On the relation of generalized Valiron summability to Cesàro summability

V K KRISHNAN
St. Thomas College, Trichur 680 001, India

MS received 3 May 1980
Abstract. A family (V_{G}^{k}) of summability methods, called generalized Valiron summability, is defined. The well-known summability methods $\left(B_{a}, \gamma\right),\left(E_{p}\right),\left(T_{a}\right)$, $\left(S_{\beta}\right)$ and $\left(V_{a}\right)$ are members of this family. In \S_{3} some properties of the $\left(B_{a, \gamma}\right)$ and (V_{a}^{k}) transforms are established. Following Satz II of Faulhaber (1956) it is proved that the members of the (V_{a}^{k}) family are all equivalent for sequences of finite order. This paper is a good illustration of the use of generalized Boral summability. The following theorem is established :

Theorem. If $s_{n}(n \geqslant 0)$ is a real sequence satisfying

$$
\lim _{\epsilon \rightarrow 0+} \liminf _{m \rightarrow \infty} \min _{m \leqslant n \leqslant m+e \sqrt{ } m}\left(\frac{s_{n}-s_{m}}{m^{\rho}}\right) \geqslant 0(\rho \geqslant 0),
$$

and if $s_{n} \rightarrow s\left(V_{a}^{k}\right)$ then $s_{n} \rightarrow s(C, 2 \rho)$.
Keywords. Generalized Valiron summability; Boral summability; Rajagopal's theorem.

1. Introduction

Rajagopal ([4], Theorem 2) proved the following theorem connecting Borel and Cesàro summabilities; and, after him, Sitaraman ([5], Theorem II) proved the theorem with Borel summability replaced by summability (S_{β}) defined as usual in §5:

Theorem A. If $s_{n}(n \geqslant 0)$ is a real sequence satisfying

$$
\begin{equation*}
\lim _{e \rightarrow 0+} \liminf _{m \rightarrow \infty} \min _{m \leqslant n \leqslant m+e \sqrt{ } m}\left(\frac{s_{n}-s_{m}}{m^{\rho}}\right) \geqslant 0(\rho \geqslant 0) \tag{1}
\end{equation*}
$$

and if $s_{n} \rightarrow s(B)$, then $s_{n} \rightarrow s(C, 2 \rho)$.
In this paper we prove (Theorem 4) that Theorem A is extensible to a family (V_{a}^{k}) of summability methods which include as special cases generalized Borel summability (B_{a}, γ) defined in $\S 2$ and the well-known summabilities $\left(E_{p}\right)$, $\left(T_{a}\right)$, $\left(S_{\beta}\right)$ defined in the usual notation in §5. Of course Theorem A itself obviously

In homage to the late Professor C T Rajagopal.
includes the similar theorem for summability (E_{y}) instead of summability (B), since $\left(E_{\emptyset}\right) \subset(B)$. Valiron summability $\left(V_{a}\right)$ is also a special case of summability (V_{a}^{k}), as pointed out in § 5 , and the latter is the generalized Valiron summability of the title.

The Tauberian condition (1) reduces to a classic special case when $\rho=0$. A different special case of (1) and its further specialization are respectively

$$
\begin{align*}
& s_{n}-s_{n-1}=O_{L}\left(n^{\rho-1 / 2}\right) \tag{1a}\\
& s_{n}-s_{n-1}=o\left(n^{\rho-1 / 2}\right) \tag{1b}
\end{align*}
$$

Hardy and Littlewood originally proved the special case of Theorem A with (1 b) instead of (1), as stated by Hardy ([3], note on $\S \S 9 \cdot 6-7$). Their result was extended by Borwein [1] to generalized Borel summability, and an idea of his (Lemma 7) is used in the sequel.

2. Definitions

The V_{s}^{k} transform of a (generally complex) sequence $s_{n}(n \geqslant 0)$ is the function defined by

$$
V_{a}^{k}(x)=\sum_{n=0}^{\infty} c_{n}(x) s_{n}, x>0
$$

where $c_{n}(x)$ satisfies the following three conditions:
(i) $c_{n}(x) \geqslant 0$ for $n=0,1,2, \cdots, x>0$;
(ii) there exist $a>0$ and δ with $\frac{1}{2}<\delta<\frac{9}{3}$ such that, for every positive integer $k, c_{n}(x)$ can be expressed as

$$
c_{n}(x)=\left(\frac{a}{\pi x}\right)^{1 / 2} \exp \left\{-a x^{-1}(n-x)^{2}+g_{k}+R_{k}\right\}
$$

whenever x is sufficiently large and $|n-x| \leqslant x^{\delta}$, and where

$$
g_{k}=\sum_{i=0}^{2 k-1} \sum_{j=0}^{i+1} l_{i j} \frac{(n-x)^{j}}{x^{i}}, l_{12}=0
$$

$l_{i j}$ being independent of n and bounded as $x \rightarrow \infty$,

$$
R_{k}=O\left(\frac{|n-x|^{2 k+1}+1}{x^{2 k}}\right) \text { as } x \rightarrow \infty
$$

uniformly in n for $|n-x| \leqslant x^{\delta}$;
(iii) for every $\sigma \geqslant 0$

$$
\sum_{|n-x|>x^{\delta}}(n+1)^{\sigma} c_{n}(x)=o(1) \text { as } x \rightarrow \infty
$$

We say that s_{n} is summable (V_{a}^{k}) to s (finite), and write $s_{n} \rightarrow s\left(V_{a}^{k}\right)$ if $V_{a}^{k}(x) \rightarrow s$ as $x \rightarrow \infty$.

The ($B_{a, \gamma}$) transform ($a>0, \gamma$ real) of s_{n} is the function defined by

$$
B(x)=\alpha \exp (-\alpha x) \sum_{n=N}^{\infty} \frac{(\alpha x)^{n a+\gamma-1}}{\Gamma\left(n_{a}+\gamma\right)} s_{n}, x>0
$$

N being the least positive integer such that $N_{\alpha}+\gamma \geqslant 1$. We say that s_{n} is summable $\left(B_{a, \gamma}\right)$ to s (finite), and write $s_{n} \rightarrow s\left(B_{a}, \gamma\right)$ if $B(x) \rightarrow s$ as $x \rightarrow \infty$.

