

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 475-478

Tetrahedron Letters

Cyclization of functionalized ketene-*N*,*S*-acetals to substituted pyrroles: applications in the synthesis of marine pyrrole alkaloids

Paulson Mathew and C. V. Asokan*

School of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686 650, Kerala, India

Received 22 September 2004; revised 8 November 2004; accepted 15 November 2004

This paper is dedicated to Professor H. Ila on the occation of her 60th birthday.

Abstract— α -Oxoketene-*N*,*S*-acetals, prepared by the reaction of alkyl glycinates with β -oxodithiocarboxylates followed by alkylation, underwent cyclization in the presence of the Vilsmeier reagent to afford alkyl 3-aryl-4-formyl-5-(alkylsulfanyl)-1*H*-pyrrole-2-carboxylates in excellent yields. When the reaction was extended to β -oxodithiocarboxylates derived from deoxyanisoin, 3,4-diarylpyrrole-2-carboxylates, the key intermediates in the synthesis of lukianol A and lamellarin Q were formed. © 2004 Elsevier Ltd. All rights reserved.

Recently, several pyrrole-containing bioactive natural products like, lukianol A,1 lamellarins,2 ningalins,3 policitones,⁴ halitulin⁵ etc., have been isolated and some of them are in clinical trials as antitumor agents. These marine alkaloids are a new class of DNA targeting compounds with considerable cytotoxicity and many of them function as Multi Drug Resistant (MDR) reversal agents.^{2,6} They possess in common a 3,4-diarylpyrrole-2-carboxylate skeleton or can be derived from this structural unit. The key step in the synthesis of these alkaloids is the construction of the 3,4-diarylpyrrole-2carboxylate unit which is often accomplished in a multistep sequence involving metal-catalyzed coupling reactions.⁷ Herein we report a convenient and efficient synthesis of highly functionalized pyrroles from readily available starting materials employing a simple iminium ion mediated cyclization. The utility of this protocol in the synthesis of pyrrole-containing marine natural products has been demonstrated by formal total syntheses of lukianol A and lamellarin Q.

The Vilsmeier–Haack reaction has been extensively used for the formylation of various electron-rich aromatic, aliphatic and heteroaromatic substrates.⁸ The broad synthetic utility of the halomethyleniminium salts results from initial iminoalkylations followed by cyclizations

0040-4039/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.11.076

leading to a variety of heterocyclic compounds.⁹ While there are several reports on the cyclization of intermediate iminium salts to six-membered heterocycles such a pyridines¹⁰ and quinolines,¹¹ formation of substituted pyrroles under Vilsmeier-Haack conditions is less common.¹² Ketene-*N*,*S*-acetals are highly versatile enamines widely used in the synthesis of heterocycles.¹³ Junjappa and co-workers have recently reported a synthesis of substituted quinolines by the cyclization of ketene-N,S-acetals under Vilsmeier–Haack conditions.¹⁴ Kirsch and co-workers have described cyclodehydration of functionalized ketene-N,S-acetals leading to thiophenes, pyrroles and thienopyrroles.¹⁵ We found that the reaction of suitably substituted ketene-N,S-acetals leads to substituted pyrrole-2-carboxylates in the presence of the Vilsmeier reagent. The key step is an iminium salt mediated cyclization of α -oxoketene-N,S-acetals 4 prepared from β -oxodithioesters 1 and alkyl glycinate hydrochlorides 2 followed by alkylation. β -Oxodithioesters 1, easily prepared 16 by the reaction of enolizable carbonyl compounds with dimethyl trithiocarbonate, are valuable synthetic intermediates¹⁷ and can be transformed to α -oxoketene dithioacetals, N,S-acetals and O,S-acetals.¹³

The condensation of β -oxodithioester **1a** with methyl glycinate hydrochloride in the presence triethylamine in methanol proceeded smoothly to afford the β -oxothioamide **3a** in 96% yield. Alkylation of the thioamide **3a** by ethyl iodide using potassium carbonate, as the base, in acetone afforded the *N*,*S*-acetals **4a** in 91%

Keywords: Pyrroles; Marine alkaloids; Iminium ions; Vilsmeier–Haack reagent; Lamellarins.

