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In this article, we consider the applications of Marshall–Olkin Fréchet distribution.
The reliability of a system when both stress and strength follows the new
distribution is discussed and related characteristics are computed for simulated
data. The model is applied to a real data set on failure times of air-conditioning
systems in jet planes and reliability is estimated. We also develop acceptance
sampling plan for the acceptance of a lot whose lifetime follows this distribution.
Four different autoregressive time series models of order 1 are developed with
minification structure as well as max-min structure having these stationary marginal
distributions. Some properties of the models are also established.

Keywords Acceptance sampling plan; Auto regressive models; Marshall–Olkin

Fréchet distribution; Max-min process; Stress-strength analysis; Time series

modeling.

Mathematics Subject Classification Primary 60E05; Secondary 62P99.

1. Introduction

The procedure of expanding a family of distributions for added flexibility or to
construct covariate models is a well-known technique in the literature. Marshall
and Olkin (1997) introduced a new method of adding a parameter into a family of
distributions. According to them if F�x� denote the survival or reliability function
of a continuous random variable X then the method of adding a new parameter
results in another survival function G�x� given by

G�x� = �F�x�

1− �̄F�x�
� x ∈ �� � > 0� �̄ = 1− �� (1.1)
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Marshall–Olkin Fréchet Distribution 77

If g�x� is the probability density function (pdf) corresponding to G�x�, then

g�x� �� = �f�x�

�1− �̄F�x��2
� x ∈ �� � > 0� (1.2)

Krishna et al. (in press) introduced Marshall–Olkin Fréchet distribution with
survival function

G�x� = ��1− e−��/x�	 �

�+ �1− ��e−��/x�	
� x� �� 	� � > 0 (1.3)

and studied various properties including estimation of parameters. As a
continuation, in this article we discuss the application of the newly developed
distribution in reliability contexts, acceptance sampling, and time series analysis.
In Sec. 2, we develop stress-strength analysis with respect to a simulated data as
well as for a real data. In Sec. 3, we develop a sampling plan for the rejection or
acceptance of a lot and the minimum sample size values are computed. In Sec. 4,
we develop four types of AR(1) models and derive some properties of these models.
Conclusions are given in Sec. 5.

2. Stress-Strength Analysis

In this section, we consider the statistical inference of the stress-strength parameter
R = P�X < Y� when X and Y are independent Marshall–Olkin Fréchet random
variables. Here, Y represents random strength and X represents the random stress.
The system fails if stress exceeds the strength. Thus, this quantity is the reliability
of the system. This measure of reliability is widely used in engineering problems. It
may be noted that R has more interest than just a reliability measure. It can be used
as a general measure of difference between two populations such as treatment group
and control group in bio-statistical contexts and clinical trials. Let X and Y be two
independent random variables following Marshall–Olkin Fréchet distributions with
parameters ��� 	� �1� and ��� 	� �2�, respectively. Then using Gupta et al. (2010), we
obtain

P�X < Y� =
∫ �

−�
P�Y > X/X = x�gX�x�dx

=
∫ �

0

�2�1− e−� �x �
	
�

�2 + �1− �2�e
−� �x �

	

�1	�
	e−� �x �

	

x	+1��1 + �1− �1�e
−� �x �

	
�2

dx

= �

��− 1�2
�− log �+ �− 1� �

where � = �2/�1. Hence, to estimate R it is enough to estimate �1 and �2 because R
is a function of �1 and �2 only.

Now we consider the pdf of the Marshall–Olkin Fréchet distribution given by:

g�x
 �� �� 	� = �	�	e−� �x �
	

x	+1��+ �1− ��e−� �x �
	
�2
� x� �� �� 	 > 0�
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78 Krishna et al.

Let �x1� � � � � xm� and �y1� � � � � yn� be two independent random samples of sizes m and
n taken from Marshall–Olkin Fréchet distributions with tilt parameters �1 and �2,
respectively, and common unknown parameters � and 	. The log likelihood function
is given by

L��1� �2� �� 	� =
m∑
i=1

log g�xi
 �1� �� 	�+
n∑

i=1

log g�yi
 �2� �� 	�

= m log �1 + n log �2 + �m+ n� log 	 + �m+ n�	 log �−
m∑
i=1

��/xi�
	

−
m∑
j=1

��/yj�
	 − �	 + 1�

m∑
i=1

log xi − �	 + 1�
n∑

j=1

log yj

− 2
m∑
i=1

log��1 + �1− �1�e
−��/xi�

	