The nth Cesàro sum and the nth Cesàro mean of s_{n}, each of order $r>-1$, are denoted by S_{n}^{r} and s_{n}^{r} respectively. Thus

$$
S_{n}^{0}=s_{n}^{0}=s_{n} ; \quad S_{n}^{r}=\sum_{\nu=0}^{n}\binom{n-v+r-1}{n-v} s_{\nu}=s_{n}^{r}\binom{n+r}{n} .
$$

We say that s_{n} is summable (C, r) to s (finite), aud write $s_{n} \rightarrow s(C, r)$ if $s_{n}^{r} \rightarrow s$ as $n \rightarrow \infty$.

3. Preliminary results

In this section we study some properties of the $\left(B_{a, \gamma}\right)$ and V_{a}^{k} transforms.
Lemma 1. The $\left(B_{a, \gamma}\right)$ transform is $a V_{a}^{k}$ transform with $a=a / 2$.
Proof. Borwein ([1], Lemma $2(d)$) has proved that $c_{n}(x)$ defined as below satisfies condition (iii) :

$$
c_{n}(x)=a \exp (-a x) \frac{(\alpha x)^{n a+\gamma-1}}{\Gamma\left(n_{\alpha}+\gamma\right)} \text { for } n \geqslant N \text { and } c_{n}(x)=0 \text { for } n<N .
$$

To verify condition (ii), let $\frac{1}{2}<\delta<\frac{2}{3}, x$ be large, $|n-x| \leqslant x^{\delta}$, and k be any positive integer. Writing $h=n-x+(\gamma-1) / \alpha$ and using the formula

$$
\begin{aligned}
& \log \Gamma(y+1)=\frac{1}{2} \log (2 \pi)+\left(y+\frac{1}{2}\right) \log y-y+\sum_{r=1}^{k} \frac{(-1)^{r-1} B_{r}}{(2 r-1) 2 r} y^{-2 r+1} \\
& \quad+O\left(y^{-2 k-1}\right) \text { as } y \rightarrow \infty,
\end{aligned}
$$

with $y=\alpha x+\alpha h$ we see that

$$
\begin{aligned}
& \log \left\{c(x)\left(\frac{2 \pi x}{a}\right)^{1 / 2}\right\}=\frac{1}{2} \log (2 \pi)-\alpha x+\left(a x+a h+\frac{1}{2}\right) \log (a x) \\
& \quad-\log \Gamma(a x+a h+1) \\
& =A_{1}+A_{2}+A_{3}
\end{aligned}
$$

where

$$
\begin{align*}
& A_{1}=\alpha h+\left(\alpha x+\alpha h+\frac{1}{2}\right) \log (\alpha x)-\left(\alpha x+\alpha h+\frac{1}{2}\right) \log (\alpha x+\alpha h), \tag{2}\\
& A_{2}=-\sum_{r=1}^{k} \frac{(-1)^{r-1} B_{r}}{(2 r-1) 2 r}(\alpha x+\alpha h)^{-2 r+1}, \tag{3}\\
& \left|A_{3}\right| \leqslant M(\alpha x+\alpha h)^{-2 k-1} \tag{4}
\end{align*}
$$

P.(A) - 2
for some constant M. By Taylor's theorem,

$$
\log (1+y)=\sum_{r=1}^{2 k} \frac{(-1)^{r-1}}{r} y^{r}+\frac{y^{2 k+1}}{2 k+1}(1+\theta y)^{-2 k-1}
$$

where $0 \leqslant \theta=\theta(k, y) \leqslant 1$. Therefore, from (2),

$$
\begin{aligned}
A_{1}= & a h-\left(\alpha x+\alpha h+\frac{1}{2}\right) \log \left(1+\frac{h}{x}\right) \\
= & \alpha h-\alpha x\left\{\frac{h}{x}-\frac{1}{2}\left(\frac{h}{x}\right)^{2}+\sum_{r=3}^{2 k} \frac{(-1)^{r-1}}{r}\left(\frac{h}{x}\right)^{r}\right\} \\
& -\alpha h\left\{\frac{h}{x}+\sum_{r=2}^{2 k-1} \frac{(-1)^{r-1}}{r}\left(\frac{h}{x}\right)^{r}\right\}-\frac{1}{2} \sum_{r=1}^{2 k-1} \frac{(-1)^{r-1}}{r}\left(\frac{h}{x}\right)^{r}+A_{4} \\
= & -\frac{a}{2} \frac{h^{2}}{x}+\sum_{r=2}^{2 k-1} u_{r} \frac{h^{r+1}}{x^{r}}+\sum_{r=1}^{2 k-1} v_{r} \frac{h^{r}}{x^{r}}+A_{4}
\end{aligned}
$$

where u_{r}, v_{r} are independent of h, x and

$$
\begin{equation*}
A_{4}=\frac{a}{2 k} \frac{h^{2 k+1}}{x^{2 k}}+\frac{1}{2} \frac{1}{2 k} \frac{h^{2 k}}{x^{2 k}}-\frac{\left(\alpha x+a h+\frac{1}{2}\right)}{2 k+1}\left(\frac{h}{x}\right)^{2 k+1}\left(1+\theta \frac{h}{x}\right)^{-2 k-1} . \tag{5}
\end{equation*}
$$