^{*} Corresponding author. Tel.: +91 481 271036; fax: +91 481 2731009; e-mail: asokancv@yahoo.com

Scheme 1. Reagents and conditions: (a) Et₃N, R²OH, rt, 5 h; (b) K₂CO₃, acetone, reflux, 0.5 h, cooled to 0 °C, R³I, 3 h; (c) POCl₃, DMF, rt, 6 h, 80 °C, 2 h.

yield. The other ketene-N,S-acetals **4b** and **4c** were also prepared in a similar fashion employing appropriate dithioesters **1b**–**c**, alkyl glycinates and alkylating agents via **3b–c** (Scheme 1).

We envisaged that treatment of the ketene-*N*,*S*-acetal **4** with the Vilsmeier–Haack reagent would lead to iminoalkylation followed by cyclization to afford the substi-

tuted pyrroles 6. However when the N.S-acetals 4 were treated with the Vilsmeier-Haack reagent prepared from POCl₃ and DMF,¹⁸ the product mixture after hydrolysis with saturated aqueous potassium carbonate solution gave the substituted pyrroles 5 exclusively in 82-90% yields (Scheme 1).¹⁹ The reaction was carried out at room temperature for 4 h, and then at 80 °C for 2 h. Interestingly the carbonyl group of the aroyl moiety was involved in the cyclization despite an iminoalkylation at the β -position of the ketene-*N*,*S*-acetal moiety. The formation of 5 could have resulted from the cyclization of an intermediate 7, that could have been easily derived from 4 on treatment with the chloromethyleniminium salt, followed by hydrolysis. The electron-withdrawing nature of the iminium salt moiety in 7 should facilitate the cyclization. The conversion of the enaminoketone moiety to the chlorosubstituted vinamidium intermediate 7 circumvents possible stereochemical constraints on the cyclization process.^{13c} Base

Scheme 2. Reagents and conditions: (a) Et_3N , EtOH, rt, 5 h; (b) K_2CO_3 , acetone, reflux, 0.5 h, cooled to 0 °C, CH_3I , 3 h; (c) $POCl_3$, DMF, rt, 6 h, 80 °C, 7 h.

Scheme 3. Reagents and conditions: (a) Raney Ni, EtOH, reflux, 3 h.

catalyzed alkylation of ketene-*N*,*S*-acetals has been found to proceed with spontaneous cyclodehydration to pyrroles.¹⁵ However similar cyclization was not observed during the preparation of ketene-*N*,*S*-acetal **4**.

Gupton et al. have utilized reactions of vinylogous iminium salts with α -aminocarbonyl compounds for the synthesis of substituted pyrroles.²⁰ This protocol has recently been used for the total synthesis such as ningalin B hexamethyl ether and lukianol A.²¹ We envisaged that cyclodehydration of ketene-*N*,*S*-acetals **10** derived from readily available substituted deoxybenzoins would lead to a rapid access of 3,4-diarylpyrrole-2-carboxy-lates which are the key precursors for the synthesis of marine pyrrole alkaloids. The efficient cyclization of **4** to **5** under Vilsmeier–Haack conditions prompted us to employ this reagent for the cyclization of **10** to **11** as well. We found that the cyclization does not proceed effectively in the presence of bases.

The ketene-N,S-acetals **10** were prepared from the corresponding dithiocarboxylates **8** on treatment with alkyl glycinate followed by alkylation. The ketene N,S-acetals **10a** and **10b** underwent smooth cyclization to afford the corresponding 3,4-diaryl pyrroles **11a** and **11b** in good yields under Vilsmeier–Haack conditions (Scheme 2). Reductive removal of the alkylsulfanyl group from **11b**using Raney Ni afforded the Fürstner intermediate **12** (lamellarin Q dimethyl ether) in 74% yield which has previously been transformed into lukianol A and lamellarin O dimethyl ether (Scheme 3). ²²

In summary, we have developed a straightforward and simple protocol for highly functionalized pyrrole derivatives. We have also extended the scope of the method for the efficient total synthesis lukianol A and lamellarin Q. We are currently investigating the total synthesis of several other pyrrole-containing marine natural products using this protocol and the results will be published in due course.

Acknowledgements

We thank MK University, Madurai and SIF, Bangalore for providing spectral and analytical data. P.M. thanks the UGC for assistance under the Faculty Improvement Program.

