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Abstract Importance and joint importance measures in reliability engineering
are used to identify the weak areas of a system and signify the roles of
components in either causing or contributing to proper functioning of the
system. Existing joint reliability importance measure of a multistate system
with n components provides the joint reliability importance of k (k ≤ n)

components. This paper introduces, for two multistate components, joint
performance achievement worth, joint performance reduction worth, joint
performance Fussell–Vesely measure and joint performance Birnubaum im-
portance measure, using reliability, availability and risk as output performance
measures (OPMs) of the multistate system. With reference to a predefined
threshold of component performance, the component’s reachable states are
restricted to those corresponding to performances either larger or not larger
than the threshold level. A steady state performance level distribution with
restriction to the component’s states is used to obtain the introduced measures.
Use of universal generating function (UGF) for the evaluation of proposed
joint importance measures is given. An illustrative example is provided.
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1 Introduction

Importance measures (IMs) quantify the criticality of a particular component
within a system design. They have been widely used as tools for identifying
system weakness, and to prioritize reliability improvement activities. Measures
of importance are quantitative criteria for ordering different components in
the coherent system whose improvement may result in the greatest improve-
ment for the system based on their critical roles in the functioning or the
failure of the system and to provide a checklist for failure diagnosis. They can
also provide valuable information for the safety and efficient operation of the
system. From the design point of view, it is crucial to identify the weakness
of the system and how failure of each individual component affects proper
functioning of the system; so that efforts can be spent properly to improve the
system reliability [3]. However, the extend to which a group of component and
its states affect the system is a major concern to the system designer and system
controller. To solve this problem, methods dependent on the information ob-
tained from joint importance measures can be developed for efficient resource
allocation. The knowledge about the joint importance measures can be used as
a guide to provide redundancy so that system reliability is increased. It is more
informative to the system designers about the interaction effect of two or more
components in improving system performance. Information about this type of
interaction importance of components constituting a system, with respect to
its safety, reliability, availability and risk, is of great practical aid to system
designers and managers. Measures of joint importance provide the information
on the type and degree of interactions between two or more components by
identifying the sign and size of it. A little work has been reported in literature
on joint importance measures and the existing measures are extensions of
Birnbaum importance measures.

In the binary classical reliability theory Birnbaum [6] and Barlow and
Proschan [4] proposed some concepts of importance. Although the concept
of component importance is very useful one, a few has been systematically
generalized it to the multistate case, see Barlow and Wu [5], El-Neweihi et al.
[13], Griffith [15], El-Neweihi and Proschan [12] and Bueno [7]. Abouammoh
and Al-Khadi [1] reviewed the measures on importance for multistate coherent
systems (MCSs). Levitin and Lisnianski [23] proposed importance and sensitiv-
ity measures for multistate systems (MSSs) with binary capacited components.
These measures account both for MSS performance which is caused by the
capacited components and stochastic system demand. Their evaluation method
is performed via the universal generating function (UGF) method. These
approaches have proven to be valuable to the development of multistate IMs.
Wu and Chan [32] proposed IMs for MSSs with respect to performance utility
and related their measure to Griffith’s IM. Ramirez-Marquez and Coit [26]
proposed new importance measures for MSSs from two perspectives: (1) how
a specific component affects MSS reliability and (2) how a particular state
or set of states affects MSS reliability. IMs are widely used in risk informed
applications of the nuclear industry to characterize the importance of basic
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events, i.e., element failures, human errors, common cause failures, etc, with
respect to the risk associated to the system. Vasseur and Llory [30] mentioned
reliability achievement worth (RAW), reliability reduction worth (RRW),
Fussell–Vesely (FV) measure and Birnubaum measure as the most valuable
IMs for binary systems in risk informed applications. Further extensions of
these measures to the multistate case can be seen in Ramirez-Marquez and
Coit [26] and Zio and Podofillini [33]. Levitin et al. [24] proposed similar
measures using performance measures such as availability and risk. Also Zio
and Podofillini [33] introduced identical measures in terms of system risk-
unavailability or unreliability. The use of IMs to analyze probabilistic risk
assessment results is discussed in detail by Cheok et al. [11] and Van der Borst
and Shoonakker [29].

However, the joint importance measure provides additional information,
which the traditional marginal importance cannot provide, to the system de-
signers, see Hong et al. [17]. Joint importance measures for binary system can
be seen in Armstrong [2] and Hong and Lie [16]. Hong et al. [17] investigated
joint reliability importance (JRI) of two gate events along with its properties
in a fault tree. Wu [31] extended the component IMs to joint importance
measures for two multistate components in a MSS with respect to system
structure and expected performance. A limitation of the IMs currently used
in reliability and risk analysis is that they rank only individual components
or basic events whereas they are not directly applicable to combinations or
groups of components or basic events. To partially overcome this limitation,
recently, the differential importance measure (DIM), has been introduced
for use in risk-informed decision making. The DIM is a first-order sensitivity
measure that ranks the parameters of the risk model according to the fraction
of total change in the risk that is due to a small change in the parameters’
values, taken one at a time. However, it does not account for the effects of
interactions among components. Zio and Podofillini [34] proposed a second-
order extension of the DIM, named DIMII, for accounting of the interactions
of pairs of components when evaluating the change in system performance due
to changes of the reliability parameters of the components.

