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ABSTRACT
Jiang et al. have introduced a quantitative measure known as the
ageing intensity function for evaluating the ageing properties of a
component/system. The present study extends this ageing intensity
function to the conditionally specified and conditional survival mod-
els. In a two component system, these two conditional ageing inten-
sity functions provide the ageing patterns of one component when
the other component has either failed or survived a specified period
of time. The proposed conditionally ageing intensity function models
provide simple expressions for some commonly used bivariate life-
time models. Characterization relationships are established for bivari-
ate exponential, bivariate Weibull, conditional proportional hazards
and bivariate weighted models.
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1. Introduction

The notion of ageing plays an important role in reliability and survival analysis as it is
an inherent property of all systems and products. The ageing characteristics are gener-
ally determined through the failure (hazard) rate, and classified into: (i) positive ageing,
if the failure rate is increasing, (ii) non-ageing, if the failure rate is constant and (iii)
anti-ageing or negative ageing, if the failure rate is decreasing. Unlike such qualitative
ageing characteristics based on the failure rate, Jiang et al. (2003) proposed a new quan-
titative measure, known as ageing intensity (AI) function, an alternative measure to
study the ageing pattern of probability models. It is defined as follows. Let X be a non-
negative random variable representing lifetime of a living organism, a component or a
system with an absolutely continuous cumulative distribution function FXð:Þ, survival

function �FXð:Þ ¼ 1� FXð:Þ and hazard rate function hXð:Þ ¼ fXð:Þ
�FXð:Þ , where fXð:Þ is the

corresponding density function. Then AI function of X is defined as the ratio of hazard
rate to a baseline hazard rate. When the baseline hazard rate is average hazard rate
1
t

Ð t
0 hXðuÞdu, the AI function is defined by
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LXðtÞ ¼ hXðtÞ
1
t

Ð t
0 hXðuÞdu

¼ � tfXðtÞ
�FXðtÞ log ð�FXðtÞÞ : (1)

Jiang et al. (2003) have shown that the failure rate can be viewed as quasi-constant if (1)
is close to 1. Also, they have identified the quasi-constancy, quasi-increasing or quasi-
decreasing properties of probability models based on the quantitative value of LXð:Þ: For
instance, LXðtÞ ¼ 1 for all t > 0 if and only if the failure rate function hXðtÞ is constant
(i:e:, X is both increasing failure rate (IFR) and decreasing failure rate (DFR) or exponen-
tial), LXðtÞ > 1 if hXðtÞ is increasing in t (i:e:, X is IFR), and LXðtÞ < 1 if hXðtÞ is
decreasing in t (i:e:, X is DFR). Nanda et al. (2007) studied more properties of (1) for
various probability distributions. The AI ordering, and its closure properties under differ-
ent reliability operations, viz., formation of k-out-of-n system, and increasing transforma-
tions are also given in Nanda et al. (2007). The larger the value of LXð:Þ, the stronger the
tendency of ageing of the random variable X. Also, LXðtÞ ¼ c, for x > 0, c being a con-
stant, characterizes the Weibull distribution with shape parameter c. It is to be noted that
the failure rate function uniquely determines the AI function but not conversely. More
properties of AI function are available in Nanda et al. (2007), Bhattacharjee et al. (2013),
Sunoj and Rasin (2018), Szymkowiak (2018) and Szymkowiak and Iwi�nska (2019).
It is inherently difficult to visualize bivariate distributions. However, conditional den-

