

ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal

in International Open Free Access, Peer Reviewed Research Journa

ISSN: 0970-020 X CODEN: OJCHEG 2014, Vol. 30, No. (2): Pg. 807-813

www.orientjchem.org

Effect of lodide on the Corrosion Inhibitive Behaviour on Carbon Steel by an Azomethine Compound Derived from Anthracene-9(10 H)-one

K.S. SHAJU, K. JOBY THOMAS* and VINOD P. RAPHAEL

Department of Chemistry, St. Thomas' College (University of Calicut), Thrissur, Kerala, India. *Corresponding author E-mail: drjobythomask@gmail.com

http://dx.doi.org/10.13005/ojc/300255

(Received: April 03, 2014; Accepted: May 16, 2014)

ABSTRACT

The inhibition effect of (s)-2-(anthracene-9(10H)-ylideneamino)-5-guanidinopentanoic acid (A9Y5GPA) on carbon steel (CS) in 0.5 M sulphuric acid solution has been investigated using weight loss measurements, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies. The addition of KI to A9Y5GPA enhanced the inhibition efficiency due to synergistic effect. The adsorption of A9Y5GPA and A9Y5GPA+ KI on the carbon steel surface obeys Freundlich and Langmuir adsorption isotherm respectively. The result showed that compound studied was acted as a mixed type inhibitor causing blocking of active sites on the metal. Surface morphology of the carbon steel specimens was evaluated by SEM analysis.

Key words: Carbon Steel, Adsorption, Weight loss, Isotherm, Synergism, Impedance, Polarization.

INTRODUCTION

An effective method employed by corrosion engineers to control the corrosion of metal is the use of certain organic inhibitors¹. Organic molecules possessing azomethine linkage (C=N) act as effective potential corrosion inhibitors²⁻⁶. The presence of halide ions in solutions has been found to stabilize the adsorption of some organic cations, leading to improved inhibition efficiency⁷. In continuation of our work⁸, we report in this paper the corrosion inhibition behaviour and synergism

mechanism with I⁻ of a azomethine compound (A9Y5GPA) derived from anthracene-9(10H)-one and (s)-2-amino-5-guanidinopentanoic acid in $0.5M H_2SO_4$ solution on CS at 303 K.

EXPERIMENTAL

A9Y5GPA Solutions

The azomethine compound was synthesized and characterized through their spectral data⁸. The molecular structure of the compound is shown in the figure 1. The aggressive solution of $0.5M H_2SO_4$ was prepared by the dilution of A.R grade 98% of H_2SO_4 (Merck) with de-ionized water. A9Y5GPA solutions were prepared in the range, 0.2mM-1mM concentrations. 0.2 mM KI solution was also prepared.

Weight Loss Measurements

Weight loss experiments were performed with CS specimens of dimension 1.5x 2x 0.1 cm (Composition: C,0.5%; Mn,0.07%; P,0.02%; S,0.015%; Si,0.02% and rest Fe). The specimens were first polished with different grades of emery papers, rinsed with ethanol and water, respectively. Then dried, weighed and immersed in 50 ml corrosive medium with and without different concentrations of A9Y5GPA and A9Y5GPA + 1ml KI solutions. Weight loss of metal specimens was noted after 24 h. The corrosion rate ($\frac{1}{2}$) and the percentage of inhibition efficiency (w%) were calculated by the following equations^{9, 10}.

$$=\frac{W}{st}$$
 ...(1)

$$\mathfrak{n}\% = \frac{\mathfrak{v}}{\mathfrak{n}} \times 100 \qquad \dots (2)$$

where W is the weight loss (g) of coupon, S is the total area (cm²) of specimens, t is the time of treatment (24 hrs), $\frac{1}{2}_0$ and $\frac{1}{2}$ are the corrosion rates of uninhibited and inhibited specimens respectively.