We recall the existing importance and joint importance measures followed
by introducing new joint importance measures-joint structural and reliability
importance measures-for two or more components. We also propose joint
importance measures as an extension to RAW, RRW, FV and Birnubaum
measure of components and generalize it to other performance measures such
as availability, and risk-unavailability or unreliability. We find the distribution
of the performance of the system, under constraints on the performance of
its elements. Once the system performance is determined, one can focus
on specific system performance measures. With reference to the predefined
threshold of element performance, the element’s reachable states are limited
to those corresponding to performance either larger or not larger than the
threshold level.

The remaining sections of this paper is arranged as follows. Joint reliability
importance measure for more than two components of a MSS is recalled in
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Section 2. Joint reliability achievement worth for two components in a MSS is
proposed in Section 3. Joint reliability reduction worth for two components in
a MSS is proposed in Section 4. In Section 5, the joint Fussell–Vesely measure
w.r.t. reliability for two components in a MSS is proposed. The joint reliability
Birnubaum measure for more than two components is proposed in Section 6.
The joint risk importance measures based on unreliability or unavailability
are proposed in Section 7. The evaluation of the proposed joint importance
measures using UGF is given in Section 8. An illustrative example is provided
in Section 9. Conclusion is given in last section.

2 Joint reliability importance measure

Joint reliability importance (JRI) of two or more components is a quantitative
measure of the interactions of two or more components or states of two or
more components. The value of JRI represents the degree of interactions
between two or more components with respect to system reliability. JRI
indicates how components interact in system reliability, see Armstrong [2].
Consider the vector of component states X = (X1, X2, ..., Xn), where Xi is the
random variable representing the state of the ith component. Let φ(.) be the
structure function of the system.

In the binary setup, the marginal reliability importance of a component is

I(i) = ∂ R
∂ Ri

and the JRI of two components i and j is

J RI(i, j) = ∂2 R
∂ Ri.∂ R j

(2.1)

where R = E(φ(X)) and Ri and R j are reliabilities of the components i and j
respectively. That is, joint reliability importance of two binary components is

J RI(i, j) = R
(
1i, 1 j, p

) − R
(
1i, 0 j, p

) − R
(
0i, 1 j, p

) + R
(
0i, 0 j, p

)
(2.2)

where R(.i, . j, p) = E(φ(X1, ..., .i, ..., . j, ..., Xn)). In order to generalize this
equation for more than two components, i.e., to measure the improvement
of reliability importance of the system with respect to the interactive effect
of more than two components, at first we shall calculate change in the JRI of
two components with respect to the change of reliability of third component.
If there is any change in the JRI due to change in state of third component we
can say that there is an interactive effect of three components for the system
reliability improvement. That is, in the binary setup, the change in the JRI is
found to be as follows

J RI(i, j, k) = J RI(i, j|k = 1, p) − J RI(i, j|k = 0, p) (2.3)

where J RI(i, j|k = q, p) = R(1i, 1 j, qk, p) − R(1i, 0 j, qk, p) − R(0i, 1 j, qk, p) +
R(0i, 0 j, qk, p), q = 0 or 1, i.e., change in JRI of two components when third
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component is improved from its failure state to its functioning state. The value
of the J RI(i, j, k) indicates how the JRI of two components changes with the
change of the state of third component.

In order to find JRI in MSS, we consider Xi’s and system states φ take values
in the set {0, 1, 2, ..., M}. Let

P
[
φ(X) ≥ j

] = P
[
φ (0i, Xi) ≥ j

]

+
M∑

m=1

(
P

[
φ (mi, Xi) ≥ j

] − P
[
φ

(
m̂i, Xi

) ≥ j
])

× P [Xi ≥ m] , and

Es =
M∑

j=1

P[φ(X) ≥ j], and Rim = P [Xi ≥ m] .

We shall prove the following lemma. It shows how JRI of three components
express in terms of JRI of two components proposed by Wu [31]. The following
results are proved in Chacko and Manoharan [8].

Lemma 2.1 Let φ be a structure function of MSS with n components. Then,

∂3 Es

∂ Rim∂ Rlk∂ Rrn
= ∂2 Es

∂ Rim∂ Rlk

∣
∣∣
∣
nr

− ∂2 Es

∂ Rim∂ Rlk

∣
∣∣
∣
n̂r

. (2.4)

Let JRIM represent the joint reliability importance for the MSS. Now we
define the JRIM for three components. This definition provides a measure for
finding JRI of three components in a MSS.

Definition 2.1 The joint reliability importance of three components with re-
spect to state m of component i, state k of component l and state n of
component r of a multistate system is

J RIM(i, l, r; m, k, n) = ∂3 Es

∂ Rim∂ Rlk∂ Rrn
. (2.5)

Taking summation over m, k, and n we get the joint reliability importance of
three components.

We have expressed the JRI of three components in a MSS using existing
JRI measures of Wu [31]. Now we consider a general theorem on interaction
importance of k of components of a system having n(≥ k) components.

Theorem 2.1 Suppose that

J RIM(a1, ..., ak; b 1, ..., b k) = ∂k Es

∂ Ra1 b 1....∂ Rak b k
, k = 2, 3, ..., n (2.6)
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represents the interaction importance of k components. Then the joint reliability
importance of k of components can be derived as, for k = 2, ..., n,

∂k Es

∂ Ra1 b 1....∂ Rak b k
= ∂k−1 Es

∂ Ra1 b 1...∂ Rak−1 b k−1

∣
∣∣
∣
b kak

− ∂k−1 Es

∂ Ra1 b 1...∂ Rak−1 b k−1

∣
∣∣
∣
b̂ kak

.

Chacko and Manoharan [8] defined the JRI of k components in a MSS.