sities can be easily visualized unlike marginal or joint densities. Sometimes one could
identify a joint distribution by specifying one of the marginals and a conditional dens-
ity. Alternatively, one may specify the distribution solely in terms of the features of two
families of conditional densities. This approach is called conditional specification of the
joint distribution (see Arnold et al. (1999)). Another popular type of conditioning is the
conditional survival models, where component survival times on events are conditioned.
These two types of models are often useful in two-component reliability systems where
the operational status of one component is known in advance. For more recent works
on conditionally specified and conditional survival models, we refer to Arnold (1995,
2009), Arnold et al. (1999), Gupta (2008), Navarro and Sarabia (2010, 2013), Navarro
et al. (2011), Sunoj and Vipin (2019), Ghosh and Balakrishnan (2017) and the referen-
ces therein. The conditionally specified and conditional survival models are, respectively,
denoted by the random variables, Xi given Xj ¼ tj or ðXijXj ¼ tjÞ, and Xi given Xj > tj
or ðXijXj > tjÞ for i, j ¼ 1, 2; i 6¼ j: Motivated with the usefulness of various conditional
measures in identifying bivariate lifetime distributions, in the present paper we extend
the concept of AI function in (1) to the conditionally specified and conditional survival
models. The proposed conditional AI functions provide a tool to characterize certain
bivariate models.
The paper is unfolded as follows. In Section 2, we extend AI function for the condi-

tionally specified random variables and prove some characterization results. The AI
function for conditional survival models are studied in Section 3.

2. Ageing Intensity Function for Conditionally Specified Models

In this section, we consider AI function based on conditioning of first type for the ran-
dom variables ðX1jX2 ¼ t2Þ and ðX2jX1 ¼ t1Þ and study their properties.
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Let ðX1,X2Þ be a non-negative random vector admitting an absolutely continuous dis-
tribution function FX1,X2 with respect to Lebesgue measure in the positive octant Rþ

2 ¼
fðt1, t2Þjt1, t2 > 0g of the two dimensional Euclidean space R2. The joint probability
density function and survival function of (X1, X2) are denoted by fX1,X2 and �FX1,X2 ,
respectively. Consider the conditionally specified random variables ðXijXj ¼ tjÞ for i, j ¼
1, 2; i 6¼ j, with survival function, probability density function and hazard rate function
as

�FXijXj
ðtijtjÞ ¼ PðXi > tijXj ¼ tjÞ, fXijXj

ðtijtjÞ ¼ � @

@ti
�FXijXj

ðtijtjÞ

and

hXijXj
ðtijtjÞ ¼ � @

@ti
log �FXijXj

ðtijtjÞ,

respectively, for i, j ¼ 1, 2; i 6¼ j: Using (1), the AI function for ðXijXj ¼ tjÞ is defined as
a vector

LX1jX2
ðt1jt2Þ, LX2jX1

ðt2jt1Þ
� � ¼ LðX1jX2¼t2Þðt1jt2Þ, LðX2jX1¼t1Þðt2jt1Þ

� �
,

where

LXijXj
ðtijtjÞ ¼ � tihXijXj

ðtijtjÞ
log �FXijXj

ðtijtjÞ ¼ � tifXijXj
ðtijtjÞ

�FXijXj
ðtijtjÞ log �FXijXj

ðtijtjÞ , i, j ¼ 1, 2; i 6¼ j, (2)

is the conditional AI function of Xi evaluated at the point ti given that Xj ¼ tj.
Like the univariate measure LXðtÞ due to Jiang et al. (2003), the conditional AI

function LXijXj
ðtijtjÞ ¼ 1 if the conditional failure rate hXijXj

ðtijtjÞ is quasi-constant.

LXijXj
ðtijtjÞ > 1 if hXijXj

ðtijtjÞ is increasing in ti, and LXijXj
ðtijtjÞ < 1 if hXijXj

ðtijtjÞ is

decreasing in ti. Thus, LXijXj
ðtijtjÞ takes larger (smaller) values to indicate a stronger

tendency of ageing (anti-ageing).
The following example provides bivariate models with some simple forms of

conditional AI function LXijXj
ðtijtjÞ: From a reliability point of view, the conditional AI

function with each of these models gives the ageing behavior of a component Xi in a
two-component system ðX1,X2Þ that follows a bivarate distribution when the other
component Xj has failed at time tj.