Again, Taylor's theorem gives

$$
\begin{aligned}
& (1+y)^{-\mu}=\sum_{\nu=0}^{m}(-1)^{\nu}\binom{\mu+v-1}{v} y^{\nu}+(-1)^{m+1} y^{m+1}\binom{\mu+m}{m+1} \\
& \quad \times(1+\theta y)^{-\mu-m-1},
\end{aligned}
$$

where $0 \leqslant \theta=\theta(\mu, m, y) \leqslant 1$. Using this with $y=h / x, \mu=2 r-1, m=$ $2 k-2 r, r=1, \cdots, k$, we get from (3),

$$
\begin{aligned}
A_{2}= & \sum_{r=1}^{k} \frac{(-1)^{r} B_{r}}{(2 r-1)^{2 r}} a^{-2 r+1} x^{-2 r+1}\left\{\sum_{\nu=0}^{2 k-2 r}(-1)^{\nu}\binom{2 r-1+v-1}{v}\left(\frac{h}{x}\right)^{\nu}\right. \\
& \left.+(-1)^{2 k-2 r+1}\left(\frac{h}{x}\right)^{2 k-2 r+1}\binom{2 k-1}{2 k-2 r+1}\left(1+\theta_{r} \frac{h}{x}\right)^{-2 k}\right\} \\
= & \sum_{r=1}^{k} \sum_{\nu=0}^{3 k-2 r} w_{r, \nu} \frac{h^{\nu}}{x^{2 r+\nu-1}}+A_{5},
\end{aligned}
$$

where $w_{r, r}$ are independent of h, x and

$$
\begin{equation*}
A_{5}=\sum_{r=1}^{k} \frac{(-1)^{r+1} B_{r}}{(2 r-1) 2 r} a^{-2 r+1} \frac{h^{2 k-2 r+1}}{x^{2 k}}\binom{2 k-1}{2 k-2 r+1}\left(1+\theta_{r} \frac{h}{x}\right)^{-2 k} \tag{6}
\end{equation*}
$$

Thus we have proved that

$$
\log \left\{c_{n}(x)\left(\frac{2 \pi x}{a}\right)^{1 / 2}\right\}=-\frac{\alpha}{2} \frac{h^{2}}{x}+\sum_{i=1}^{2 k-1} \sum_{j=0}^{i+1} i_{\Delta j} \frac{h^{j}}{x^{i}}+A_{3}+A_{4}+A_{5}
$$

where $\bar{l}_{i j}$ are independent of h, x and $\bar{l}_{12}=0$. Noting that $h=n-x+(\gamma-1) / a$ and writing $a=2 a$ we get

$$
\begin{gather*}
\log c_{n}(x)=\log \left(\frac{a}{\pi x}\right)^{1 / 2}-\frac{a}{x}\left\{(n-x)^{2}+2(n-x)\left(\frac{\gamma-1}{a}\right)+\left(\frac{\gamma-1}{a}\right)^{2}\right\} \\
\quad+\sum_{i=1}^{2 k-1} \sum_{j=0}^{i+1} \bar{l}_{i j} \frac{1}{x^{i}} \sum_{\nu=0}^{j}\binom{j}{v}(n-x)^{\nu}\left(\frac{\gamma-1}{a}\right)^{1-\nu}+A_{3}+A_{4}+A_{5} \\
\quad=\log \left(\frac{a}{\pi x}\right)^{1 / 2}-a x^{-1}(n-x)^{2}+\sum_{i=1}^{2 k-1} \sum_{j=0}^{i+1} l_{i j} \frac{(n-x)^{j}}{x^{4}}+A_{3}+A_{4}+A_{5}, \tag{7}
\end{gather*}
$$

where $l_{i j}$ are independent of n, x and $l_{12}=\bar{l}_{12}=0$.
Since $h=n-x+(y-1) / a$, we have $|h| / x<\frac{1}{2}$ and $1+\theta h \left\lvert\, x>\frac{1}{2}\right.$ whenever $0 \leqslant \theta \leqslant 1, x$ is large and $|n-x| \leqslant x^{\delta}$. Moreover,

$$
|h|^{\nu} \leqslant\left\{|n-x|^{2 k+1}+1\right\}\left\{1+\frac{|\gamma-1|}{a}\right\}^{2 k+1}, v=0,1, \cdots, 2 k+1 .
$$

Supplying these estimates in (4), (5) and (6), we find that

$$
x^{2 k}\left[\left|A_{3}\right|+\left|A_{4}\right|+\left|A_{5}\right|\right] \leqslant M^{\prime}\left[|n-x|^{2 k+1}+1\right]
$$

if $|n-x| \leqslant x^{\delta}$ and x is large, M^{\prime} being a constant. This, in view of (7), completes the proof of the lemma.

Lemma 2. If $c_{n}(x)$ satisfies the conditions of $a V_{a}^{k}$ transform, then for $\sigma \geqslant 0$,
(a) $c_{n}(x)=\left\{1+\epsilon_{1}(n, x)\right\}\left(\frac{a}{\pi x}\right)^{1 / 2} \exp \left[-a x^{-1}(n-x)^{2}\right]$,
(b) $\left(\frac{n}{x}\right)^{\sigma} c_{n}(x)=\left\{1+\epsilon_{2}(n, x)\right\} \int_{n}^{n+1}\left(\frac{a}{\pi x}\right)^{1 / 2} \exp \left[-a x^{-1}(t-x)^{2}\right] d t$,
where $\epsilon_{1}(n, x), \epsilon_{2}(n, x) \rightarrow 0$ as $x \rightarrow \infty$ uniformly in n for $|n-x| \leqslant x^{\delta}$;
(c) $\sum_{n=1}^{\infty}\left(\frac{n}{x}\right)^{\sigma} c_{n}(x) \rightarrow 1$ as $x \rightarrow \infty$;
(d) $\theta_{1}(N, x) \equiv \sum_{n=N}^{\infty}\left(\frac{n}{x}\right)^{\sigma} c_{n}(x)(\sqrt{ } n-\sqrt{ } N) \rightarrow 0$,
(e) $\theta_{2}(N, x) \equiv \sum_{n=N}^{\infty}\left(\frac{n}{x}\right)^{\sigma} c_{n}(x) \rightarrow \mathbf{0}$,

$$
\text { (f) } \theta_{3}(M, x) \equiv \sum_{n=1}^{M}\left(\frac{n}{x}\right)^{\sigma} c_{n}(x) \rightarrow 0
$$

as $x, N, \sqrt{ } N-\sqrt{ } x, M, \sqrt{ } x-\sqrt{ } M \rightarrow \infty$. (c) for $\sigma=0$ shows that V_{a}^{k} is a positive regular transform of s_{n}.
Proof. (a) Taking $k=1$ in condition (ii) on $c_{n}(x)$, we see that