Definition 2.2 The joint reliability importance of k components with respect
to state b 1 of the component a1, state b 2 of the component a2, ..., state b k of
the component ak of the multistate system is

J RIM (a1, ..., ak; b 1, ..., b k) = ∂k Es

∂ Ra1 b 1...∂ Rak b k
, k = 2, 3, ..., n. (2.7)

As a result we get the joint importance of 2, 3, ..., components in the system.
We can reach some important conclusions regarding the joint importance such
as whether the joint importance is different for different group of components.
The size of the joint importance gives information about the degree of interac-
tion. Following the above method we get the module importance.

The joint importance measures of two components for MSS with the
OPMs, reliability and availability, with reference to the existing measures of
importance, RAW, RRW, FV, and Birnbaum for individual components are
introduced in the following sections. For the sake of better narration, we
consider reliability as the output performance measure and introduce joint
importance measures. This results are also true for the OPM availability. So
we can generalize the results to both reliability and availability. In following
sections, for time dependent binary and MSS, we propose JRAW, JRRW,
JRFV for two components and JRBI measures for any number of components.

3 Joint reliability achievement worth

The RAW measure quantifies the maximum percentage increase in system
reliability generated by a particular component. From a binary perspective it
is defined as

RAWi = P[φ(X(t)) = 1|Xi(t) = 1]
P[φ(X(t)) = 1] .

For a constant demand wk corresponding to state k, multistate RAW of
component i with respect to performance threshold α and corresponding
performance state kiα is,

MRAWi = P[φ(X(t)) ≥ k|Xi(t) ≥ kiα]
P[φ(X(t) ≥ k] .
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We propose the joint importance measure, JRAW, of two components i and
j of binary state system,

J RAWij = P11 − P10 − P01

P1. + P.1

where

P11 = P[φ(X(t)) = 1|Xi(t) = 1, X j(t) = 1],
P10 = P[φ(X(t)) = 1|Xi(t) = 1, X j(t) = 0],
P01 = P[φ(X(t)) = 1|Xi(t) = 0, X j(t) = 1], P1. = P[φ(X(t)) = 1|Xi(t) = 1]

and P.1 = P[φ(X(t)) = 1|X j(t) = 1], for measuring the joint reliability
achievement worth due to interaction. The J RAWij measure quantifies the
maximum percentage increase in system reliability generated by the interac-
tion of two components i and j. Note that J RAWij = J RAW ji.

The multistate extension of above measures for constant demand wk corre-
sponding to state k can be defined with respect to performance level α and β

for two components i and j, as,

MJ RAWij = P≥α,≥β − P≥α,<β − P<α,≥β

P≥α,. + P.,≥β
.

where

P≥α,≥β = P
[
φ(X(t)) ≥ k|Xi(t) ≥ kiα, X j(t) ≥ k jβ

]

P≥α,<β = P
[
φ(X(t)) ≥ k|Xi(t) ≥ kiα, X j(t) < k jβ

]

P<α,≥β = P
[
φ(X(t)) ≥ k|Xi(t) < kiα, X j(t) ≥ k jβ

]

P≥α,. = P
[
φ(X(t)) ≥ k|Xi(t) ≥ kiα

]
and

P.,≥β = P
[
φ(X(t)) ≥ k|X j(t) ≥ k jβ

]
,

for measuring the joint reliability achievement worth due to interaction.
Now we define the joint reliability reduction worth for measuring joint effect

of two components in reducing reliability.

4 Joint reliability reduction worth

The RRW is an index measuring the potential damage caused to the system by
a particular component. The binary expression of the RRW of component i is

RRWi = P[φ(X(t)) = 1]
P[φ(X(t)) = 1|Xi(t) = 0] .
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Then the extension of RRW to the multistate case for constant demand
wk corresponding to state k can be defined, for the performance level α of
component i and corresponding performance state kiα , as

MRRWi = P[φ(X(t)) ≥ k]
P

[
φ(X(t)) ≥ k|Xi(t) < kiα

] .

We propose the joint importance measure, JRRW, of two components i and
j of binary state system,

J RRWij = P [φ(X(t)) = 1|Xi(t) = 0] + P
[
φ(X(t)) = 1|X j(t) = 0

]

P
[
φ(X(t)) = 1|Xi(t) = 0, X j(t) = 0

]

for measuring the joint reliability reduction worth with respect to interaction
of the components at below specified levels. The J RRWij measure quantifies
the potential damage caused to the system by interaction of two components i
and j at below specified levels. Note that J RRWij = J RRW ji.

The multistate extension of JRRW for constant demand wk corresponding
to state k, can be defined for performance levels α and β of components i and
j, as

MJ RRWij = P
[
φ(X(t)) ≥ k|Xi(t) < kiα

] + P
[
φ(X(t)) ≥ k|X j(t) < n jβ

]

P
[
φ(X(t)) ≥ k|Xi(t) < kiα, X j(t) < n jβ

] .

(4.1)

We next define the joint Fussell–Vesely measure for finding the maximum
decrement in system reliability caused by joint effect of two components at
below specified levels.

5 Joint reliability Fussel–Vesely measures

The FV importance measure quantifies the maximum decrement in system
reliability caused by a particular component. The binary expression is

FVi = P[φ(X(t)) = 1] − P [φ(X(t)) = 1|Xi(t) = 0]

P[φ(X(t)) = 1] .

It has extended to multistate case for constant demand wk corresponding to

state k as

MFVi = P
[
φ(X(t)) ≥ k

] − P
[
φ(X(t)) ≥ k|Xi(t) < xikiα

]

P
[
φ(X(t)) ≥ k

] .