Example 1. Consider a bivariate family of distributions proposed by Navarro and
Sarabia (2013) whose conditional distributions follow proportional hazards model, with
probability density function given by

f ðt1, t2Þ ¼ cð/Þa1a2k1ðt1Þk2ðt2Þ exp �a1K1ðt1Þ � a2K2ðt2Þ � /a1a2K1ðt1ÞK2ðt2Þð Þ, (3)

t1, t2 � 0, a1, a2 > 0,/ � 0, where kiðtiÞ and KiðtiÞ ¼
Ð ti
0 kiðuÞdu denote respectively the

baseline hazard and the cumulative hazard functions of the random variable Xi, i ¼ 1, 2:
The model given in (3) is a re-parametrization of the bivariate conditional proportional
hazards model given in Arnold and Kim (1996). The case when / ¼ 0 corresponds to
the case of independence. Then the conditional distributions

fXijXj
ðtijtjÞ ¼ aikiðtiÞ 1þ /ajKjðtjÞ

� �
exp �aiKiðtiÞ 1þ /ajKjðtjÞ

� �� �
, i, j ¼ 1, 2; i 6¼ j,
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assume the proportional hazards model, with conditional AI function given by

LXijXj
ðtijtjÞ ¼ LXiðtiÞ, i, j ¼ 1, 2; i 6¼ j, (4)

where LXiðtiÞ ¼ tikiðtiÞ
KiðtiÞ : Some important bivariate distributions, who are members of the

family (3), provide the following forms to LXijXj
ðtijtjÞ:

(i) When KiðtiÞ ¼ ti, i ¼ 1, 2 in (3), we have the bivariate distribution with expo-
nential conditional due to Arnold and Strauss (1988) having density

f ðt1, t2Þ ¼ cð/Þa1a2 exp ð�a1t1 � a2t2 � /a1a2t2t2Þ
Then LXijXj

ðtijtjÞ ¼ 1, i ¼ 1, 2 is a characterizing property of bivariate distribu-
tion with exponential conditionals, as proved in Theorem 2.1.

(ii) For KiðtiÞ ¼ tcii , ci > 0, i ¼ 1, 2, (3) reduces to a bivariate Weibull model,

f ðt1, t2Þ ¼ cð/Þa1a2c1c2tc1�1
1 tc2�1

2 exp �a1t
c1
1 � a2t

c2
2 � /a1a2t

c1
1 t

c2
2

� �
such that LXijXj

ðtijtjÞ ¼ ci, i ¼ 1, 2, another characterization to bivariate Weibull.
(iii) When KiðtiÞ ¼ log ðbiþtiÞ

bi
, bi > 0:i ¼ 1, 2, (3) turns into a bivariate Pareto

model with probability density function given by

f ðt1, t2Þ ¼ cð/Þa1a2 b1
b1 þ t1

� �a1þ1 b2
b2 þ t2

� �a2þ1

exp �/a1a2 log
b1 þ t1
b1

� �
log

b2 þ t2
b2

� �� �

such that LXijXj
ðtijtjÞ ¼ biti

ðbiþtiÞð log ðbiþtiÞ� logbiÞ , i ¼ 1, 2,

(iv) When KiðtiÞ ¼ log ðbiþt
ci
i Þ

bi
, bi, ci > 0:i ¼ 1, 2 in (3), we get a bivariate Burr dis-

tribution

f ðt1, t2Þ ¼ cð/Þa1a2c1c2
b1

b1 þ tc11

� �a1þ1 b2
b2 þ tc22

� �a2þ1

tc1�1
1 tc2�1

2

exp �/a1a2 log
b1 þ tc11

b1

 !
log

b2 þ tc22
b2

 ! !

with LXijXj
ðtijtjÞ ¼ bicit

ci
i

ðbiþt
ci
i Þð log ðbiþt

ci
i Þ� logbiÞ , i ¼ 1, 2:

The situations in which it may be difficult to derive closed form expression for
LXijXj

ðtijtjÞ, obtaining bounds of LXijXj
ðtijtjÞ in terms of other measures are of import-

ance. Accordingly, we now obtain a lower (upper) bound for LXijXj
ðtijtjÞ: From (2), we

get

�LXijXj
ðtijtjÞ log �FXijXj

ðtijtjÞ ¼ tihXijXj
ðtijtjÞ:

Differentiating the above equation with respect to ti, we get

� @LXijXj
ðtijtjÞ

@ti
log �FXijXj

ðtijtjÞ þ LXijXj
ðtijtjÞhXijXj

ðtijtjÞ ¼ ti
@hXijXj

ðtijtjÞ
@ti

þ hXijXj
ðtijtjÞ,

or equivalently,
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@LXijXj
ðtijtjÞ

@ti
log �FXijXj

ðtijtjÞ ¼ LXijXj
ðtijtjÞ � 1

� �
hXijXj

ðtijtjÞ � ti
@hXijXj

ðtijtjÞ
@ti

:

When LXijXj
ðtijtjÞ is increasing (decreasing) partially with respect to ti for i ¼ 1, 2, that

is,
@LXi jXj ðtijtjÞ

@ti
� ð�Þ0, we get

LXijXj
ðtijtjÞ � ð�Þti

@ log hXijXj
ðtijtjÞ

@ti
þ 1,

thus providing a lower (upper) bound for LXijXj
ðtijtjÞ:

Similar to LXð:Þ for a univariate random variable, the conditional AI function can
also be treated as a quantitative measure. For specified values of t1 and t2, LXijXj

ðtijtjÞ
provides a measure to determine the ageing behavior of a two-component system. In
particular, LX1jX2

ðt1jt2Þ measures the ageing pattern of the first component conditioned
on the fact that the second component has failed at time t2. A better interpretation of
LX1jX2

ðt1jt2Þ in some applied problems, say in the actuarial studies, is as follows. Let X1

and X2 denote respectively the ages of a woman and her husband who bought life
insurance at possibly different ages. Then LX1jX2

ð68j72Þ, say, provides the ageing behav-
ior of the woman given that her current age is 68 and her husband died at 72.
In the univariate case LXð:Þ ¼ 1 when X is both IFR and DFR or exponential. Now

LXijXj
ðtijtjÞ holds an equivalent property for the bivariate model (5).

Theorem 1. The conditional AI function LXijXj
ðtijtjÞ ¼ 1, i, j ¼ 1, 2; i 6¼ j if and only if

ðX1,X2Þ follows bivariate distribution with exponential conditionals (Arnold and Strauss
(1988)) having joint probability density function, given by

f ðt1, t2Þ ¼ K1 exp �k1t1 � k2t2 � ht1t2ð Þ,K1, k1, k2, h, t1, t2 > 0: (5)

Proof. When ðX1,X2Þ follows (5), we have fXijXj
ðtijtjÞ ¼ ðki þ htjÞe�ðkiþhtjÞti , i, j ¼ 1, 2; i 6¼

j, and using (2) we obtain LXijXj
ðtijtjÞ ¼ 1, i, j ¼ 1, 2; i 6¼ j: Conversely, assume that

LXijXj
ðtijtjÞ ¼ 1, i, j ¼ 1, 2; i 6¼ j holds. Using (2), we get

� log �FXijXj
ðtijtjÞ ¼ tihXijXj

ðtijtjÞ:
Differentiating both sides with respect ti yields

@hXijXj
ðtijtjÞ

@ti
¼ 0,

or equivalently,
hXijXj

ðtijtjÞ ¼ Ai þ BiðtjÞ, i, j ¼ 1, 2; i 6¼ j:

Applying the proof of Theorem 3.4 of Sunoj and Vipin (2019), we obtain the required
model (5). This completes the proof. w

For some applications of (5) in the context of random stress-dependent and acceler-
ated lifetime models, refer to SenGupta (2006). The following theorem extends the uni-
variate characterizing property of Weibull distribution that LXðtÞ ¼ c, where c is the
shape parameter to the bivariate Weibull model using the conditional AI function.
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Theorem 2. The conditional AI function LXijXj
ðtijtjÞ ¼ ci, i, j ¼ 1, 2; i 6¼ j if and only if

ðX1,X2Þ follows bivariate Weibull distribution given in Example 1 with joint probability
density function, given by

f ðt1, t2Þ ¼ cð/Þa1a2c1c2tc1�1
1 tc2�1

2 exp �a1t
c1
1 � a2t

c2
2 � /a1a2t

c1
1 t

c2
2

� �
, (6)

t1, t2 � 0, a1, a2, c1, c2 > 0,/ � 0, where ci, i ¼ 1, 2 represents the shape parameter of (6).