$$
\begin{aligned}
\exp \left(g_{1}+R_{1}\right) & =\exp \left\{\frac{l_{10}}{x}+l_{11} \frac{(n-x)}{x}+o\left(\frac{|n-x|^{3}+1}{x^{2}}\right)\right\} \\
& =1+o\left(\frac{1}{x}+\frac{|n-x|}{x}+\frac{|n-x|^{3}}{x^{2}}\right)
\end{aligned}
$$

which proves (a), since $\delta<2 / 3$.
(b) Noting that $(n / x)^{\sigma}=1+\epsilon^{\prime}(n, x)$ and that

$$
\int_{n}^{n+1} \exp \left[-a x^{-1}(t-x)^{2}\right] d t=\exp \left[-a x^{-1}(n-x)^{2}\right]\left\{1+\epsilon^{\prime \prime}(n, x)\right\}
$$

we deduce (b) from (a).
(c) Write the sum in (c) as

$$
\left(\sum_{|n-\pi| \leqslant s^{\delta}}+\sum_{|n-w|>a^{\delta}}^{-1}\right)\left(\frac{n}{x}\right)^{\sigma} c_{n}(x)=S_{1}+S_{2} .
$$

From (b) it follows that

$$
\begin{aligned}
S_{1} & =\int_{a \rightarrow x^{\delta}}^{\infty+a^{\delta}}\left(\frac{a}{\pi x}\right)^{1 / 2} \exp \left\{-a x^{-1}(t-x)^{2}\right\} d t+o(1) \\
& =\int_{-x^{\delta-\frac{1}{2}}}^{a^{\delta-\frac{1}{2}}}\left(\frac{a}{\pi}\right)^{1 / 2} \exp \left(-a u^{2}\right) d u+o(1)
\end{aligned}
$$

which tends to 1 as $x \rightarrow \infty$ since $\delta>\frac{1}{2}$. On the other hand, $S_{2} \rightarrow 0$ as $x \rightarrow \infty$ by our condition (iii) on $c_{n}(x)$.
(d) Write $\sqrt{ } N-\sqrt{ } x=u$ so that $N-x=u(\sqrt{ } N+\sqrt{ } x)>u \sqrt{ } x$.

In view of condition (iii) on $c_{n}(x)$ it suffices to prove that

$$
S=\sum_{N \leqslant n \leqslant x+x^{\delta}}\left(\frac{n}{x}\right)^{\sigma} c_{n}(x)(\sqrt{ } n-\sqrt{ } N) \rightarrow 0,
$$

as $x, u \rightarrow \infty$. Since $\sqrt{ } n-\sqrt{ } N<(n-x) / \sqrt{ } x$ for $n \geqslant N>x$, it follows from (b) that, for all large x,

$$
S \leqslant \sum_{N \leqslant n \leqslant x+x^{\delta}} \frac{n-x}{\sqrt{x}} 2 \int_{n}^{n+1}\left(\frac{a}{\pi x}\right)^{1 / 2} \exp \left[-a x^{-1}(t-x)^{2}\right] d t
$$

$$
\begin{aligned}
& \leqslant 2\left(\frac{a}{\pi x}\right)^{1 / 2} \sum_{N \leqslant n \leqslant x+x^{\delta}} \int_{n}^{n+1} \frac{t-x}{\sqrt{x}} \exp \left[-a x^{-1}(t-x)^{2}\right] d t \\
& \leqslant 2\left(\frac{a}{\pi x}\right)^{1 / 2} \int_{N}^{\infty} \frac{t-x}{\sqrt{x}} \exp \left[-a x^{-1}(t-x)^{2}\right] d t \\
& =2\left(\frac{a}{\pi}\right)^{1 / 2} \int_{N-x}^{\infty} v \exp \left(-a v^{2}\right) d v \\
& \leqslant 2\left(\frac{a}{\pi}\right)^{1 / 2} \int_{u}^{\infty} v \exp \left(-a v^{2}\right) d v
\end{aligned}
$$

which tends to 0 as $u \rightarrow \infty$.
Proofs of (e) and (f) are similar to that of (d).
Lemma 3. If s_{n} is a real sequence satisfying (1) then there exist positive constants K_{1}, K_{2} such that, for $n \geqslant m \geqslant 1$,

$$
s_{n}-s_{m}>-K_{1} n^{\rho}(\sqrt{ } n-\sqrt{ } m)-K_{2} m^{\rho}
$$

This is proved exactly like Theorem 239 of Hardy [3] (see Rajagopal [4], Lemma 1).
Lemma 4. If s_{n} is a real sequence satisfying (1), and if

$$
\begin{equation*}
V_{a}^{k}(x)=O\left(x^{\rho}\right)(x \rightarrow \infty) \tag{8}
\end{equation*}
$$

then $s_{n}=O\left(n^{\rho}\right)(n \rightarrow \infty)$.
Proof. It may be remarked that the proof is applicable to any positive regular transform, in place of $V_{a}^{k}(x)$, for which the $c_{n}(x)$ satisfy (c)-(f) of Lemma 2. We proceed on the lines of the proofs of Theorem 1 of Rajagopal [4] and Theorem 238 of Hardy [3]. Write, for $n \geqslant 1$

$$
\sigma_{n}=\frac{s_{n}}{n^{\rho}}, \quad \sigma_{1}(n)=\max _{1 \leqslant r \leqslant n} \sigma, \text { and } \sigma_{2}(n)=\max _{1 \leqslant r \leqslant n}\left(-\sigma_{n}\right),
$$

and assume, for convenience, that $s_{0}=0$. Since

$$
x^{-\rho} V_{a}^{k}(x)=\sum_{n=1}^{\infty}(n / x)^{\rho} c_{n}(x) \sigma_{n},
$$

it follows from (8) and Lemma 2 (c) that neither $\sigma_{n} \rightarrow \infty$ nor $\sigma_{n} \rightarrow-\infty$ is possible. The lemma is proved by showing that each of the following two cases contradicts (8) :
(I) $\sigma_{1}(n) \geqslant \sigma_{2}(n)$ for infinitely many n and $\sigma_{1}(n) \rightarrow \infty$;
(II) $\sigma_{1}(n)<\sigma_{2}(n)$ for all but a finite number of values of n and $\sigma_{2}(n) \rightarrow \infty$.