We propose the following joint importance measure, JRFV, of two compo-
nents i and j of the binary state system,

J RFVij

= P[φ(X(t)) = 1|Xi(t) = 0] + P[φ(X(t)) = 1|X j(t) = 0] − P[φ(X(t)) = 1|Xi(t) = 0, X j(t) = 0]
P[φ(X(t)) = 1|Xi(t) = 0] + P[φ((X(t)) = 1|X j(t) = 0]
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for measuring the joint reliability Fussell–Vesely importance with respect
to interaction. The J RFVij measure quantifies the maximum decrement in
system reliability caused by joint effect of two components i and j at below
specified levels. Note that J RFVij = J RFV ji.

The multistate extension of JRFV for constant demand wk corresponding
to state k can be defined, with respect to the performance levels α and β of
components i and j, as

MJFVij = P<α,. + P.,<β − P<α,<β

P<α,. + P.,<β
,

where P<α,. = P[φ(X(t)) ≥ k|Xi(t) < kiα], P.,<β = P[φ(X(t)) ≥ k|X j(t) < n jβ],
and P<α,<β = P

[
φ(X(t)) ≥ k|Xi(t) < kiα, X j(t) < n jβ

]
.

Now we define the joint Birnbaum importance measure of any number of
components with respect to reliability. The component Birnbaum importance
measure is the most widely used importance measure by many reliability
researchers, engineers and practitioners.

6 Joint reliability Birnbaum importance measures

The Birnbaum measure represents the maximum loss in the system reliability
when element i switches from the condition of perfect functioning to the
condition of certain failure. Let the state Xi of the ith binary component is ran-
dom with probability P[Xi = 1] = Ri = EXi, i = 1, 2, ..., n. The reliability of
the binary system with structure function φ(X), X = (X1, ..., Xn), ∀i, Xi, φ ∈
{0, 1} is

P[φ(X) = 1] = h(p) = Eφ(X), p = (R1, ..., Rn) .

Birnbaum [6] proposed the following IM for the binary state system.

I(i) = ∂h
∂ Ri

= h
(
1i, p

) − h
(
0i, p

) = E [φ(1i, X) − φ(0i, X)] , i = 1, 2, ..., n.

Clearly I(i) describes the rate of improvement of system performance with
respect to the improvement in performance of component i.

As an extension of Birnbaum measure to the multistate case, Griffith [15]
defined the reliability importance of level l of the ith component of the MSS
with structure function φ as

Il(i) = E
[
φ(li, X) − φ((l − 1)i, X)

]

where (li, X) = (X1, ..., Xi−1, li, Xi+1, ..., Xn), and Xi ∈ {0, 1, ..., M}, i = 1,

2, ..., n.
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Multistate joint reliability Birnbaum importance measure, MJRBI, of two
components i and j with respect to performance levels α and β for the MSS
can be defined as

MJ RBIij = P
[
φ(X(t)) ≥ k|Xi(t) ≥ kiα, X j(t) ≥ n jβ

]

− P
[
φ(X(t)) ≥ k|Xi(t) ≥ kiα, X j(t) < n jβ

]

− P
[
φ(X(t)) ≥ k|Xi(t) < kiα, X j(t) ≥ n jβ

]

+ P
[
φ(X(t)) ≥ k|Xi(t) < kiα, X j(t) < n jβ

]
. (6.1)

It measures the improvement of system reliability due to the interaction effect
of two components.

Proceeding like this we can introduce joint reliability Birnbaum importance
measures for three components, four components etc. MJ RBI of three com-
ponents i, j and l with respect to performance levels α, β and γ for the MSS
can be defined as

MJ RBIijl = MJ RBIij
(
Xl(t) ≥ mlγ

) − MJ RBIij
(
Xl(t) < mlγ

)
(6.2)

where MJ RBIij(Xl(t) ≥ mlγ ) is MJ RBIij when component l is above some
predefined threshold γ with corresponding state mlγ . Similar interpretation
holds for MJ RBIij(Xl(t) < mlγ ).

Now we redefine the above joint importance measures with general ex-
pression of OPM (reliability or availability)-for the MSS. Let component i be
constrained to performance below α, while the rest of components of the MSS
are not constrained: we denote by OM≤α

i the system OPM obtained in this
situation. Similarly, we denote by OM>α

i the system OPM resulting from the
dual situation in which component i is constrained to performances above α.
Also let OM≤α,≤β

i, j , OM>α,≤β

i, j , OM≤α,>β

i, j and OM>α,>β

i, j be the OPMs when both
components i and j are restricted in their performance based on performance
thresholds α and β respectively. We introduce the following measures for
two components in a MSS with respect to performance measure-reliability or
availability.

1. Joint Performance Achievement Worth

MJ PAWij = OM>α,>β

i, j − OM>α,≤β

i, j − OM≤α,>β

i, j

OM>α
i + OM>β

j

(6.3)

2. Joint Performance Reduction Worth

MJ PRWij = OM>α
i + OM>β

j

OM≤α,≤β

i, j

(6.4)

3. Joint Performance Fussell–Vesely Measure

MJ PFVij = OM>α
i + OM>β

j − OM≤α,≤β

i, j

OM>α
i + OM>β

j

(6.5)
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4. Joint Performance Birnbaum Importance

MJ PBIij = OMα,>β

i, j − OMα,≤β

i, j (6.6)

where OMα,>β

i, j represents the Birnbaum importance of the component i
when component j is restricted to the performance above level β. Similarly
OMα,≤β

i, j represents the Birnbaum importance of the component i when
component j is restricted to below level β. Similarly we can find third
order multistate joint performance Birnbaum importance measures by
taking differences of MJ PBI of two components after restricting the
performance of third component below and above some pre-specified
performance levels.