Electrochemical Investigations

The impedance measurements and polarization curves were performed in a three electrode assembly. Saturated calomel electrode (SCE) was used as the reference electrode. Platinum electrode having 1cm² area was taken as counter electrode. Metal specimens with an exposed area of 1cm² were used as the working electrode. The EIS experiments were carried out on an lvium compactstat-e electrochemical system. 100 ml of 0.5M H₂SO₄ with A9Y5GPA and A9Y5GPA + 2ml KI (no stirring) were taken as the electrolyte and the working area of the metal specimens were exposed to the electrolyte for 1 h prior to the measurement. EIS measurements were performed at constant potential (OCP) in the frequency range from 1 KHz to 100 mHz with amplitude of 10 mV as excitation signal. The percentage of inhibitions from

impedance measurements were calculated using charge transfer resistance values by the following expression¹¹:

$$_{EIS}\% = \frac{R_{ct} - R_{ct}}{R_{ct}} \times 100$$
 ...(3)

where R_{ct} and R'_{ct} are the charge transfer resistances of working electrode with and without inhibitor respectively.

Polarization plots were obtained in the electrode potential range from -100 to +100 mV Vs equilibrium potential (E_{corr}) at a scan rate of 1mV/ sec. Tafel polarization analysis were done by extrapolating anodic and cathodic curves to obtain corrosion current densities (I_{corr}). The percentage of inhibition efficiency ($\cdot_{pol\%}$) was evaluated from the measured I_{corr} values using the relation :

$$_{\text{pol}}\% = \frac{I_{\text{corr}} - I_{\text{corr}}}{I_{\text{corr}}} \times 100 \qquad \dots (4)$$

where I_{corr} and I'_{corr} are the corrosion current densities of the exposed area of the working electrode in the absence and presence of inhibitor. Surface analyses were performed using scanning electron microscope (model Hitachi SU6600).

RESULTS AND DISCUSSION

Weight Loss Measurements

The calculated values of inhibition efficiency (\cdot_{w} %) and surface coverage (,) at 30°C from the losses of weight of CS after immersing in solutions of 0.5 M H₂SO₄ containing different concentrations of the A9Y5GPA are given in table 1.

From table 1 it is clear that the inhibition efficiency increases with increasing the concentration of the compound. Various concentrations of A9Y5GPA alone show very low inhibition values. This behaviour indicates that the A9Y5GPA can act as a moderate inhibitor for CS corrosion in $0.5M H_2SO_4$ solution. However the A95GPA + KI system shows high inhibition values. The inhibitive action of the used compound is attributed to the adsorption of molecules on CS surface, forming a barrier between the metal surface and the corrosive environment.

Systems/concentrations	Corrosion Rate (mm/y)	Inhibitionefficiency (η _w %)	ω
Blank	24.01	-	-
Blank + 0.2mM KI	19.40	19.16 0.	.19
0.2 mM A9Y5GPA	20.37	15.14 0.	.15
0.4 mM A9Y5GPA	19.36	19.36 0.	.19
0.6 mM A9Y5GPA	18.13	24.48 0.	.24
0.8 mM A9Y5GPA	16.93	29.50 0.	.29
1.0 mM A9Y5GPA	15.21	36.65 0.	.36
0.2 mM A9Y5GPA + 0.2mM KI	7.70	67.94 0.	.68
0.4 mM A9Y5GPA + 0.2mM KI	6.61	72.45 0.	.72
0.6 mM A9Y5GPA + 0.2mM K	I 4.87	79.71 0.	.79
0.8 mM A9Y5GPA + 0.2mM K	I 4.16	82.65 0.	.83
1.0 mM A9Y5GPA + 0.2mM K	l 3.52	85.34 0.	.85

Table 1: Calculated values of inhibition efficiency (\cdot_w %) for CS corrosion in 0.5M H₂SO₄

Table 2: Synergism parameter (S_{θ}) for different concentrations of A9Y5GPA in combination with 0.2mM KI

Concentration	Synergism Parameter, $S_{_{\!\boldsymbol{ heta}}}$		
0.2 mM	2.24		
0.4 mM	2.48		
0.6 mM	3.18		
0.8 mM	3.49		
1.0 mM	3.71		

Table 3: Electrochemical impedance parameters of CS specimens in $0.5M H_2SO_4$ at 30°C in the absence and presence of A9Y5GPA (3a) and A9Y5GPA + 0.2 mM KI (3b)