Case I. Corresponding to a large positive number H, choose the least $M=M(H)$ for which $\sigma_{M H}=\sigma_{1}(M)>2 H$ and $\sigma_{1}(M) \geqslant \sigma_{2}(M)$, and then the
least $N=N(H)>M$ for which $\sigma_{N} \leqslant \frac{1}{2} \sigma_{M}$. Define $x=x(H)$ by $2 \sqrt{ } x=\sqrt{ } M$ $+\sqrt{ } N$ and write

$$
\begin{equation*}
x^{-\rho} V_{a}^{k}(x)=\left(\sum_{n=1}^{L_{-1}}+\sum_{n=M}^{N-1}+\sum_{n=N}^{\infty}\right)(n / x)^{\rho} c_{n}(x) \sigma_{n}=S_{1}+S_{2}+S_{3} \tag{9}
\end{equation*}
$$

If $(M \mid N)^{\rho} \leqslant 2 / 3$ then

$$
\begin{equation*}
\sqrt{ } N-\sqrt{ } M \geqslant\left\{1-(2 / 3)^{1 / 2 \rho}\right\} \sqrt{ } N \tag{10}
\end{equation*}
$$

If $(M \mid N)^{\rho}>2 / 3$ it follows from Lemma 3 that

$$
\begin{aligned}
\sigma_{N}-\sigma_{M}(M / N)^{\rho} & >-K_{1}(\sqrt{ } N-\sqrt{ } M)-K_{2}(M / N)^{\rho} \\
K_{1}(\sqrt{ } N-\sqrt{ } M) & >-\sigma_{N}+\sigma_{M M}(M / N)^{\rho}-K_{2} \\
& >-\frac{1}{2} \sigma_{M}+\frac{2}{3} \sigma_{M}-K_{2} \\
& >\frac{1}{3} H-K_{2}
\end{aligned}
$$

by the choice of M, N. This, together with (10), shows that $\sqrt{ } N-\sqrt{ } M \rightarrow \infty$ as $H \rightarrow \infty$. Hence $\sqrt{ } N-\sqrt{ } x, \sqrt{ } x-\sqrt{ } M \rightarrow \infty$ as $H \rightarrow \infty$.

The estimates which follow are when $H \rightarrow \infty$ and so $x, M, N, \sqrt{ } x-\sqrt{ } M$, $\sqrt{ } N-\sqrt{ } x \rightarrow \infty$ as in Lemma 2. By the choice of N, M,

$$
s_{N-1}=(N-1)^{\rho} \sigma_{N-1}>(N-1)^{\rho} \frac{1}{2} \sigma_{M}>(N-1)^{\rho} H
$$

Hence, by Lemma 3, we have for $n \geqslant N$,

$$
\begin{aligned}
s_{n} & >-K_{1} n^{\rho}\{\sqrt{ } n-\sqrt{ }(N-1)\}-K_{2}(N-1)^{\rho}+s_{N-1} \\
& >-K_{1} n^{\rho}\{\sqrt{ } n-\sqrt{ }(N-1)\},
\end{aligned}
$$

and, therefore, by Lemma 2 (d), (e)

$$
\begin{aligned}
S_{3}> & -K_{1} \sum_{n=w}^{\infty}(n \mid x)^{\rho} c_{n}(x)\{\sqrt{ } n-\sqrt{ }(N-1)\} \\
& =-K_{1} \theta_{1}(N-1, x)
\end{aligned}
$$

On the other hand, by Lemma 2 (c), (e), (f) and the choice of M, N,

$$
\begin{aligned}
& S_{2} \geqslant \frac{1}{2} \sigma_{M} \sum_{n=M}^{N-1}(n / x)^{\rho} c_{n}(x)=\frac{1}{2} \sigma_{M}\left\{1+o(1)-\theta_{2}(N, x)-\theta_{3}(M-1, x)\right\}, \\
& S_{1} \geqslant-\sigma_{2}(M) \sum_{n=1}^{M_{-1}^{1}}(n \mid x)^{\rho} c_{n}(x) \geqslant-\sigma_{1}(M) \theta_{3}(M-1, x) .
\end{aligned}
$$

Combining these estimates for S_{1}, S_{2}, S_{3} we find from (9) that $x^{-\rho} V_{d}^{k}(x) \rightarrow \infty$ as $H \rightarrow \infty$ contradicting (8).

Case II. Corresponding to a large positive number H choose the least $N=$ $N(H)$ such that $\sigma_{2}(n)>\sigma_{1}(n)$ for $n \geqslant N$ and $\sigma_{N}=-\sigma_{2}(N)<-2 H$; and then the last $M=M(H)<N$ for which $\sigma_{M} \geqslant \frac{1}{2} \sigma_{N}=-\frac{1}{2} \sigma_{2}(N)$. Define x as in case I, and write

$$
\begin{equation*}
x^{-\rho} V_{G}^{\bar{u}}(x)=\left(\sum_{n=1}^{M}+\sum_{n=M+1}^{N}+\sum_{n=N+1}^{\infty}\right)(n \mid x)^{\rho} c_{n}(x) \sigma_{n}=S_{1}+S_{2}+S_{3} \tag{11}
\end{equation*}
$$

Using Lemma 3 we find, as in case I, that

$$
\begin{aligned}
K_{1}(\sqrt{ } N-\sqrt{ } M) & >-\sigma_{N}+\sigma_{M}(M / N)^{\rho}-K_{2}(M / N)^{\rho} \\
& \geqslant-\sigma_{N}\left\{1-\frac{1}{2}(M / N)^{\rho}\right\}-K_{2} \\
& >H-K_{2}
\end{aligned}
$$

and that $\sqrt{ } N-\sqrt{ } x, \sqrt{ } x-\sqrt{ } M \rightarrow \infty$ as $H \rightarrow \infty$.
From Lemma 3, it follows that, for $n \geqslant N$,

$$
\begin{aligned}
\sigma_{n} & >-\left\{-\sigma_{N}+K_{2}\right\}(N / n)^{\rho}-K_{1}(\sqrt{ } n-\sqrt{ } N) \\
& \geqslant-\left\{\sigma_{2}(N)+K_{2}\right\}-K_{1}(\sqrt{ } n-\sqrt{ } N) \\
& =-t_{n}
\end{aligned}
$$