Thus we defined four main joint importance measures with respect to
reliability and availability. But we can define the joint importance measures of
above type with respect to risk also. We define joint risk importance measures
in the following section.

7 Joint risk importance measures

To compare the joint effect of pair of components with the standardly used
risk, one can transform the performance measures into risk measures (un-
reliability or unavailability). In order to introduce the joint risk importance
measures, we define the following indexes in terms of system risk.

F+
i (t), value of risk metric F when component i has been in state below a

specified level throughout the time interval [0, t].
F−

i (t), value of risk metric F when component i has been in its functioning
state (above a specified level ) throughout the time interval [0, t].

The definition of the four of the risk importance measures for a system is
recalled here with reference to the ith component, see Zio and Podofillini [33]
for details.

1. Birnbaum Risk Importance Measure: rBi(t) = F+
i (t) − F−

i (t), it measures
the maximum deviation of risk when ith component shifts from its condi-
tion of perfect functioning to condition of certain failure.

2. Risk Achievement Worth (rAW): r AWi = F+
i (t)

F(t) , it is the ratio of risk when
component i is considered always failed in [0, t] to the actual value of risk.

3. Risk Reduction Worth (rRW): rRWi = F(t)
F−

i (t)
, it is the ratio of the nominal

value of risk to the risk when component i is always available. It mea-
sures the potential of component in reducing the risk, by considering the
maximum decrease in risk achievable when optimizing the components to
perfection.

4. Risk Fussell–Vesely Measure (rFV): rFVi(t) = F(t)−F−
i (t)

F(t) , it represents the
maximum fractional decrement in risk achievable when component i is
always available.
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In order to introduce joint risk measures, multistate joint Risk Birnbaum
Importance measure (MJrBI), multistate joint Risk Achievement Worth
(MJrAW), multistate joint Risk Reduction Worth (MJrRW), and multistate
joint Risk Fussell–Vesely measure (MJrFV), with reference to two compo-
nents i and j, we define the following indexes in terms of system risk.

F++
i, j (t), value of risk metric F when both components i and j have been in

state below some specified levels throughout the time interval [0, t].
F+−

i, j (t), value of risk metric F when components, i has been in state below
some specified level and j has been in state above some specified level,
throughout the time interval [0, t].

F−+
i, j (t), value of risk metric F when components, i has been in state above

some specified level and j has been in state below some specified level,
throughout the time interval [0, t].

F−−
i, j (t), value of risk metric F when both components i and j have been in

state above some specified levels throughout the time interval [0, t].
Now we define the multistate joint risk importance measures to the MSS.

1. Multistate Joint Risk Birnbaum measure:

MJrBIij = F++
i, j (t) − F+−

i, j (t) − F−+
i, j (t) + F−−

i, j (t). (7.1)

It is the maximum variation in risk due to the interaction of components i
and j.

2. Multistate Joint Risk Achievement Worth:

MJr AWij = F++
i, j (t)

F+
i (t) + F+

j (t)
. (7.2)

It is the ratio of risk when both components i and j is below some specified
levels to the risk when either of two components is below some specified
levels in [0, t].

3. Multistate Joint Risk Reduction Worth:

MJrRWi, j = F−
i (t) + F−

j (t)

F−−
i, j (t) − F+−

ij − F−+
ij (t)

. (7.3)

It is the ratio of the nominal value of risk when either of two components i
and j is available to the risk when both components are always available. It
measures the interaction effect of two components in reducing the risk, by
considering the maximum decrease in risk achievable with respect to joint
effect of two components.

4. Multistate Joint Risk Fussell–Vesely measure:

MJrFVij = F−
i (t) + F−

j (t) − F−−
ij (t)

F−
i (t) + F−

j (t)
. (7.4)

It represents the maximum fractional decrement in risk achievable when
both of two components i and j are always available to the availability of
either of two components.
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8 Evaluation of joint importance measures

In certain MSSs, the performance of different system components can have
different physical nature whose performance is measured in terms of pro-
ductivity or capacity etc. Therefore it is important to measure performance
rates of these components by their contribution into the entire MSS output
performance. Examples of such MSSs are continuous materials or energy
transmission systems, power generation systems [14]. In power generation
applications the performance measure is usually defined as productivity or
capacity (eg. production capacity of 100 MW). The main task of these systems
is to provide the desired throughput or transmission capacity for constant
energy, material or information flow. The evaluation of system reliability
and joint importance measure of such systems are complicated because of
multistate behavior and complexity of configuration of system components.
Also we cannot use usual generating function to find out the performance
and probability distribution of such systems, since for parallel components
the performance will not be usual maximum of individual performances but
sum (eg. two parallel power generator with productivity 100 MW provide
200 MW as total output). UGF is found to be a fine tool for such systems
in evaluation of reliability and importance measure, see Ushakov [27, 28] and
Lisnianski and Levitin [25]. Some application of UGF can be seen in Levitin
[18–20] and Chacko and Manoharan [8, 10]. So we will use the UGF for the
evaluation of performance measure and joint importance measure of systems
whose performance is in terms of productivity or capacity.

8.1 Universal generating function

For a MSS which has a finite number of states, there can be M + 1 different
output performance at each time t,

G(t) ∈ G = {Gk, 0 ≤ k ≤ M}

and the system output performance distribution can be defined by two finite
vectors G and P = {pk(t) = P[G(t) = Gk], 0 ≤ k ≤ M}.