�− 2
n∑

j=1

log��2 + �1− �2�e
−��/yj�

	

��

The maximum likelihood estimates (mle) of the unknown parameters �1, �2, are
the solutions of the nonlinear equations

�L

��1
= m

�1
− 2

m∑
i=1

1− e−� �
xi
�	

�1 + �1− �1�e
−� �

xi
�	

= 0�

�L

��2
= n

�2
− 2

n∑
j=1

1− e
−� �

yj
�	

�2 + �1− �2�e
−� �

yj
�	

= 0�

The elements of information matrix are

I11 = −E

(
�2L

��21

)

= m

�21
− 2mE

(
�1− e−� �

X �	 �2

�1− �̄1�1− e−� �
X �	 ��2

)

= m

�21
− 2m

∫ �

0

�1− e−� �x �
	
�2�1	�

�
x
�	+1e−� �x �

	
dx

��1− �̄1�1− e−� �x �
	
��4

= m

�21
− 2m�1

∫ 1

0

t2

�1− �̄t�4
dt

= m

(
1

�21
− 2

3�21

)
= m

3�21
�

Similarly,

I22 = −E

(
�2L

��22

)
= n

3�22

I12 = I21 = −E

(
�2L

��1��2

)
= 0�
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Marshall–Olkin Fréchet Distribution 79

By the property of mle for m → �� n → �, we obtain that

�
√
m��̂1 − �1��

√
n��̂2 − �2��

T d→ N2

(
0� diag�a−1

11 � a
−1
22 
)
�

where a11 = limm�n→�
1
m
I11 = 1

3�21
and a22 = limm�n→�

1
n
I22 = 1

3�22
. The 95% confidence

interval for R is given by

R̂∓ 1�96 �̂1b1��̂1� �̂2�

√
3
m

+ 3
n
�

where R̂ = R��̂1� �̂2� is the estimator of R and

b1��1� �2� =
�R

��1
= �2

��1 − �2�
3

[
2��1 − �2�+ ��1 + �2� log

�2
�1

]
�

2.1. Simulation Study

We generate N = 10� 000 sets of X-samples and Y -samples from Marshall–Olkin
Fréchet distribution with parameters �1, �, 	 and �2, �, 	, respectively. The
combinations of samples of sizes m = 20, 25, 30 and n = 20, 25, 30 are considered.
The estimates of �1 and �2 are then obtained from each sample to obtain R̂. The
validity of the estimate of R is discussed by the following measures.

1. Average bias of the simulated N estimates of R:

1
N

N∑
i=1

�R̂i − R�

2. Average mean square error of the simulated N estimates of R:

1
N

N∑
i=1

�R̂i − R�2

3. Average length of the asymptotic 95% confidence intervals of R:

1
N

N∑
i=1

2�1�96��̂1ib1i��̂�1i� �̂�2i�

√
3
m

+ 3
n

4. The coverage probability of the N simulated confidence intervals given by the
proportion of such interval that include the parameter R.

The numerical values obtained for the measures listed above are presented
in Tables 1 and 2. For �1 < �2 the average bias is positive and for �1 > �2 the
average bias is negative but in both cases the average bias decreases as the sample
size increases. Performance of confidence interval is quite good. The coverage
probability is close to 0�95 and approaches to the nominal value as the sample
size increases. The simulation study indicates that the average bias, average MSE,
average confidence interval and coverage probability do not show much variability
for various parameter combinations.
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80 Krishna et al.

Table 1
Average bias and average MSE of the simulated estimates of R for � = 3 and 	 = 2

(�1� �2)

Average bias �b̄� Average Mean Square Error (AMSE)

�m� n� (0.5,0.8) (0.8,1.2) (0.8,0.5) (1.2,0.8) (0.5,0.8) (0.8,1.2) ( 0.8,0.5) (1.2,0.8)