C (mM)	R _{ct} (Ωcm²)	C _{dl} (µF cm ⁻²)	$\eta_{\text{EIS\%}}$
3a			
0	8.9	135	-
0.2	11.90	123.1	25.21
0.4	15.78	104.3	43.60
0.6	23.20	91.4	61.64
0.8	29.94	83.8	70.27
3b			
0.2+KI	30.32	114.3	70.65
0.4+KI	47.87	100.7	81.41
0.6+KI	61.01	78.7	85.41
0.8+KI	147.80	75.7	93.98
1.0+KI	274.50	73.1	96.76

Synergistic Effect

From table 1 it is also evident that \cdot_w % for KI in combination with A9Y5GPA is higher than the sum of \cdot_w % for single KI and single A9Y5GPA in all investigations, which is synergism in nature. Aramaki and Hackerman¹² calculated the synergism parameter $S_{\rm using}$ the following equation:

$$S_{\theta} = \frac{1 - \frac{\theta}{1 + 2}}{1 - \frac{\theta}{1 + 2}} \qquad \dots (5)$$

where 1+2= (1+2) - 12; θ_1 = surface coverage by anion; θ_2 = surface coverage by cation; θ'_{1+2} = measured surface coverage by both anion and cation. S approaches unity when there are no interactions between the inhibitor compounds, while S > 1 points to a synergistic effect; in the case of S <1, the antagonistic interaction prevails. The values of the synergism parameter for the various concentrations of A9Y5GPA studied from the gravimetric analysis are presented in table 2.

All values shown in this table are greater than unity. This is an indication for the enhanced inhibition efficiency obtained by the addition of iodide ions to A9Y5GPA is synergistic in nature¹³.

Adsorption Studies

The best description of the adsorption behavior of A9Y5GPA and A9Y5GPA + KI on CS specimens in 0.5M H_2SO_4 was Freundlich and Langmiur adsorption isotherms respectively. These

models are expressed as¹⁴ Freundlich adsorption isotherm

 θ =Kads ...(6)

Langmiur adsorption isotherm

$$\frac{C}{K_{ads}} = \frac{1}{K_{ads}} + C \qquad \dots (7)$$

where C is the concentration of the inhibitor, , is the fractional surface coverage and K_{ads} is the adsorption equilibrium constant. Figs. 2 and 3 represent the adsorption plots of A9Y5GPA and A9Y5GPA+ KI obtained by the weight loss measurements of CS steel specimens in 0.5M H₂SO₄ at 30°C for 24 h respectively.

The adsorption equilibrium constant $K_{_{ads}}$ is related to the standard free energy of adsorption $\Delta G^{o}_{_{ads}},$ by

$$\Delta G^{0}_{ads} = -RTln(55.5 \text{ K}_{ads}) \qquad \dots (8)$$

Where 55.5 is the molar concentration of water, R is the universal gas constant and T is the temperature in Kelvin¹⁵. In the present study, A9Y5GPA and A9Y5GPA + KI molecules showed ΔG^{0}_{ads} -24.2 KJ and -27.5 KJ respectively, suggesting that the adsorption of inhibitor involves both electrostatic and chemical interactions.

Electrochemical Investigations

Figs.4 and 5 represent the Nyquist plots of CS specimens in $0.5M H_2SO_4$ in the presence of various concentrations of A9Y5GPA and A9Y5GPA + KI respectively. It is evident from the plots that the impedance response of metal specimens has marked difference in the presence and absence of the KI with A9Y5GPA.

Impedance behaviour can be well explained by pure electric models that could verify and enable to calculate numerical values corresponding to the physical and chemical properties of electrochemical system under examination¹⁶. The simple equivalent circuit that fit to many electrochemical systems composed of a double layer capacitance (C_{dl}), solution resistance (R_{s}) and charge transfer resistance (R_{cl})^{17, 18}. The impedance parameters are tabulated in the table 3 (3a and 3b).