Proof. When ðX1,X2Þ follows a bivariate Weibull distribution given in (6), we have

fXijXj
ðtijtjÞ ¼ aicit

ci�1
i 1þ /ajt

cj
j

� �
e� 1þ/ajt

cj
j

� �
ait

ci
i

and �FXijXj
ðtijtjÞ ¼ e�ð1þ/ajt

cj
j Þait

ci
i so that LXijXj

ðtijtjÞ ¼ ci, i, j ¼ 1, 2; i 6¼ j: To prove the con-

verse part, we assume that LXijXj
ðtijtjÞ ¼ ci, i, j ¼ 1, 2; i 6¼ j holds. Using (2), we obtain

�tihXijXj
ðtijtjÞ ¼ ci log �FXijXj

ðtijtjÞ:
Differentiating both sides with respect to ti, we get

�ti
@hXijXj

ðtijtjÞ
@ti

� hXijXj
ðtijtjÞ ¼ �cihXijXj

ðtijtjÞ,

or, equivalently,

@

@ti
log hXijXj

ðtijtjÞ ¼ ðci � 1Þ
ti

:

Integrating with respect to ti, we get

log hXijXj
ðtijtjÞ ¼ ðci � 1Þ log ti þ logKiðtjÞ,

where KiðtjÞ is the constant of integration. This, in turn, results

hXijXj
ðtijtjÞ ¼ KiðtjÞtci�1

i , i, j ¼ 1, 2; i 6¼ j: (7)

From the definition of hiðtijtjÞ we have

hXijXj
ðtijtjÞ ¼ � @

@ti
log �FXijXj

ðtijtjÞ ¼ � f ðt1, t2Þ
@
@tj
�Fðti, tjÞ

, i, j ¼ 1, 2; i 6¼ j:

Then (7) becomes,

@

@tj
�Fðti, tjÞ ¼ � f ðt1, t2Þ

tci�1
i KiðtjÞ

:

Differentiating with respect to ti, we get, after some algebra,

@

@ti
log f ðti, tjÞ ¼ ðci � 1Þ

ti
� tci�1

i KiðtjÞ

Now integrating with respect to ti, we obtain

log f ðti, tjÞ ¼ ðci � 1Þ log ti �
KiðtjÞtci

ci
þ logmiðtjÞ,
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where miðtjÞ, i, j ¼ 1, 2; i 6¼ j is the constant of integration, and equivalently we get

f ðti, tjÞ ¼ tci�1
i miðtjÞe�

KiðtjÞt
ci
i

ci , i, j ¼ 1, 2; i 6¼ j: (8)

Applying for i ¼ 1, 2 and equating we get,

tc1�1
1 m1ðt2Þe�

K1ðt2Þt
c1
1

c1 ¼ tc2�1
2 m2ðt1Þe�

K2ðt1Þt
c2
2

c2 : (9)

As t1 ! 1, (9) becomes

m1ðt2Þ ¼ m2ð1Þtc2�1
2 e

K1ðt2Þ
c1

�K2ð1Þt
c2
2

c2 ,

and when t2 ! 1, (9) reduces to

m2ðt1Þ ¼ m1ð1Þtc1�1
1 e

K2ðt1Þ
c2

�K1ð1Þt
c1
1

c1 :

Substituting m1ðt2Þ and m2ðt1Þ in (9) provides

f ðt1, t2Þ ¼ tc1�1
1 tc2�1

2 m2ð1Þe�
K1ðt2Þt

c1
1

c1
�K2ð1Þt

c2
2

c2
þK1ðt2Þ

c1

tc1�1
1 tc2�1

2 m1ð1Þe�
K1ð1Þt

c1
1

c1
�K2ðt1Þt

c2
2

c2
þK2ðt1Þ

c2 ,

8><
>: (10)

where m1ð1Þ,m2ð1Þ � 1: Taking logarithm, (10) reduces to

logm2ð1Þ � K1ðt2Þtc11
c1

� K2ð1Þtc22
c2

þ K1ðt2Þ
c1

¼ logm1ð1Þ � K1ð1Þtc11
c1

� K2ðt1Þtc22
c2

þ K2ðt1Þ
c2

:

(11)

Setting t1 ¼ t2 ¼ 1, we get

logm2ð1Þ ¼ logm1ð1Þ þ K2ð1Þ
c2

� K1ð1Þ
c1

and substituting it in (11) gives,

K2ð1Þ
c2

1� tc22
� �þ K1ðt2Þ

c1
1� tc11
� � ¼ K1ð1Þ

c1
1� tc11
� �þ K2ðt1Þ

c2
1� tc22
� �

,

or, equivalently,

K1ðt2Þ � K1ð1Þ
c1

1� tc11
� � ¼ K2ðt1Þ � K2ð1Þ

c2
1� tc22
� �

,

or
K1ðt2Þ � K1ð1Þ
c1 1� tc22
� � ¼ K2ðt1Þ � K2ð1Þ

c2 1� tc11
� � , (12)

where the left and the right sides are functions of t2 and t1 alone, but (12) holds for all
t1 and t2 and therefore both sides of (12) must be equal to a constant, say /: This
implies that

K1ðt2Þ ¼ K1ð1Þ þ /c1 1� tc22
� �

(13)
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and

K2ðt1Þ ¼ K2ð1Þ þ /c1 1� tc11
� �

: (14)

Substituting (13) and (14) in (10) and by choosing /,K1ð1Þ and K2ð1Þ appropriately, we
obtain the required bivariate Weibull model (6). This completes the proof. w

Even if LXijXj
ðtijtjÞ, i, j ¼ 1, 2; i 6¼ j are univariate functions of ti, i ¼ 1, 2, Theorem 1

and Theorem 2 prove that components of LXijXj
ðtijtjÞ unity (resp. constant) characterize

bivariate exponential model (5) (resp. bivariate Weibull model (6)). The ageing behavior
of bivariate Pareto and Burr distributions given in Example 1 based on LXijXj

ðtijtjÞ can

be obtained from Figures 1 and 2 respectively.
In survival studies, the most widely used semi-parametric model is the Cox propor-

tional hazard rates (PHR) model. Let ðX1,X2Þ and ðY1,Y2Þ be two bivariate random vec-
tors with joint probability density functions fX1,X2 and gY1,Y2 and joint survival functions
given by �FX1,X2ðt1, t2Þ ¼ �Fðt1, t2Þ ¼ PðX1 > t1,X2 > t2Þ and �GY1,Y2ðt1, t2Þ ¼ �Gðt1, t2Þ ¼
PðY1 > t1,Y2 > t2Þ, respectively. Let us assume that the common support is S ¼
ðl,1Þ� ðl,1Þ for l � 0: Also let gYijYj

ð�jtjÞ, �GYijYj
ð�jtjÞ, and kYijYj

ð�jtjÞ denote respectively
the probability density function, the survival function and the hazard rate function of
ðYijYj ¼ tjÞ for i ¼ 1, 2, i 6¼ j: Analogous to the proportional hazard rates model for uni-
variate random variables, the random vectors ðX1,X2Þ and ðY1,Y2Þ satisfy the condi-
tional PHR model (see Sankaran and Sreeja (2007)) when, for i ¼ 1, 2, i 6¼ j,

kYijYj
ðtijtjÞ ¼ hiðtjÞhXijXj

ðtijtjÞ, (15)

where hiðtjÞ is a nonnegative function of tj.
In the following theorem, conditional PHR model is characterized in terms of the

equality of the conditional AT functions for the conditionally specified model.

Theorem 3. Let LYijYj
ðtijtjÞ denote the conditional AI function of the random variable

ðYijYj ¼ tjÞ. Then LYijYj
ðtijtjÞ ¼ LXijXj

ðtijtjÞ for i ¼ 1, 2, i 6¼ j if and only if ðX1,X2Þ and

ðX1,X2Þ satisfy the conditional PHR model (15).