(20,20) 0.0833 0.0739 −0.0830 −0.0732 0.0083 0.0071 0.0084 0.0070
(20,25) 0.0830 0.0736 −0.0836 −0.0742 0.0085 0.0071 0.0085 0.0072
(20,30) 0.0820 0.0740 −0.0833 −0.0736 0.0084 0.0072 0.0084 0.0071
(25,20) 0.0851 0.0763 −0.0833 −0.0717 0.0086 0.0072 0.0079 0.0066
(25,25) 0.0844 0.0755 −0.0814 −0.0721 0.0085 0.0071 0.0079 0.0067
(25,30) 0.0846 0.0752 −0.0809 −0.0720 0.0085 0.0071 0.0079 0.0067
(30,20) 0.0862 0.0763 −0.0798 −0.0714 0.0087 0.0072 0.0076 0.0065
(30,25) 0.0859 0.0764 −0.7999 −0.0706 0.0087 0.0072 0.0076 0.0063
(30,30) 0.0852 0.0762 −0.0801 −0.0710 0.0085 0.0072 0.0077 0.0064

Let us consider now the data from Gupta et al. (2010). We consider two data
sets which represents the times (in hours) of successive failure intervals of the air
conditioning system of two jet planes. The data set for X is 23, 261, 87, 7, 120,
14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90,
1, 16, 52, 95. The data set for Y is 487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130.
First we consider the Fréchet distribution with parameters � and 	 and estimate the
unknown parameters by considering each data set separately. For the first data set
we obtain the estimates �̂ = 14�616 and 	̂ = 0�724 with the estimated log-likelihood
as −155�1144. For the second data set we obtain the estimates �̂ = 20�796 and
	̂ = 0�656 with the estimated log-likelihood as −69�2517.

Table 2
Average confidence length and coverage probability of the simulated 95 percentage

confidence intervals of R for � = 3 and 	 = 2

(�1� �2)

Average confidence length Coverage probability

�m� n� (0.5,0.8) (0.8,1.2) (0.8,0.5) (1.2,0.8) (0.5,0.8) (0.8,1.2) (0.8,0.5) (1.2,0.8)

(20,20) 0�3559 0�3557 0�3558 0�3556 0�989 0�9912 0�9894 0�9925
(20,25) 0�3376 0�334 0�3376 0�3373 0�9797 0�9848 0�9817 0�9865
(20,30) 0�3248 0�3246 0�3215 0�346 0�9755 0�979 0�9763 0�9801
(25,20) 0�3377 0�3376 0�338 0�3348 0�9816 0�9871 0�9889 0�9911
(25,25) 0�3183 0�3182 0�3185 0�3183 0�9715 0�9791 0�9799 0�9856
(25,30) 0�3049 0�3047 0�305 0�3048 0�9574 0�9718 0�9724 0�9774
(30,20) 0�3248 0�3249 0�3252 0�325 0�9789 0�9832 0�988 0�9916
(30,25) 0�305 0�3048 0�3055 0�3049 0�9625 0�9724 0�9799 0�9844
(30,30) 0�2908 0�2906 0�2909 0�2907 0�9512 0�9624 0�9665 0�9767
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Marshall–Olkin Fréchet Distribution 81

Table 3
�2 and p-values for the data set of successive failure times of

the air conditioning system of two jet planes

�2 value p-Value

Distribution Plane-1 Plane-2 Plane-1 Plane-2

Lomax 1.0232 1.0194 0.5995 0.6007
Fréchet 0.5098 0.1405 0.7750 0.9322

Now we consider the values �̂ = �14�616+ 20�796�/2 = 17�706 and 	̂ =
�0�724+ 0�656�/
2 = 0�690. We test the null hypotheses that the true values are � = 17�706 and
	 = 0�690. The log-likelihood for these values and the first data set is −155�3693,
which implies that the chi-square statistic and the p-value of the likelihood ratio
test are 0�5098 and 0�7750. For the second data set, the chi-square statistic and
the p-value of the likelihood ratio test are respectively 0�1405 and 0�9322. We can
conclude that we can accept the null hypotheses that the true values are � = 17�706
and 	 = 0�690.

Table 3 gives a comparison between the Fréchet model and the Lomax model
given in Gupta et al. (2010). It is clear that the Fréchet model is a better fit than the
other.

Now we derive the estimates of the parameters �1 and �2 by considering the
Marshall–Olkin Fréchet distribution. We obtain �̂1 = 0�9501 and �̂2 = 1�1241, which
implies that the estimate of R is R̂ = 0�5280 with standard error SE�R̂� = 0�0983.
The asymptotic 95% confidence interval of R is �0�3353� 0�7207�.