References and notes

- Yoshida, W. Y.; Lee, K. K.; Carroll, A. R.; Sceuer, P. J. *Helv. Chem. Acta* 1992, 75, 1721–1726.
- Bailly, C. Curr. Med. Chem.—Anti-Cancer Agents 2004, 4, 363–378.
- 3. Kang, H.; Fenical, W. J. Org. Chem. 1997, 62, 3254-3262.
- Rudi, A.; Goldberg, I.; Stein, Z.; Frolow, F.; Benayahu, Y.; Schleyer, M.; Kashman, Y. J. Org. Chem. 1994, 59, 999–1003.
- Kashman, Y.; Koren-Goldshlager, G.; Gravalos, M. D. G.; Schleyer, M. *Tetrahedron Lett.* **1999**, 40, 997–1000.
- Boger, D. L.; Boyce, C. W.; Labroli, M. A.; Sehon, C. A.; Jin, Q. J. Am. Chem. Soc. 1999, 121, 54–62.
- (a) Heim, A.; Terpin, A.; Steglich, W. Angew. Chem., Int. Ed. 1997, 36, 155–156; (b) Banwell, M.; Flynn, B.; Hamel, E.; Hockless, D. Chem. Commun. 1997, 207–208.
- (a) Jones, G.; Stanforth, S. P. Org. React. 2000, 56, 373– 384; (b) Marson, C. M. Tetrahedran 1992, 48, 3659–3726; (c) Jutz, C. In Advances in Organic Chemistry; Taylor, E. C., Ed.; John Wiley & Sons: New York, 1976; Vol. 9, pp 225–342.
- (a) Meth-Cohn, O. Heterocycles 1993, 35, 539–557; (b) Meth-Cohn, O. Adv. Heterocycl. Chem. 1996, 65, 1–39; (c) Meth-Cohn, O.; Taylor, D. L. J. Chem. Soc., Chem. Commun. 1995, 1463–1464; (d) Jackson, A.; Meth-Cohn, O. J. Chem. Soc., Chem. Commun. 1995, 22, 1319; (e) Cheng, Y.; Liu, Q.-X.; Meth-Cohn, O. Tetrahedron Lett. 2000, 41, 3475–3478; (f) Majo, V. J.; Perumal, P. T. J. Org. Chem. 1998, 63, 7136–7142; (g) Majo, V. J.; Perumal, P. T. Tetrahedron Lett. 1997, 38, 6889–6892; (h) Amaresh, R. R.; Perumal, P. T. Tetrahedron Lett. 1998, 39, 3837–3840; (i) Akila, S.; Selvi, S.; Balasubramaniyan, K. Tetrahedron 2001, 57, 3465–3469.
- (a) Thomas, A. D.; Asokan, C. V. *Tetrahedran Lett.* 2002, 43, 2273–2275; (b) Thomas, A. D.; Asokan, C. V. J. *Chem. Soc., Perkin Trans.* 1 2001, 2583–2587; (c) Thomas, A. D.; Josemin; Asokan, C. V. *Tetrahedron* 2004, 60, 5069–5076; (d) Katrizky, A. R.; Denisenko, A.; Arend, M. J. Org. *Chem.* 1999, 64, 6076–6079.
- (a) Amerash, R. R.; Perumal, P. T. Indian J. Chem. 1997, 36B, 541–544; (b) Meth-Cohn, O.; Narine, B.; Tarnawski, B. J. Chem. Soc., Perkin Trans. 1 1981, 1520–1530.
- Balasundaram, B.; Venugopal, M.; Perumal, P. T. Tetrahedron Lett. 1993, 34, 4249–4252.
- (a) Junjappa, H.; Ila, H.; Asokan, C. V. *Tetrahedron* **1990**, 46, 5423–5506; (b) Ila, H.; Junjappa, H.; Mohanata, P. K. In *Progress in Heterocyclic Chemistry*; Gribble, G. W., Gilchrist, T. L., Eds.; Pergamon: New York, 2001; Vol. 13, Chapter 1, pp 1–24; (c) Barun, O.; Mohanta, P. K.; Ila, H.; Junjappa, H. *Synlett* **2000**, 653–657; (d) SyamKumar, U. K.; Ila, H.; Junjappa, H. *Org. Lett.* **2001**, *3*, 4193–4296.
- Mahata, P. K.; Venkatesh, C.; SyamKumar, U. K.; Ila, H.; Junjappa, H. J. Org. Chem. 2003, 68, 3966–3975.
- 15. Sommen, G.; Comel, A.; Kirsch, G. *Tetrahedron* **2003**, *59*, 1557–1564.
- Singh, G.; Bhattacharjee, S. S.; Ila, H.; Junjappa, H. Synthesis 1982, 693–694.
- (a) Roy, A.; Nandi, S. S.; Ila, H.; Junjappa, H. Org. Lett.
 2001, 3, 229–232; (b) Tominaga, Y.; Okuda, H.; Kohra, S.; Mazume, H. J. Heterocycl. Chem. 1991, 5, 1245–1256; (c)