Figure 1. Conditional AI function of X1jX2 ¼ t2 for bivariate Pareto.
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Proof. Assume that ðX1,X2Þ and ðY1,Y2Þ satisfy the conditional PHR model (15), which

is equivalent to saying that �GYijYj
ðtijtjÞ ¼ ð�FXijXj

ðtijtjÞÞhiðtjÞ: Then using (2), we get

LYijYj
ðtijtjÞ ¼ � tikYijYj

ðtijtjÞ
log �GYijYj

ðtijtjÞ ¼ � tihiðtjÞhXijXj
ðtijtjÞ

hiðtjÞ log �FXijXj
ðtijtjÞ ¼ � tihXijXj

ðtijtjÞ
log �FXijXj

ðtijtjÞ ¼ LXijXj
ðtijtjÞ:

(16)

The converse part is obtained by retracing (16). w

Next, we consider a random vector ðXw
1 ,X

w
2 Þ that has a bivariate weighted distribution

associated to ðX1,X2Þ and two nonnegative real functions w1ð:Þ and w2ð:Þ: Then its joint
probability density function is given by

f wðt1, t2Þ ¼ w1ðt1Þw2ðt2Þ
E w1ðX1Þw2ðX2Þð Þ f ðt1, t2Þ,

where 0 < Eðw1ðX1Þw2ðX2ÞÞ < 1: For different properties of a more general weight
function wð�, �Þ one may refer to Nanda and Jain (1999). Using this definition it is easy
to see that the marginal random variable Xw

i has a univariate weighted distribution asso-
ciated with Xi, and weight function w�

i ðtiÞ ¼ wiðtiÞEðwjðXjjXi ¼ tiÞÞ for i ¼ 1, 2, i 6¼ j:
Also, (Xw

i jXw
j ¼ tjÞ has a (univariate) weighted distribution associated with ðXijXj ¼ tjÞ

with weight wiðtiÞ for i ¼ 1, 2, i 6¼ j: When wiðtiÞ ¼ ti, i ¼ 1, 2, the corresponding ran-
dom vector ðXw

1 ,X
w
2 Þ is called the length-biased random vector. Navarro et al. (2011)

have proved that when ðXw
1 ,X

w
2 Þ and ðX1,X2Þ satisfy the conditional PHR model, (15)

characterizes conditional Kullback-Leibler discrimination information and ðX1,X2Þ have
the joint probability density function given by

f ðt1, t2Þ ¼ ca1a2
w0
1ðt1Þw0

2ðt2Þ
wa1þ1
1 ðt1Þwa2þ1

2 ðt2Þ
exp �/a1a2 log

w1ðt1Þ
w1ðlÞ

� �
log

w2ðt2Þ
w2ðlÞ

� �� �
(17)

for t1, t2 � l, where c > 0,/ � 0 and ai > 1 or ai < 0 for i ¼ 1, 2: The model in (17) is
a truncated version of bivariate model due to Arnold and Strauss (1988) in the support
S ¼ ðl,1Þ� ðl,1Þ and when l¼ 0 both models coincide. For different weight

Figure 2. Conditional AI function of X1jX2 ¼ t2 for bivariate Burr.
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functions, the model (17) contains many parametric models. For instance, when l¼ 1
and w1ðt1Þ ¼ t1,w2ðt2Þ ¼ t2 for t1, t2 � 1, (17) reduces to bivariate Pareto model,

f ðt1, t2Þ ¼ ca1a2
ta1þ1
1 ta2þ1

2

exp �/a1a2ð log t1Þð log t2Þ
� �

; t1, t2 � 1, c > 0, a1, a2 > 1,/ � 0:

Now using Theorem 3 of Navarro et al. (2011) and Theorem 3 given above, the charac-
terization result of Theorem 4 is obtained.