3. Reliability Test Plan

In statistical quality control acceptance sampling plan is concerned with the
inspection of a sample of products taken from a lot and decision whether to accept
or not to accept the lot based on the quality of product. Kantam et al. (2001) and
Srinivasa Rao et al. (2009) discussed the acceptance sampling plan for log-logistic
model and Marshall–Olkin extended exponential distribution. Let the quality of
the product inspected is the lifetime of the product. In this section, we discuss
the reliability test plan for accepting or rejecting a lot where the life time of the
product follows Marshall–Olkin Fréchet distribution. In a life testing experiment
the procedure is to terminate the test by a pre-determined time “t” and note the
number of failures. If the number of failures at the end of time “t” does not exceed
a given number “c”, called acceptance number then we accept the lot with a given
probability of at least p∗. But if the number of failures exceeds “c” before time “t”
then the test is terminated and the lot is rejected. For such truncated life test and
the associated decision rule we are interested in obtaining the smallest sample size
to arrive at a decision. For Marshall–Olkin Fréchet distribution with probability of
failure,

G�x� �� 	� �� = e−� �x �
	

�+ �̄e−� �x �
	
� x� �� 	� � > 0� (3.1)
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82 Krishna et al.

the average life time depends only on � if � and 	 are known. Let �0 be the required
minimum average life time. Then

G�x� �� 	� �� ≤ G�x� �� 	� �0� ⇔ � ≥ �0�

A sampling plan is specified by the following quantities:

1. the number of units n on test;
2. the acceptance number c;
3. the maximum test duration t; and
4. the minimum average lifetime represented by �0.

The consumers risk, i.e., the probability of accepting a bad lot should not exceed
the value 1− p∗, where p∗ is a lower bound for the probability that a lot of true
value � below �0 is rejected by the sampling plan. For fixed p∗ the sampling plan
is characterized by �n� c� �0/t�. By sufficiently large lots we can apply binomial
distribution to find acceptance probability. The problem is to determine the smallest
positive integer “n” for given value of c and �/t0 such that

L�p0� =
c∑

i=0

(
n
i

)
pi
0�1− p0�

n−i ≤ 1− p∗� (3.2)

where p0 = G�t� �� 	� �0�. The function L�p� is called operating characteristic
function of the sampling plan, i.e., the acceptance probability of the lot as a function
of the failure probability p��� = G�t� �� 	� ��. The average life time of the product is
increasing with � and therefore the failure probability p��� decreases implying that
the operating characteristic function is increasing in �. The minimum values of n
satisfying (3.2) are obtained for � = 2, 	 = 2 and p∗ = 0�95 and 0�99 and for the
ratio �0/t = 0�562� 0�762� 0�953� 1�212. The results are displayed in Table 4. If p0 =
G�t� �� 	� �0� is small and n is large, the binomial probability may be approximated
by Poisson probability with parameter � = np0 so that (3.2) becomes

L1�p0� =
c∑

i=0

�i

i! e
−� ≤ 1− p∗� (3.3)

The minimum values of n satisfying (3.3) are obtained for the same combination of
values of �, 	, and �0/t for various values of p

∗ are presented in Table 5.

4. Application in Time Series Modeling

Time series modeling is finding its application in diversified fields today: economics,
social sciences, demography, medical sciences, and actuarial science are just a few
of them. Warming trend in global temperature, and levels of pollution causing
mortality in a particular region are other major areas in present scenario where time
series modeling is found effective. Gaver and Lewis (1980) developed a first-order
autoregressive time series model with exponential stationary marginal distribution.
They extended it to the case of gamma and mixed exponential processes. Jayakumar
and Pillai (1993) extended it to the case of Mittag–Leffler processes. Several authors
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Marshall–Olkin Fréchet Distribution 83

Table 4
Minimum sample size for the specified ratio �0/t, confidence level p∗, acceptance

number c, � = 2 and 	 = 2 using binomial approximation

�0/t �0/t

p∗ c 1.212 0.953 0.762 0.562 p∗ c 1.212 0.953 0.762 0.562

0.95 0 22 11 5 4 0.99 0 34 17 10 6
0.95 1 35 18 11 7 0.99 1 49 24 15 9
0.95 2 47 23 14 9 0.99 2 62 31 19 11
0.95 3 58 29 18 11 0.99 3 74 37 23 14
0.95 4 68 34 21 13 0.99 4 86 43 26 16
0.95 5 79 40 25 16 0.99 5 97 49 30 19
0.95 6 89 45 28 18 0.99 6 108 54 33 21
0.95 7 99 50 31 20 0.99 7 119 60 37 23
0.95 8 108 55 34 22 0.99 8 130 65 40 25
0.95 9 118 60 37 24 0.99 9 140 70 44 28
0.95 10 128 65 40 26 0.99 10 150 76 47 30