The capacitance values C_{dl} decreases with A9Y5GPA concentration and this decrease in C_{dl} is enhanced upon addition of l^{*} ions to the corrosive environment. These results suggest that the A9Y5GPA molecules function by adsorption at the metal/solution interface¹⁹ and this adsorption is reinforced by l^{*} ions. The $\cdot_{EIS\%}$ data reveal that the corrosion inhibition capacity of A9Y5GPA is markedly enhanced by the addition of KI.

Table 4: Potentiodynamic polarization parameters of CS specimens in 0.5M H₂SO₄ at 30°C

C(mM)	E _{corr} (mV/SCE)	I _{corr} (mA/cm²)	b _a (mV/dec)	-b _c (mV/dec)	$\boldsymbol{\eta}_{pol\%}$	
A9Y5GPA Alone						
0	-467	1.170	0.082	0.124	-	
0.2	-475	0.831	0.072	0.126	28.97	
0.4	-494	0.7102	0.071	0.102	39.30	
0.6	-541	0.6304	0.080	0.119	46.12	
0.8	-461	0.4316	0.063	0.123	63.11	
1.0	-488	0.2656	0.065	0.105	77.30	
A9Y5GPA + 2ml Kl						
0	-467	1.170	0.082	0.124	-	
0.2	-472	0.2297	0.072	0.100	80.37	
0.4	-475	0.1495	0.058	0.101	87.22	
0.6	-482	0.1261	0.099	0.100	89.22	
0.8	-475	0.0545	0.037	0.097	95.34	
1.0	-466	0.0335	0.053	0.089	97.14	

Fig. 1: Molecular Structure of A9Y5GPA

Fig. 2: Freundlich adsorption isotherm for adsorption of A9Y5GPA on CS surface

Fig. 3: Langmiur adsorption isotherm for adsorption of A9Y5GPA + KI on CS surface

Fig. 5: Nyquist plots for CS specimens in A9Y5G PA + KI solutions

Fig. 4: Nyquist plots for CS specimens in A9Y5GPA solutions

Fig. 6: Tafel plots

Potentiodynamic polarization curves for A9Y5GPA in 0.5M H_2SO_4 at 30 °C for CS specimens in the presence of various concentrations of A9Y5GPA and A9Y5GPA + KI are shown in Fig.6 and Fig.7 respectively.

Fig. 7: Tafel plots (Synergistic Effect)

Polarization parameters like corrosion current densities (I_{corr}), corrosion potential (E_{corr}), cathodic Tafel slope (b_c), anodic Tafel slope (b_a), and inhibition efficiency (($_{_{\text{pol}\%}})$ for CS specimens are listed in table 4 . The data show that, addition of the A9Y5GPA to acid media affected both the cathodic and anodic parts of the curves. Addition of I ions to A9Y5GPA - H2SO4 systems results in marked decrease in the corrosion current density (I_{corr}). The maximum shift of E_{corr} is 74mV, suggesting that A9Y5GPA acts as a mixed type inhibitor for CS specimens in 0.5M H₂SO₄. From the values it is clear that the inhibition efficiency of A9Y5GPA alone is increased in presence of KI. These results also confirm the existence of strong synergism between A9Y5GPA and KI in the corrosion inhibition of CS in these solutions.

SEM Studies

The surface morphology of carbon steel surface was evaluated by scanning electron microscopy (SEM). Figures 8 (A, B, C and D) show

Fig.8 Scanning Electron Micrographs of carbon steel samples: A) Polished fresh specimens B) Immersed in 0.5M H₂SO₄ solution C) Immersed in 0.5M H₂SO₄ solution with 1mM A9Y5GPA C) Immersed in 0.5M H₂SO₄ solution with 1mM A9Y5GPA+ 1ml KI

the scanning electron micrographs of the bare carbon steel surface, CS specimens in H_2SO_4 , with A9Y5GPA and with A9Y5GPA+ KI in H_2SO_4 medium for 24 h respectively. The morphology revealed that in the absence of A9Y5GPA, the surface is highly corroded. However in the presence of A9Y5GPA the rate of corrosion is suppressed and the SEM image D shows that inhibition action enhanced by forming a protective layer on the surface that prevents the attack of acid on the corroding metal CS.