say. Thus $-\sigma_{n}<t_{n}$ for $n \geqslant N$; while $-\sigma_{n} \leqslant-\sigma_{N}<t_{N}$ for $n<N$ by our choice of N and definition of $\sigma_{2}(n)$. Since t_{n} is an increasing function of n, we thus have $-\sigma_{m} \leqslant t_{m} \leqslant t_{n}$ for $n \geqslant m \geqslant N$, and $-\sigma_{m}<t_{N} \leqslant t_{n}$ for $n \geqslant N>m$. This implies that $t_{n} \geqslant \sigma_{2}(n)$ for $n \geqslant N$ by the definition of $\sigma_{2}(n)$. Hence, by the choice of N and Lemma 2 (d), (e)

$$
\begin{aligned}
\sigma_{n} & \leqslant \sigma_{1}(n)<\sigma_{2}(n) \leqslant t_{n}=\sigma_{2}(N)+K_{2}+K_{1}(\sqrt{ } n-\sqrt{ } N) \quad(n \geqslant N), \\
S_{3} & \leqslant \sum_{n=N+1}^{\infty}(n / x)^{\rho} c_{n}(x)\left\{\sigma_{2}(N)+K_{2}+K_{1}(\sqrt{ } n-\sqrt{ } N)\right\} \\
& \leqslant\left\{\sigma_{2}(N)+K_{2}\right\} \theta_{2}(N, x)+K_{1} \theta_{1}(N, x) .
\end{aligned}
$$

On the other hand, by Lemma 2 (c), (e), (f) and by the choice of M, N,

$$
\begin{aligned}
S_{2} & \leqslant-\frac{1}{2} \sigma_{2}(N) \sum_{n=M+1}^{N}(n / x)^{\rho} c_{n}(x) \\
& =-\frac{1}{2} \sigma_{2}(N)\left\{1+o(1)-\theta_{2}(N+1, x)-\theta_{3}(M, x)\right\}, \\
S_{1} & \leqslant \sigma_{1}(M) \sum_{n=1}^{M}(n / x)^{\rho} c_{n}(x) \leqslant \sigma_{2}(N) \theta_{3}(M, x),
\end{aligned}
$$

since $\sigma_{1}(M) \leqslant \sigma_{1}(N)<\sigma_{2}(N)$. Combining these estimates for S_{1}, S_{2}, S_{3} we find from (11) that $x^{-\rho} V_{a}^{k}(x) \rightarrow-\infty$ as $H \rightarrow \infty$ contradicting (8). This completes the proof.

Lemma 5. If $s(t)=s_{n}$ for $n \leqslant t<n+1$ and $s_{n}=O(1)(n \rightarrow \infty)$, then

$$
V_{a}^{k}(x)-\int_{0}^{\infty}(a \mid \pi x)^{1 / 2} \exp \left\{-a x^{-1}(t-x)^{2}\right\} s(t) d t \rightarrow 0(x \rightarrow \infty) .
$$

Proof. It suffices to prove that

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|c_{n}(x)-\int_{n}^{n+1}(a \mid \pi x)^{1 / 2} \exp \left\{-a x^{-1}(t-x)^{2}\right\} d t\right| \rightarrow 0 \quad(x \rightarrow \infty) \tag{12}
\end{equation*}
$$

Denoting the summand in (12) by $d_{n}(x)$, we find from the condition (iii) on $c_{n}(x)$ with $\sigma=0$ that, as $x \rightarrow \infty$

$$
\begin{aligned}
\sum_{|n-a|>\infty^{\delta}} d_{n}(x) & \leqslant o(1)+\left(\int_{0}^{s-a^{\delta}}+\int_{x+x^{\delta}}^{\infty}\right)(a \mid \pi x)^{1 / 2} \exp \left\{-a x^{-1}(t-x)^{2}\right\} d t \\
& =o(1)+\left(\int_{-x^{\frac{1}{2}}}^{-x^{\delta-\frac{1}{2}}}+\int_{\phi^{\delta-\frac{1}{2}}}^{\infty}\right)(a / \pi)^{1 / 2} \exp \left(-a u^{2}\right) d u=o(1) ;
\end{aligned}
$$

on the other hand, using Lemma 2 (b) with $\sigma=0$,

$$
\sum_{|n-x| \leqslant x^{\delta}} d_{n}(x) \leqslant \sum_{|n-x| \leqslant x^{\delta}} \epsilon \int_{n}^{n+1}(a \mid \pi x)^{1 / 2} \exp \left\{-a x^{-1}(t-x)^{2}\right\} d t<\epsilon,
$$

for $x>x_{0}(\epsilon)$. This proves (12).
Lemma 6. If s_{n} is a real sequence satisfying

$$
\begin{align*}
& \lim _{\epsilon \rightarrow 0+} \lim _{m \rightarrow \infty} \inf _{m \leqslant n \leqslant m+\epsilon \sqrt{m}}\left(s_{n}-s_{m}\right) \geqslant 0, \tag{13}\\
& (a / \pi x)^{1 / 2} \int_{0}^{\infty} \exp \left\{-a x^{-1}(t-x)^{2}\right\} s(t) d t \rightarrow s(x \rightarrow \infty),
\end{align*}
$$

where $s(t)=s_{n}$ for $n \leqslant t<n+1$ and if $s_{n}=O(1)(n \rightarrow \infty)$, then $s_{n} \rightarrow s(n \rightarrow \infty)$.
Taking $s=0$ this lemma is proved exactly like its case $a=\frac{1}{2}$ ([3], pp. 313-314).
Lemma 7. If $s_{n} \rightarrow s\left(B_{\alpha, \gamma}\right)$ then, for $r \geqslant 0$,

$$
\begin{align*}
& a^{r+1} \Gamma(r+1) \exp (-a x) \sum_{n=N}^{\infty} \frac{(a x)^{n a+\gamma-1}}{\Gamma\left(n_{\alpha}+\gamma+r\right)} S_{n}^{r} \rightarrow s(x \rightarrow \infty), \tag{14}\\
& t_{r}(n) \equiv \alpha^{r} \frac{\Gamma(r+1) \Gamma\left(n_{\alpha}+\gamma\right)}{\Gamma\left(n_{\alpha}+\gamma+r\right)} S_{n}^{r} \rightarrow s\left(B_{a, \gamma}\right) . \tag{15}
\end{align*}
$$

(14) is known ([1], Lemma 4) and (15) follows readily from (14).