have developed similar processes with other non Gaussian marginals like Weibull,
Laplace, Linnik, etc. Brown et al. (1984), Gibson (1986), Anderson and Arnold
(1993), Alice and Jose (2001, 2004), and Naik and Jose (2008) are some of the
researchers who worked on this topic. In this context, we are discussing various
autoregressive models of order 1 with Marshall–Olkin Fréchet distribution as
marginals, namely MIN AR(1) models I and II and MAX-MIN AR(1) models I
and II and explore some properties.

Table 5
Minimum sample size for the specified ratio �0/t, confidence level p∗, acceptance

number c, � = 2 and 	 = 2 using Poisson approximation.

�0/t �0/t

p∗ c 1.212 0.953 0.762 0.562 p∗ c 1.212 0.953 0.762 0.562

0.95 0 24 12 8 6 0.99 0 36 19 12 9
0.95 1 37 19 13 10 0.99 1 52 27 18 13
0.95 2 49 26 17 13 0.99 2 65 34 24 17
0.95 3 60 32 20 16 0.99 3 78 41 29 20
0.95 4 71 37 24 18 0.99 4 90 47 33 23
0.95 5 81 43 28 21 0.99 5 101 53 37 26
0.95 6 92 48 31 24 0.99 6 113 59 41 29
0.95 7 102 53 34 26 0.99 7 124 65 42 32
0.95 8 112 58 38 29 0.99 8 134 70 45 34
0.95 9 121 63 41 31 0.99 9 145 76 49 37
0.95 10 131 68 44 34 0.99 10 155 81 52 40
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84 Krishna et al.

4.1. MIN AR(1) Model-I with Marshall–Olkin Fréchet Marginal Distribution

Consider an AR(1) structure given by

Xn =
{
�n with probability p

min�Xn−1� �n� with probability 1− p�
(4.1)

where ��n is a sequence of independent and identically distributed random variables
independent of �Xn and p ∈ �0� 1�. Then the process is stationary Markovian with
Marshall–Olkin distribution as marginal. Thus we have the following theorem.

Theorem 4.1. In an AR�1� process with structure (4.1), �Xn is stationary Markovian
with Marshall–Olkin Fréchet distribution with parameters p, �, and 	 if and only if ��n
is distributed as Fréchet distribution with parameters � and 	.

Proof. To prove sufficiency we assume that �n follows Fréchet distribution with
parameters � and 	. From (4.1) it follows that


FXn
�x� = p
F�n

�x�+ �1− p�
FXn−1
�x�
F�n

�x�� (4.2)

Under stationarity equilibrium, this gives


FX�x� =
p
F��x�

1−�1− p�
F��x�
�

which is of the Marshall–Olkin form. Similarly to establish the necessary part, let
us assume that Xn follows Marshall–Olkin Fréchet distribution with parameters p,
�, and 	. From (4.2) under stationarity, we have


F��x� =

FX�x�

p+ �1− p�
FX�x�
�

On simplification we get 
F��x� = 1− e−� �x �
	
, which is the survival function of Fréchet

distribution with parameters � and 	. Let us first consider the joint survival function
of random variables Xn+k and Xn, k ≥ 1. We have

Sk�x� y� ≡ P�Xn+k > x�Xn > y�

= pF��x�FX�y�+ �1− p�F��x�Sk−1�x� y�

= pF��x�FX�y�
k−1∑
j=0

�1− p�jF
j

��x�+ �1− p�kF
k

��x�S0�x� y�

= pF��x�FX�y�
1− �1− p�kF

k

��x�

1− �1− p�F��x�
+ �1− p�kF

k

��x�S0�x� y��

where

S0�x� y� = P�Xn > max�x� y�� =
{
FX�x�� x ≥ y�

FX�y�� x < y�
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Marshall–Olkin Fréchet Distribution 85

Letting k → �, we get

S��x� y� =
pF��x�FX�y�

1− �1− p�F��x�
�

i.e., we can see that the joint survival function of random variables Xn+k and Xn

can be represented as a product of two survival function of random variables with
parameters p, �, and 	. Now we will show that the joint survival function of random
variables Xn+k and Xn is not a continuous function so that the probability P�Xn+k =
Xn� is positive. We have