The UGF, represented by a polynomial U(z) can define MSS OPD, i.e., it
represents all the possible states of the system (or component) by relating the
probabilities of each state, pk, to performance Gk of the MSS of that state in
the form:

UMSS(t, z) =
M∑

k=0

pk(t)zGk , z ∈ R. (8.1)

Now we discuss the UGF of complex MSS.
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8.2 UGF for complex MSS

Real world MSSs are often complex and consist of large number of compo-
nents composing different types of structures. This is a technique to obtain the
entire MSS output performance distribution. This technique uses composition
operators for determination of the UGF of a subsystem (component) contain-
ing a number of components. These operators determine the subsystem UGF
expressed as polynomial U(z) for a group of components using simple alge-
braic operations over individual UGFs of components. All the composition
operators for two different components takes the form

�(U1(z), U2(z)) = �

⎛

⎝
M∑

i=0

p1izg1i ,

M∑

j=0

p2 jzg2 j

⎞

⎠

=
M∑

i=0

M∑

j=0

p1i p2 jzw(g1i,g2 j) (8.2)

where U1(z) and U2(z) are individual UGF of components 1 and 2 with per-
formance distributions {g1i, p1i, i ∈ {0, 1, ..., M}} and {g2 j, p2 j, j ∈ {0, 1, ..., M}}
respectively. The function w(., .) in composition operators expresses the entire
performance rate of subsystem consisting of different components in terms
of the individual performance rates of the components. The definition of
the function w(., .) strictly depends on the type of connection between the
components in the reliability logic diagram sense. Here we define composition
operators �σ, �π for subsystems with components connected in series and in
parallel respectively. In MSS where the performance measure is defined in
terms of capacity or productivity, the total capacity of a pair of components
connected in parallel is equal to the sum of the capacities of the components.
Therefore the function w(., .) in composition operator takes the form:

w (g1, g2) = π (g1, g2) = g1 + g2.

For a pair of components connected in series, the component with the least
capacity becomes the bottleneck of the system. In this case the function w(., .)

takes the form:

w (g1, g2) = σ (g1, g2) = min (g1, g2) .

Note that the composition operators for components connected in parallel and
in series satisfies the conditions:

� (U1(z), ..., Uk(z), Uk+1(z), ..., Un(z))

= �(U1(z), ..., Uk+1(z), Uk(z), ..., Un(z))

and

�(U1(z), ..., Uk(z), Uk+1(z), ..., Un(z))

= �(�(U1(z), ..., Uk(z)), Uk+1(z), ..., Un(z))
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for arbitrary k. Consecutively applying the � operators with corresponding
functions σ or π to the components, one can obtain the UGF for an arbitrary
number of components connected in series or in parallel. Combining the two
operators one can obtain UGF representing performance distribution of an
arbitrary series-parallel system, [9].

Here we propose the component’s performance restriction approach (or
state space restriction approach) for evaluation of joint importance measures
using UGF. Let OMik be the OPM of the MSS when component i is in a
fixed state k while the rest of components evolve stochastically among their
corresponding states with steady state performance distributions {x jl, pjl}, 1 ≤
j ≤ n, 0 ≤ l ≤ Mj.

The conditional probability of the component i being in a generic state
k characterized by a performance xik not greater than a pre-specified level
threshold α (or equivalently k ≤ kiα) is

P
[
Xi = k|k ≤ kiα

] = pik
∑kiα

r=0 pir

= pik

p≤α
i

= p∗
1 ik (say).

Similarly, the conditional probability of component i being in a state k when it
is known that k > kiα is

P
[
Xi = k|k > kiα

] = pik
∑Mi

r=kiα+1 pir

= pik

p>α
i

= p∗
2 ik (say).

Consider the following joint probability distribution of two independent com-
ponents i and j given four additional restrictions, (1) k > kiα, h > h jβ , (2)
k ≤ kiα, h > h jβ, (3) k > kiα, h ≤ h jβ and (4) k ≤ kiα, h ≤ h jβ .

P
[
Xi = k, X j = h|k ≤ kiα, h ≤ h jβ

] = pik p jh
∑kiα

r=0 pir
∑h jβ

m=0 pjm

= p∗∗
1 kh (say)

P
[
Xi = k, X j = h|k ≤ kiα, h > h jβ

] = pik p jh
∑kiα

r=0 pir
∑Mj

h jβ+1 pjm

= p∗∗
2 kh (say)

P
[
Xi = k, X j = h|k > kiα, h ≤ h jβ

] = pik p jh
∑Mi

r=kiα+1 pir
∑m=h jβ

m=0 pjm

= p∗∗
3 kh (say) and

P
[
Xi = k, X j = h|k > kiα, h > h jβ

] = pik p jh
∑Mi

r=kiα+1 pir
∑Mj

m=h jβ+1 pjm

= p∗∗
4 kh (say).
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Using the above conditional probability distributions, we obtain the following
OPMs:

OM≤α
i =

kiα∑

k=0

pik

p≤α
i

.OMik, (8.3)

OM>α
i =

Mi∑

k=kiα+1

pik

p>α
i

.OMik, (8.4)

OM≤α,≤β

i, j =
kiα∑

k=0

h jβ∑

h=0

p∗∗
1 hk.OMik, jh, (8.5)

OM>α,≤β

i, j =
Mi∑

k=kiα+1

h jβ∑

h=0

p∗∗
3 hk.OMik, jh, (8.6)

OM≤α,>β

i, j =
kiα∑

k=0

Mj∑

h=h jβ+1

p∗∗
2 hk.OMik, jh and (8.7)

OM>α,>β

i, j =
Mi∑

k=kiα+1

Mj∑

h=h jβ+1

p∗∗
4 hk.OMik, jh, (8.8)

where OMik, jh be the system steady state OPM when component i is in state k
and component j is in state h. Substituting Eq. 8.3–8.8 in Eqs. 6.3–6.6 we get the
generalized importance measures using steady state probability distribution of
components.