Lemma 8. If $s_{n} \rightarrow s\left(B_{a, \gamma}\right)$ and $s_{n}^{r}=O\left(n^{\sigma}\right)$ for some $r \geqslant 0, \sigma \geqslant \frac{1}{2}$, then $s_{n}^{r+1}=$ $O\left(n^{\sigma-1 / 2}\right)$, and, more generally, for an integer q such that $1 \leqslant q \leqslant 2 \sigma, s_{n}^{r+q}=O\left(n^{\sigma-q / 2}\right)$.

Proof. We have identically, for $m<n$,

$$
s_{n}^{r+1}-s_{m}^{r+1}=\sum_{\nu=m+1}^{n}\left(s_{\nu}^{r+1}-s_{\nu-1}^{r+1}\right)=\sum_{\nu=m+1}^{n} \frac{r+1}{v}\left(s_{\nu}^{r}-s_{\nu}^{r+1}\right),
$$

(see [3], p. 122). By hypothesis, $s_{v}^{r}=O\left(v^{\sigma}\right)$ as $v \rightarrow \infty$ and so $s_{\nu}^{r+1}=O\left(v^{\sigma}\right)$. Hence as $m \rightarrow \infty$, we have uniformly for $m \leqslant n \leqslant m+\epsilon \sqrt{ } m, 0<\epsilon<1$,

$$
\begin{equation*}
s_{n}^{n+1}-s_{m}^{r+1}=\sum_{\nu=m+1}^{n} O\left(v^{\sigma-1}\right)=\epsilon O\left(m^{\sigma-1 / 2}\right) . \tag{16}
\end{equation*}
$$

By the definition of $t_{\mathbf{r}}(n)$ in (15) and Stirling's approximation,

$$
\begin{equation*}
t_{r}(n)=s_{n}^{r}\left\{1+\frac{1}{n} w_{r}(n)\right\}, w_{r}(n)=O(1) \tag{17}
\end{equation*}
$$

so that we can write

$$
\begin{equation*}
t_{r+1}(n)-t_{r+1}(m)=s_{n}^{r+1}-s_{m}^{r+1}+\frac{1}{n} s_{n}^{r+1} w_{r+1}(n)-\frac{1}{m} s_{m}^{r+1} w_{r+1}(m) . \tag{18}
\end{equation*}
$$

Using (16) in (18), we get uniformly for $m \leqslant n \leqslant m+\epsilon \sqrt{ } m, 0<\epsilon<1$, as $m \rightarrow \infty$

$$
\begin{aligned}
& t_{r+1}(n)-t_{r+1}(m)=\epsilon O\left(m^{\sigma-1 / 2}\right)+O\left(m^{\sigma-1}\right) \\
& \lim _{\epsilon \rightarrow 0} \limsup _{m \rightarrow \infty} \max _{m \leqslant n \leqslant m+\mathcal{V}_{m}}\left|t_{r+1}(n)-t_{r+1}(m)\right| m^{-\sigma+1 / 2}=0 .
\end{aligned}
$$

This and $t_{r}(n) \rightarrow s\left(B_{a}, \gamma\right)$ which is a consequence of the hypothesis $s_{n} \rightarrow s\left(B_{a, \gamma}\right)$ by Lemma 7 , together imply $t_{r}(n)=O\left(n^{\sigma-1 / 2}\right)$ on appeal to Lemma 4 with $t_{r}(n)$, $\sigma-\frac{1}{2}$ instead of s_{n}, p respectively and with the V_{a}^{k} transform specialized to the (B_{a}, γ) transform. Finally, we have also $s_{n}^{r+1}=O\left(n^{\sigma-1 / 2}\right)$ because of (17).

The more general conclusion of the lemma follows from successive repetitions q times of the above argument.

4. Theorems

Theorem. 1. Suppose that $s_{n}=O\left(n^{\sigma}\right)(n \rightarrow \infty)$ for some $\sigma \geqslant 0$. Then $s_{n} \rightarrow s\left(V_{a}^{k}\right)$ if and only if

$$
\left(\frac{a}{\pi x}\right)^{1 / 2} \sum_{n=0}^{\infty} \exp \left[-a x^{-1}(n-x)^{2}\right] s_{n} \rightarrow s(x \rightarrow \infty) .
$$

The proof is exactly like that of Satz II of Faulhaber [2]. Combining Theorem 1 with Lemma 1 we have
Theorem 2. Suppose that $s_{n}=O\left(n^{\sigma}\right)(n \rightarrow \infty)$ for some $\sigma \geqslant 0$. Then $s_{n} \rightarrow s\left(V_{a}^{k}\right)$ J and only if $s_{n} \rightarrow s\left(B_{2 a, \gamma}\right)$.
Theorem 3. If s_{n} is a real sequence satisfying (13) and $s_{n} \rightarrow s\left(V_{a}^{k}\right)$ then $s_{n} \rightarrow s$ $(n \rightarrow \infty)$.

Proof. Since (13) is the special case $\rho=0$ of (1), it follows from Lemma 4 that $s_{n}=O(1)$ and thereafter the desired conclusion is obvious from Lemmas 5 and 6.

Theorem 4. If s_{n} is a real sequence satisfying (1) and $s_{n} \rightarrow s\left(V_{0}^{k}\right)$, then $s_{n} \rightarrow$ $s(C, 2 \rho)$.