P�Xn+k = Xn� = �1− p�P�Xn+k−1 = Xn�Xn+k−1 < �n+k�

= �1− p�2P�Xn+k−2 = Xn�Xn+k−2 < �n+k−1� Xn+k−2 < �n+k�

= �1− p�kP�Xn < min��n+1� � � � � �n+k−1� �n+k��� (4.3)

Now, since random variables �n+i, i = 1� 2� � � � � k, have the survival function F��x�,
it follows that a random variable min��n+1� � � � � �n+k−1� has the survival function
F

k

��x�. Using this, we obtain

P�Xn < min��n+i� i = 1� 2� � � � � k�� =
∫ �

0
F

k

��x�fX�x�dx

= p
∫ �

0
F

k

��x�
f��x�

�1− �1− p�F��x��
2
dx

= 1− pk

k+ 12F1�1� 1+ k
 2+ k
 1− p�� (4.4)

Finally, replacing (4.4) in (4.3), we obtain the probability P�Xn+k = Xn� is positive.
Now we will derive the probability of the event �Xn+k > Xn, k ≥ 1. We have

P�Xn+k > Xn� = pP��n+k > Xn�+ �1− p�P�min�Xn+k−1� �n+k� > Xn�

= p
k−1∑
j=0

�1− p�jP�min��n+k−j� � � � � �n+k� > Xn��

since the probability of the event �min�Xn� �n+k−j� � � � � �n+k� > Xn is 0. Using (4.4)
we obtain

P�Xn+k > Xn� = p
k−1∑
j=0

�1− p�j
(
1− p�j + 1�

j + 2 2F1�1� j + 2
 j + 3
 1− p�

)
�

For k = 1, we have

P�Xn+1 > Xn� = p
(
1− p

2 2F1�1� 2
 3
 1− p�
)
= p�1− p+ p log p�

�1− p�2
�

This probability is an increasing function on p. Also, we can see that it takes values
from �0� 1/2�. Thus we can conclude that as p increases that we can observed more
down runs of the process �Xn.
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86 Krishna et al.

4.2. MIN AR(1) Model-II with Marshall–Olkin Fréchet Marginal Distribution

Now we discuss a more general structure which allows probabilistic selection of
process values, innovations and combinations of both. Consider an AR(1) structure
given by

Xn =


Xn−1 with probability p1

�n with probability p2

min�Xn−1� �n� with probability 1− p1 − p2�

(4.5)

where p1, p2, p3 > 0, p1 + p2 < 1 and ��n is a sequence of independent and
identically distributed random variables independent of �Xn. Then the process is
stationary Markovian with Marshall–Olkin distribution as marginal.

Theorem 4.2. In an AR�1� process with structure (4.5), �Xn is stationary Markovian
with Marshall–Olkin Fréchet distribution with parameters q, �, 	 if and only if ��n is
distributed as Fréchet distribution with parameters � and 	, where q = p2

1−p1
.

Proof. Similar to the proof of Theorem 4.1.
Let us first consider the joint survival function of random variables Xn+k and

Xn, k ≥ 1. We have:

Sk�x� y� = p2F��x�FX�y�+ �p1 + �1− p1 − p2�F��x��Sk−1�x� y�

= p2F��x�FX�y�
k−1∑
j=0

�p1 + �1− p1 − p2�F��x��
j

+ �p1 + �1− p1 − p2�F��x��
kS0�x� y�

= p2F��x�FX�y�
1− �p1 + �1− p1 − p2�F��x��

k

1− p1 − �1− p1 − p2�F��x�

+ �p1 + �1− p1 − p2�F��x��
kS0�x� y��

As in the case when p1 = 0, letting k → �, we can see that the joint survival
function of random variables Xn+k and Xn can be represented as a product of two
survival function of random variables with parameters q, �, and 	. Let us consider
now the probability P�Xn+k = Xn�. To simplify the derivations, we will denote by
A

j
i1�����ir

the event �Xn+j = Xn�Xn+j < min��n+i1
� � � � � �n+ir

�. We have:

P�Xn+k = Xn� = p1P�Xn+k−1 = Xn�+ �1− p1 − p2�P�A
k−1
k �

= p2
1P�Xn+k−2 = Xn�+ p1�1− p1 − p2�P�A

k−2
k−1�

+ p1�1− p1 − p2�P�A
k−2
k �+ �1− p1 − p2�

2P�Ak−2
k−1�k�

= pk
1 + pk−1

1 �1− p1 − p2�
k∑

i1=1

P�A0
i1
�

+ pk−2
1 �1− p1 − p2�

2
∑
i1<i2

P�A0
i1�i2

�+ � � �

+ p1�1− p1 − p2�
k−1

∑
i1<···<ik−1

P�A0
i1�����ik−1

�

+ �1− p1 − p2�
kP�A0

i1�����ik
�� (4.6)

D
ow

nl
oa

de
d 

by
 [

K
. K

. J
os

e]
 a

t 2
0:

29
 2

4 
Ju

ne
 2

01
3 



Marshall–Olkin Fréchet Distribution 87

From (4.4) we have

P�A0
i1�����ir

� = 1− qr

1+ r 2F1�1� 1+ r
 2+ r
 1− q��

Replacing this in (4.6), we obtain the probability of the event �Xn+k = Xn is

P�Xn+k = Xn� =
k∑

j=0

p
j
1�1− p1 − p2�

k−j

(
k
j

)[
1− qj

1+ j 2F1�1� 1+ j
 2+ j
 1− q�

]
�

Now we will derive the probability of the event �Xn+1 > Xn. From the definition of
the process and (4.4), we have

P�Xn+1 > Xn� = p2P��n+1 > Xn� =
p2�1− q + q log q�

�1− q�2
�

�

4.3. MAX-MIN AR(1) Model-I with Marshall–Olkin Fréchet Marginal Distribution

Consider the AR(1) structure given by

Xn =


max�Xn−1� �n� with probability p1

min�Xn−1� �n� with probability p2

Xn−1 with probability 1− p1 − p2�

(4.7)

where 0 < p1� p2 < 1, p2 < p1, p1 + p2 < 1 and ��n is a sequence of i.i.d. random
variables independently distributed of Xn. Then the process is stationary Markovian
with Marshall-Olkin distribution as marginal.

Theorem 4.3. In AR�1� Max-Min process with structure (4.7), �Xn is a stationary
Markovian AR�1� Max-Min process with Marshall–Olkin Fréchet distribution with
parameters q, �, and 	 if and only if ��n follows Fréchet distribution with parameters
� and 	, where q = p1

p2
.

Proof. Similar to the proof of Theorem 4.1.
In many situations of practical interest is the probability of the event �Xn+1 >

Xn. After some calculations, we can show that

P�Xn+1 > Xn� = p1P��n+1 > Xn� =
p1�1− q + q log q�

�1− q�2
�

4.4. MAX-MINAR(1)Model-II withMarshall–Olkin FréchetMarginal Distribution

Finally, we consider more general Max-Min process which includes maximum,
minimum as well as the innovations and the process. The AR(1) structure is given by

Xn =


max�Xn−1� �n� with probability p1

min�Xn−1� �n� with probability p2

�n with probability p3

Xn−1 with probability 1− p1 − p2 − p3�

(4.8)

D
ow

nl
oa

de
d 

by
 [

K
. K

. J
os

e]
 a

t 2
0:

29
 2

4 
Ju

ne
 2

01
3 



88 Krishna et al.

where 0 < p1� p2� p3 < 1, p1 + p2 + p3 < 1 and ��n is a sequence of i.i.d. random
variables independently distributed of Xn. Then the process is stationary Markovian
with Marshall–Olkin distribution as marginal.

Theorem 4.4. AR�1� Max-Min process �Xn with structure (4.8) is a stationary
Markovian AR�1� Max-Min process with Marshall–Olkin Fréchet distribution with
parameters q, �, and 	 if and only if ��n follows Fréchet distribution with parameters
� and 	, where q = p1+p3

p2+p3
.

Proof. Similar to the proof of Theorem 4.1.

Remark. The above model can describe the response to treatment of a patient
suffering from B.P. In a normal situation, Xn is same as Xn−1. For an acute patient
always the innovation �n is important. In some cases, we have to keep the minimum
as well as maximum at particular levels.

5. Conclusion

In this article, applications of Marshall-Olkin Fréchet distribution in stress-strength
reliability analysis, acceptance sampling, and time series modeling are discussed. The
reliability with respect to two such distributions with tilt parameters �1 and �2 are
compared with respect to a real data set. The results obtained have applications
in various areas such as clinical trial experiments for comparing efficiency of one
medicine over another, efficiency of competing instruments, etc.
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