In the same way we can express the joint risk importance measures. At
steady state, let Fik be the risk associated to the system when component i
is in state k. Similarly, let Fik, jh represents the risk associated with the system
when component i is in state k and component j is in state h. Then the joint
risk importance measures are,

MJrBIij =
kiα∑

r=0

k jβ∑

m=0

p∗∗
1 rm Fir, jm −

kiα∑

r=0

Mj∑

m=k jβ+1

p∗∗
2 rm Fir, jm

−
Mi∑

r=kiα+1

k jβ∑

m=0

p∗∗
3 rm Fir, jm +

Mi∑

r=kiα+1

Mj∑

m=k jβ+1

p∗∗
4 rm Fir, jm, (8.9)

MJr AWij =
∑kiα

r=0

∑k jβ

m=0 p∗∗
1 rm Fir, jm

∑kiα
r=0 p∗

1 ir Fir + ∑k jβ

m=0 p∗
1 jm F jm

, (8.10)

MJrRWij = F1

F2 − F3 − F4
(8.11)
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where

F1 =
Mi∑

r=kiα+1

p∗
2 ir Fir +

Mj∑

m=k jβ+1

p∗
2 jm F jm

F2 =
Mi∑

r=kiα+1

Mj∑

m=k jβ+1

p∗∗
4 rm Fir, jm

F3 =
kiα∑

r=0

Mj∑

m=k jβ+1

p∗∗
2 rm Fir, jm

F4 =
Mi∑

r=kiα+1

k jβ∑

m=0

p∗∗
3 rm Fir, jm

MJrFVij

=
∑Mi

r=kiα+1 p∗
2 ir Fir+∑Mj

m=k jβ+1 p∗
2 jm F jm − ∑Mi

r=kiα+1

∑Mj

m=k jβ+1 p∗∗
4 rm Fir, jm

∑Mi
r=kiα+1 p∗

2 ir Fir+∑Mj

m=k jβ+1 p∗
2 jm F jm

.

(8.12)

The following recursive algorithm allows to compute the system OPM, see
Lisnianski and Levitin [25].

1. Obtain the UGFs of all of the system components.
2. If the system contains a pair of components connected in parallel or in

series, replace this pair with an equivalent macro-component with UGF.
3. If the system contains more than one component, return to step 2.
4. Determine the UGF of the entire series-parallel system as the UGF of

the single equivalent macro-component. The system probability and per-
formance distributions are represented by the coefficients and exponents
of this UGF, corresponding to the state probabilities and performance,
respectively.

5. Compute the system OPM by applying the with the given vectors of
probability distribution and output performances.

In order to obtain the state-space restricted OPMs OM≤α
i , OM>α

i ,
OM≤α,≤β

ij , OM>α,≤β

ij , OM≤α,>β

ij , and OM>α,>β

ij , one has to modify the UGF of
components i and j as follows:

U≤α
i (z) =

kiα∑

r=0

pir

p≤α
i

zxir

for OM≤α
i ,

U>α
i (z) =

Mi∑

r=kiα+1

pir

p>α
i

zxir
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for OM>α
i ,

U≤α,≤β

i, j (z) =
kiα∑

r=0

pjr

p≤α
i

zxir ∗
k jβ∑

m=0

pjm

p≤β

j

zx jm =
kiα∑

r=0

k jβ∑

m=0

pir p jm

p≤α
i p≤β

j

zω(xir,x jm)

for OM≤α,≤β

ij ,

U>α,≤β

i, j (z) =
Mi∑

r=kiα+1

pir

p>α
i

zxir ∗
k jβ∑

m=0

pjm

p≤β

j

zx jm =
Mi∑

r=kiα+1

k jβ∑

m=0

pir p jm

p>α
i p≤β

j

zω(xir,x jm)

for OM>α,≤β

ij ,

U≤α,>β

i, j (z) =
kiα∑

r=0

pir

p≤α
i

zxir ∗
Mj∑

m=k jβ+1

pjm

p>β

j

zx jm =
kiα∑

r=0

Mj∑

m=k jβ+1

pir p jm

p≤α
i p>β

j

zω(xir,x jm)

for OM≤α,>β

ij , and

U>α,>β

i, j (z) =
Mi∑

r=kiα+1

pir

p>α
i

zxir ∗
Mj∑

m=k jβ+1

pjm

p>β

j

zx jm =
Mi∑

r=kiα+1

Mj∑

m=k jβ+1

pir p jm

p≤α
i p>β

j

zω(xir,x jm)

for OM>α,>β

ij , then apply the algorithm given above. We use the coefficients of
above UGFs for the evaluation of joint importance measures in Eqs. 6.3–6.6
using Eqs. 8.3–8.8 and, Eqs. 8.9–8.12.

Some network problems which can be modelled as MSS can be seen in
Levitin [18, 19, 21, 22]. We consider the following network example.