Mechanism and Explanation for synergism

The synergistic inhibition brought about by the combination of A9Y5GPA and iodide ions for the corrosion of CS in $0.5 \text{ M H}_2\text{SO}_4$ can be explained on the basis that halide ions have a greater tendency to be adsorbed on the surface in attraction with organic cations. The protonated Schiff base (A9Y5GPA⁺) is adsorbed by coulombic attraction at the steel surface, where iodide ions are already adsorbed by chemisorptions. Greater surface coverage from the stabilization of adsorbed iodide ions by means of electrostatic interaction with A9Y5GPA⁺ facilitates corrosion inhibition synergism.

CONCLUSIONS

- 1. Inhibition efficiency increases with increase in concentration of inhibitor.
- The addition of iodide ions to A9Y5GPA enhanced the inhibition efficiency due to synergistic effect.
- The adsorption of A9Y5GPA alone and in combination with iodide ions obeys Freundlich and Langmiur adsorption isotherms respectively.
- The thermodynamic parameters calculated from the adsorption isotherms showed that both physisorption and chemisorptions are involved in the inhibition process.

REFERENCES

- 1. James, O.; Oforka, N. C.; Abiola, O.K. *Int. J. Electrochem. Sci.* **2007**, *2*, 278-284
- Sethi, T. A.; Chaturvedi, R. K.; Upadyay.; Marthur, S. P. J. Chil. Chem. Soci. 2007, 52, 1206-1213
- 3. Srivastva, K. P.; Kumar, A.; Singh, R. *J. Chem. Pharm. Res.* **2010**, *2*, 68-77
- 4. Ade, S. B.; Deshpande, M. N.; Kolhatkar, D. G. *J. Chem. Pharm. Res.* **2012**, *4*, 1033-1035
- Vinod, P. R.; Joby, T.K.; Shaju, K.S.; Aby, P. Res. Chem. Intermed. 2013, DOI 10.1007/ s11164-013-1122-3
- Aby, P.; Joby, T.K.; Vinod, P. R.; Shaju, K.S. Orient. J. Chem. 2012, 28, 1501-1507
- Shaju, K.S.; Joby, T.K.; Vinod, P.R.; Aby, P. Hindawi Publishing Corporation, ISRN Corrosion. 2012, http://dx.doi.org/10.5402/ 2012/4258
- Shaju, K. S.; Joby, T.K.; Vinod, P. R.; Aby, P. Hindawi Publishing Corporation, *ISRN Electrochemistry*. 2013, http://dx.doi.org/ 10.1155/2013/820548
- Deng, S.; Li, X.; Fu, H. Corros. Sci. 2011, 53, 3704-3711

- 10. Emregul, K.C.; Atakol,O. *Mater. Chem. Phys.* **2004**, *83*, 373-379
- Ashassi-Sorkhabi, H.; Shaabani, B.; Seifzadeh, D. *Electrochim. Acta.* 2005, *50*, 3446-3452
- 12. Aramaki, K.; Hackerman, M. J. Electrochem. Soc. **1969**, *116*, 568-574
- Caliskan, N.; Bilgic, S. Appl. Surf. Sci. 2000, 153, 128-133
- 14. Bouklah, M.; Hammouti, B.; Lagrenée, M.; Bentiss, F. *Corros. Sci.* **2006**, *48*, 2831-2842
- 15. Cano, E.; Polo, J.L.; Iglesia, A.L.A.; Bastidas, J.M. Adsorption. **2004**, *10*, 219-225
- Priya, A.R.S.; Muralidharam, V.S.; Subramannia, A. *Corrosion.* 2008, 64, 541-552
- Azhar, M.E.; Mernari, B.; Traisnel, M.; Bentiss,
 F.; Lagrenée, M. *Corros. Sci.* 2001, *43*, 2229-2238
- Yurt, A.; Balaban, A.; Kandemir, S.U.; Bereket, G.; Erk, B. *Mater. Chem. Phys.* 2004, *85*, 420-426
- 19. MaCafferty, M.; Hackerman, N. J. *Electrochem.* Soc.**1972**, *119*,146-154