mm+l 

r + l  
Cs" - ~r+~ ~ p ~is j ,  

V 

(see [3], p. 122). By hypothesis, s~, = O (v ~) as v--+ oo and so s~ +1 ---O(va). 
Hence as m-+ 0% we have uniformly for m<~ n~< m + E a/m, 0 < E < 1, 

SUN-* __ ~.~'+1 = Z~ 0 (y#- - l )  = E O  ( m r - l / 2 ) ,  
P--m+l 

(16) 

By the defi.nition of t, (n) in (15) and Stirling's approximation, 

t , ( n )  = s~, (1  + l w , ( n ) )  , w, (n)  = O(X), (17) 
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so that we can write 
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t ,+ l  (n )  - t ,+j  ( m )  = : + ~  - ~'+x + 1 ~,+~ 1 ~" -" -n " w,+x (n) - g.+x w,+x (m). (18) 

Using (16) in (18), we get uniformly for m~< n ~< m + r ~/m, 0 < E < 1, as m -* co 

t,+~ (n) - t,+~ (m) = ,  O (m ~ - ~ )  + o (m ~-~); 

lira lira sup max I t,+x (n) - t,+l (m) ] m -~+1/~ = 0. 
e-.>O m.-'~O0 m~n<~ra+eX/m 

This and t, (n) ~ s (B=, ~) which is a consequence of the hypotkesis s, ~ s (Ba, 7) 
by Lemma 7, together imply t, (n) = O (n a-x/2) on appeal to Lemma 4 with t, (n), 

- � 8 9  instead of s,, p respectively and with the V~ transform specialized to the 
(Ba,~) transform. Finally, we have also s- ' + 1 =  O(n ~-x/2) because of (17). 

The more general conclusion of the lemma follows from successive repetitions 
q times of the above argument. 

4 .  T l ~ o r e m s  

Theorem 1. Suppose that s , = O ( n a ) ( n  ~ co) for semen ~ O. Then s, ~ s(Vk,) 
i f  and only i f  

( aN1/z oo 
~ J  .=o2 oxp [ - ax --1 (n - x) ~] s. --+ s ( x  --. co). 

The proof is exactly like that of Satz IX of Faulhaber [2]. Combinirtg Theorem 1 
with Lemma 1 we have 

Theorem 2. Suppose that s, = 0 (n ~) (n ~ oo) for some ~r >~ O. Then s, ~ s (V~,) 
j and only i f  s, ~ s (Ban, .~). 

Theorem 3. I f  s, is a real sequence satisfying (13) and s~ ~ s (V~) then s, ~ s 
(n --, oo). 

Proof. Since (13) is the special case p = 0 of (1), it follows from Lemma 4 that  
s, = O (1) and thereafter the desired conclusion is obvious from Lemmas 5 and,6. 

Theorem 4. I f  s. is a real sequence satisfying (1) and s, ~ s(V~,), then s, 

s(C, 2p). 

Proof. After Theorem 3, we need prove ortly the case p > 0. Also, s. = O (nP) 
by lemma 4, so that we may appeal to Theorem 2 and replace hypothesis 
s . - .  s (V])  by s. ~ s(B~a, ~). 

If  p is the greatest integer less than 2p + 1 then 

O< g = 2 p - ( p -  1 ) ~ 1  

and it follows from the more general conclusion of Lemma 8 with r = 0 that 

: - 1  = 0 (n p-<'-~'2) = 0 (n~/~). 
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Hence, exactly as elsewhere ([4], proof of Theorem 2, 439-40) we obtain, for 
m ~ < n < m + r  0 <  r  1, uniformly as m ~ o a  

s~ p - s~ ~ = ~ 'O(1)  + r O ( m ~ - l ) l ~ ) ,  s~ ~ = O(ml*l~) .  (19) 

Farther, the definition of t , ( n )  in (15) gives, by (17), 

t~l ~ (n) - t.ap (m)  = s~ O - s~ ~ + s2f w2o (n) - m S= w ~  (m)  

= cg O (1) + r 0 (m 1~-1~/1) + O ( m  g/2-1) 

on account of (19). Thus 

lim lira sup max ] tip (n) - t,p (m) I = 0, 
e-.~O+ m-.>O0 m~n<~m.4.e~lm 

while our assumption s, -~ s (B~o, 7) implies t~o (n) ~ s (B~,  ~) by Lemma 7. Now 
appealing to Theorem 3, with s, replaced by t2o (n) and summability (V~) by 
summability (B2,,-r we see that 

t ~  (.) - ,  s w h e n c e  s~ p ~ s 

as reqnired, by (17). 

5. Some standard cases of summabilRy method (V~) 

In addition to the general Borel method (B., ~) and Borel method which is (B1, 1), 
the following are special cases of the method (V~). 

I. The Valiron method (V,) which corresponds to the transforms of s. given by 

O0 

vo (x) \=~ ,  
n ~  0 

is a special case. For, V. (x) is V~, (x) of w 2, with g~ + R~ -= 0 in condition 
(ii) imposed on c ,  (x) ,  and with condition (iii) on c, (x) satisfied in consequence 
of a result stated by Faulhab~r (I-lilfssatz I with p = 0). 

If. The Euler method (E~ p > 0, the I-lardy-LittIewood method (Ta) ,  0< a< I, 
and the method (Sfl), 0 < fl < I, due to Meyer-Konig and Vermes, correspond 
to transforms of s. which may be written 

oO 

c,,  ,~ s . ,  m = 1, 2, 3 , . . . ,  
mmO 

where o . .  , , . .  

,or = 



Generalized Valiron summability and Cesdro summability 

with the convention that  (v~ r j  = 0 f ~  v <  r. 

c, (x) = f c ~ ,  fOrfor xm0< ~ x<X < xl,X'+t 

where x~ = Am with a suitable constant 2 in each case. We can verify, using argu- 
ments of Faulhaber (proof of Hilfssatz 5) with trivial modifications, that  the c, (x) 
of (20) satisfy for x = x ,  the conditions required of the c, (x) in the definition 
of V] (x) in w 2, provided we choose 

for (E,) : a = 2P/(2 '+a - 2), 

for (T~) : a = (1 - a)/2a, 

for ($3) : a = (1 - fl)/2, 

193 

In all these cases we may define 

( 2 0 )  

;~ = ( 1  - ~)-:, 

= # ( 1  - 

Finally we can verify that, if the c, (x) of (20) satisfy the required conditions for 
x = x,,, where x,~ is any increasing unbounded sequence with x,.+j - xm = O (1) 
then they satisfy the eor~ditions for all x > 0. In particular, taking x~ = ;tin we 
see that the transforms E 9, Ta, Sr are all special cases of the V~ transform. 
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