9 Sliding window system

Consider a multistate multiple sliding window system (MSWS) with n = 5,

number of multistate components, see Levitin [22]. It generalizes the linear
consecutive k − out − of − r − from − n : F system consists of n linearly or-
dered multistate components. Each multistate component can have several
different states: from complete failure up to perfect functioning. A perfor-
mance rate is associated with each state. A set of integer numbers is defined
such that any r = 3, or r = 4 corresponds to the number of consecutive
multistate components (length of sliding window). For each r the function,
f3(x1, x2, x3) = ∑3

i=1 xi − 5 and f4(x1, x2, x3, x4) = ∑4
i=1 xi − 6, where xi is the

performance rate of ith component, (named the acceptability function), is
defined in such a manner that fr < 0 constitutes the system failure. The MSWS
fails if at least one of the functions fr over the performance rates of any r
consecutive components is negative. Each multistate component has a total
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Table 1 Probability
distributions of components

Multistate component i pi,0 pi,1 pi,2 pi,3

1 .2 0 .8 0
2 .3 0 .7 0
3 .39 .61 0 0
4 .24 0 0 .76
5 .01 0 .99 0

Table 2 MSWS OPM-reliability with restriction to components performance, α = .8, β = .9

Multistate components OPM-reliability

i = 1 OM≥α
1 = 2.p2,2 p3,2 p4,1 p5,2 = 0.4108104

i = 2 OM≥α
2 = p1,2 p3,2 p4,1 p5,2 + p3,2 p4,2 p5,2 = 0.6937128

i = 3 OM≥α
3 = p1,2 p2,2 p4,1 p5,2 + p2,2 p4,2 p5,2 = 0.760914

i = 4 OM≥α
4 = p2,2 p3,2 p5,2 = 0.52668

i = 5 OM≥α
5 = p1,2 p2,2 p3,2 p4,1 + p2,2 p3,2 p4,2 = 0.490504

i = 1 OM<α
1 = p1,2 p2,2 p3,2 p5,2 = 0.421344

i = 1, j = 2 OM≥α,≥β

1,2 = p3,2 p4,1 p5,2 + p3,2 p4,2 p5,2 = 0.897336

i = 2, j = 3 OM≥α,≥β

2,3 = p1,2 p4,1 p5,2 + (p1,1 + p1,2)p4,2 p5,2 = 0.91278

i = 3, j = 4 OM≥α,≥β

3,4 = (p1,1 + p1,2)p2,2 p3,2 p4,2 p5,2 = 0.3212748

i = 1, j = 2 OM<α,≥β

1,2 = p2,2 p3,2 p4,2 p5,2 = 0.3212748

i = 4, j = 5 OM<α,≥β

4,5 = p1,2 p2,2 p3,2 = 0.4256

i = 3, j = 4 OM≥α,<β

3,4 = p1,2 p2,2 p5,2 = 0.5544

Table 3 MJRBI, MJRAW,
MJRRW, MJRFV

Multistate MJRBI MJRAW MJRRW MJRFV
components

i = 1, j = 2 0.5760612 0.5216 0 0
i = 2, j = 3 0.91278 0.8264 0 0
i = 3, j = 4 −0.2331252 0.2909 0 0
i = 4, j = 5 −0.1043252 0.2909 0 0

Table 4 MJrBI, MJrAW,
MJrRW, MJrFV

Multistate MJrBI MJrAW MJrRW MJrFV
components

i = 1, j = 2 −0.5760612 0 8.7224 0.8854
i = 2, j = 3 0.08722 0 6.2585 0.8401
i = 3, j = 4 0.2331252 0 1.04962 0.0473
i = 4, j = 5 0.1043252 0 1.4480 0.3094
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failure (corresponding to performance rate 0) and functioning with nominal
performance rates 2, 2, 3, 1, and 2, respectively. The UGF of the individual
multistate components are

U1(Z ) = p1,1 Z 0 + p1,2 Z 2,

U2(Z ) = p2,1 Z 0 + p2,2 Z 2,

U3(Z ) = p3,1 Z 0 + p3,2 Z 3,

U4(Z ) = p4,1 Z 0 + p4,2 Z 1 and

U5(Z ) = p5,1 Z 0 + p5,2 Z 2.

The UGF technique is used for evaluating the MSWS OPM, reliability R, with
out restriction to components. The system reliability is

R = p1,2 p2,2 p3,2 p4,1 p5,2 + (p1,1 + p1,2)p2,2 p3,2 p4,2 p5,2 (9.1)

We consider the following probability distribution of five multistate compo-
nents in Table 1. The non-zero OPM with component restriction are computed
in Table 2. The proposed joint importance measures for pairs (i, i + 1), i =
1, ..., 4 are evaluated in Tables 3 and 4.

A numerical comparison can be made for pair of components using the
size of the value of relevant measure with regard to their impact on system
reliability and unreliability. It is also clear that the greatest joint importance
is assigned to the pair (2, 3) based on MRJBI and MJRAW. Again pair
(1, 2) have greatest MJrAW and MJrFV. This pairs needs more safety and
redundancy operations.

In any statistical problem where the complexity involved, one has to get
some simple evaluation method. We gave a method for evaluation of joint
importance measures based on UGF. The method is illustrated in a network
system (signal transmission system). The UGF has wide application in opti-
mization problems.

10 Conclusion

The information about the interaction effect of two or more components
in improving system performance can be drawn from the proposed joint
importance measures in various different ways. Information about this type
of interaction importance of components constituting a system, with respect
to its safety, reliability, availability and risk, can be made useful in safety
and redundancy operations. The degree of interactions between two or more
components provide some guidelines to preference in safety operations to
some groups of components. We cannot say one measure is better than the
other, each of the measure has specific use, which will depends on the system
engineers objective and use.
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