Proof. After Theorem 3, we need prove only the case $\rho>0$. Also, $s_{n}=O\left(n^{\rho}\right)$ by lemma 4, so that we may appeal to Theorem 2 and replace hypothesis $s_{n} \rightarrow s\left(V_{a}^{k}\right)$ by $s_{n} \rightarrow s\left(B_{2 a}, \gamma\right)$.
If p is the greatest integer less than $2 p+1$ then

$$
0<\mu=2 \rho-(p-1) \leqslant 1
$$

and it follows from the more general conclusion of Lemma 8 with $r=0$ that

$$
s_{n}^{p-1}=O\left(n^{\rho-(p-1) / 2}\right)=O\left(n^{\mu / 2}\right) .
$$

Hence, exactly as elsewhere ([4], proof of Theorem 2, 439-40) we obtain, for $m \leqslant n \leqslant m+\epsilon \sqrt{ } m, 0<\epsilon<1$, uniformly as $m \rightarrow \infty$

$$
\begin{equation*}
s_{n}^{2 \rho}-s_{m}^{2 \rho}=\epsilon^{\mu} O(1)+\epsilon O\left(m^{(\mu-1) / 2}\right), s_{m}^{2 \rho}=O\left(m^{\mu / 2}\right) \tag{19}
\end{equation*}
$$

Further, the definition of $t_{r}(n)$ in (15) gives, by (17),

$$
\begin{aligned}
t_{2 \rho}(n)-t_{2 \rho}(m) & =s_{s}^{2 \rho}-s_{m}^{2 \rho}+\frac{1}{n} s_{n}^{2 \rho} w_{2 \rho}(n)-\frac{1}{m} s_{m}^{2 \rho} w_{2 \rho}(m) \\
& =\epsilon^{\mu} O(1)+\epsilon O\left(m^{(\mu-1) / 2}\right)+O\left(m^{\mu / 2-1}\right)
\end{aligned}
$$

on account of (19). Thus

$$
\lim _{\epsilon \rightarrow 0+} \lim _{m \rightarrow \infty} \sup _{m \leqslant n \leqslant m+\epsilon^{\bullet} m}\left|t_{2 \rho}(n)-t_{2 \rho}(m)\right|=0,
$$

while our assumption $s_{n} \rightarrow s\left(B_{2 a, \gamma}\right)$ implies $t_{2 \rho}(n) \rightarrow s\left(B_{2 a, \gamma}\right)$ by Lemma 7. Now appealing to Theorem 3, with s_{n} replaced by $t_{2 \rho}(n)$ and summability (V_{a}^{k}) by summability $\left(B_{2 a, \gamma}\right)$, we see that

$$
t_{2 \rho}(n) \rightarrow s \text { whence } s_{n}^{2 \rho} \rightarrow s
$$

as required, by (17).

5. Same standard cases of summability method (V_{a}^{k})

In addition to the general Borel method ($\left.B_{a}, \gamma\right)$ and Borel method which is $\left(B_{1}, 1\right)$, the following are special cases of the method $\left(V_{a}^{k}\right)$.
I. The Valiron method $\left(V_{a}\right)$ which corresponds to the transforms of s_{n} given by

$$
V_{a}(x)=\left(\frac{a}{\pi x}\right)^{1 / 2} \sum_{n=0}^{\infty} \exp \left[-a x^{-1}(n-x)^{2}\right] s_{n}, x>0,
$$

is a special case. For, $V_{a}(x)$ is $V_{a}^{k}(x)$ of $\S 2$, with $g_{k}+R_{k} \equiv 0$ in condition (ii) imposed on $c_{n}(x)$, and with condition (iii) on $c_{n}(x)$ satisfied in consequence of a result stated by Faulhaber (Hilfssatz 1 with $\rho=0$).
II. The Euler method $\left(E_{v}\right), p>0$, the Hardy-Littlewood method $\left(T_{a}\right), 0<a<1$, and the method $\left(S_{\beta}\right), 0<\beta<1$, due to Meyer-Konig and Vermes, correspond to transforms of s_{n} which may be written

$$
\sum_{n=0}^{\infty} c_{n, m} s_{n}, \quad m=1,2,3, \cdots
$$

where for $\left(E_{p}\right): c_{n, m}=2^{-p m}\binom{m}{n}\left(2^{p}-1\right)^{m-n}$,

$$
\begin{aligned}
& \text { for }\left(T_{a}\right): c_{n, m}=(1-a)^{m+1}\binom{n}{m} a^{n-m}, \\
& \text { for }\left(S_{\beta}\right): c_{n, m}=(1-\beta)^{m+1}\binom{m+n}{n} \beta^{n},
\end{aligned}
$$

with the convention that $\binom{v}{r}=0$ for $v<r$. In all these cases we may define

$$
c_{n}(x)=\left\{\begin{array}{c}
c_{n, m} \text { for } x_{m} \leqslant x<x_{m+1} \tag{20}\\
0 \text { for } 0<x<x_{1}
\end{array}\right.
$$

where $x_{m}=\lambda m$ with a suitable constant λ in each case. We can verify, using arguments of Faulhaber (proof of Hilfssatz 5) with trivial modifications, that the $c_{n}(x)$ of (20) satisfy for $x=x_{m}$ the conditions required of the $c_{n}(x)$ in the definition of $V_{a}^{k}(x)$ in $\S 2$, provided we choose

$$
\begin{array}{ll}
\text { for }\left(E_{p}\right): a=2^{p} /\left(2^{p+1}-2\right), & \lambda=2^{-p}, \\
\text { for }\left(T_{a}\right): a=(1-a) / 2 a, & \lambda=(1-a)^{-1}, \\
\text { for }\left(S_{\beta}\right): a=(1-\beta) / 2, & \lambda=\beta(1-\beta)^{-1} .
\end{array}
$$

Finally we can verify that, if the $c_{n}(x)$ of (20) satisfy the required conditions for $x=x_{m}$, where x_{m} is any increasing unbounded sequence with $x_{m+1}-x_{m}=O(1)$ then they satisfy the conditions for all $x>0$. In particular, taking $x_{m}=\lambda_{m}$ we see that the transforms E_{p}, T_{a}, S_{β} are all special cases of the V_{a}^{k} transform.

Acknowledgements

The author is indebted to the late Prof. C T Rajagopal for his help in the preparation of this paper, especially in the proofs of Lemma 8 and Theorem 4.

References

[1] Borwein D 1969 Can. J. Math. 21740
[2] Faulhaber G 1956 Math. Z. 6634
[3] Hardy G H 1949 Divergent series (Oxford: Clarendon Press)
[4] Rajagopal C T 1960 J. Indian Math. Soc. (N.S.) 24433
[5] Sitaraman Y 1967 Math. Z. 9534