Curphey, T. J.; Joyner, H. H. Tetrahedron Lett. 1993, 34, 7231–7234.

- 18. General procedure for the synthesis of alkyl 3-aryl-4-formyl-5-(alkylsulfanyl)-1H-pyrrole-2-carboxylates 5: The Vilsmeier reagent was prepared by mixing ice cold, dry DMF (25 mL) and POCl₃ (2 mL, 20 mmol). The mixture was then stirred for 30 min at room temperature. The N,Sacetal 4 (3.25 g, 10 mmol) was dissolved in dry DMF (10 mL) and added over 10 min at 0-5 °C. The reaction mixture was stirred for 6 h at room temperature and heated to 80 °C for 2 h with stirring. The reaction mixture was then cooled and poured into cold, saturated aq K_2CO_3 (200 mL) and extracted with diethyl ether $(3 \times 50 \text{ mL})$. The organic layer was washed with water, dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was chromatographed over silica gel using hexane-ethyl acetate (10:1) as eluent to give alkyl 3-aryl-4-formyl-5-(alkylsulfanyl)-1H-pyrrole-2-carboxylates 5.
- Spectroscopic data for ethyl 3-(4-chlorophenyl)-4-formyl-5-(methylsulfanyl)-1H-pyrrole-2-carboxylate 5b: mp 118– 119 °C; ¹H NMR (300 MHz, CDCl₃) δ = 1.15 (t, 3H,

 $J = 7.2 \text{ Hz}, 2.62 \text{ (s, 3H)}, 4.19 \text{ (q, 2H, } J = 7.2 \text{ Hz}), 7.33 \text{ (d, } J = 8 \text{ Hz}, 2\text{ H}), 7.38 \text{ (d, } J = 8 \text{ Hz}, 2\text{ H}), 9.42 \text{ (brs, 1H)}, 9.62 \text{ (s, 1H)}; {}^{13}\text{C} \text{ NMR} (75.47 \text{ MHz}, \text{CDCl}_3) \delta = 14.38, 15.56, 61.39, 120.73, 123.01, 128.27, 130.45, 132.28, 133.70, 134.45, 138.91, 160.88, 186.33; EI-MS$ *m*/*z*(%) = 325 (M⁺ + 2, 39) 323 (M⁺, 100), 276 (38), 244 (20), 216 (42), 179 (20), 161 (5), 113 (3). Anal. Calcd for C₁₅H₁₄ClNO₃S: C, 55.64; H, 4.36; N, 4.33. Found: C, 55.60; H, 4.45; N, 4.42.

- (a) Gupton, J.; Krumpe, K.; Burnham, B.; Dwornik, K.; Petrich, S.; Du, K.; Bruce, M.; Vu, P.; Vargas, M.; Keertikar, K.; Housein, K.; Jones, C.; Sikorski, J. *Tetrahedron* 1998, 54, 5075–5088; (b) Gupton, J.; Petrich, S.; Smith, L.; Bruce, M.; Vu, P.; Du, K.; Dueno, E.; Jones, C.; Sikorski, J. *Tetrahedron* 1996, 52, 6879–6892.
- (a) Gupton, J.; Clough, S.; Miller, R.; Lukens, J.; Henry, C.; Kanters, R. P.; Sikorski, J. A. *Teterahedron* **2003**, *59*, 207–215; (b) Gupton, J.; Krumpe, K.; Burnham, B.; Webb, T.; Shuford, J.; Sikorski, J. *Tetrahedron* **1999**, *55*, 14515–14522.
- 22. Fürstner, A.; Weintritt, H.; Hupperts, A. J. Org. Chem. 1995, 60, 6637–6641.