Theorem 4. Let ðXw
1 ,X

w
2 Þ be a random vector which has the bivariate weighted distribu-

tion associated to ðX1,X2Þ with two nonnegative and differentiable weight functions w1ð:Þ
and w2ð:Þ. Let us assume that the support of ðX1,X2Þ is S ¼ ðl,1Þ� ðl,1Þ for l � 0.
Then the following conditions are equivalent:

(a) ðXw
1 ,X

w
2 Þ and ðX1,X2Þ satisfy the conditional PHR model (15) for i ¼ 1, 2:

(b) LYijYj
ðtijtjÞ ¼ LXijXj

ðtijtjÞ for i ¼ 1, 2, i 6¼ j:
(c) ðX1,X2Þ has the joint probability density function (17).

3. Ageing Intensity Function for Conditional Survival Models

In this section, we consider AI function based on conditioning of the second type

for the random variables ð~X1, ~X2Þ, where ~X1 ¼ ðX1jX2 > t2Þ and ~X2 ¼ ðX2jX1 > t1Þ:
Let �FXijXj>tjðtiÞ ¼ PðXi > tijXj > tjÞ, fXijXj>tjðtiÞ ¼ � @

@ti
�FXijXj>tjðtiÞ and hXijXj>tjðtiÞ ¼

� @
@ti
log �FXijXj>tjðtiÞ for i, j ¼ 1, 2; i 6¼ j, respectively denote the survival functions, the

probability density functions and the hazard rate functions corresponding to ð~X1, ~X2Þ:
Here, fXijXj>tjðtiÞ is the simple hidden truncation model due to Arnold (2009), and is

given by

fXijXj>tjðtiÞ ¼
�FXjjXi

ðtjjtiÞ
�FXjðtjÞ

fXiðtiÞ: (18)

Here, the marginal density of Xj and the conditional density of Xi given Xj will deter-
mine the resulting hidden truncation model. Also, model (18) is a weighted version of
the original density for Xi, with weight function �FXjjXi

ðtjjtiÞ (see Arnold (2009)).

Motivated with this, we propose a second measure of AI function based on the condi-

tional random variables ð~X1, ~X2Þ:
Let ðX1,X2Þ be a non-negative random vector admitting an absolutely continuous dis-

tribution function FX1,X2 with respect to Lebesgue measure in the positive octant Rþ
2 ¼

fðt1, t2Þjt1, t2 > 0g of the two dimensional Euclidean space R2. Then the AI function for

ð~X1, ~X2Þ is defined as a vector

LX1jX2>t2ðt1Þ, LX2jX1>t1ðt2Þ
� �

,

where

LXijXj>tjðtiÞ ¼ � tihXijXj>tjðtiÞ
log �FXijXj>tjðtiÞ

¼ � tifXijXj>tjðtiÞ
�FXijXj>tjðtiÞ log �FXijXj>tjðtiÞ

, i, j ¼ 1, 2; i 6¼ j (19)

is called the conditional survival AI.
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Eq. (19) is equivalent to

LXijXj>tjðtiÞ ¼ � tihiðt1, t2Þ
log �Fðt1, t2Þ � log �FjðtjÞ , i, j ¼ 1, 2; i 6¼ j, (20)

where hiðt1, t2Þ ¼ hXijXj>tjðtiÞ ¼ � @
@ti
log �Fðt1, t2Þ, i, j ¼ 1, 2; i 6¼ j, denotes the ith compo-

nent of the vector-valued bivariate failure rate hðt1, t2Þ ¼ ðh1ðt1, t2Þ, h2ðt1, t2ÞÞ due to
Johnson and Kotz (1975) and �FjðtjÞ ¼ PðXj > tjÞ denotes the marginal survival function
of the random variable Xj, j ¼ 1, 2:
Even if both LXijXj

ðtijtjÞ and LXijXj>tjðtiÞ are defined based on the conditional distribu-

tions, LXijXj>tjðtiÞ in (20) stands different as it can be computed from the joint distribu-

tion of ðX1,X2Þ and can be used as an easy tool to determine ageing behavior of a
bivariate random vector.
The ageing behavior of ðX1jX2 > t2Þ, in terms of te conditional survival AI, for

different values of t2, when the joint distribution of (X1, X2) is bivariate Pareto II, is
described in the following example.

Example 2. Let ðX1,X2Þ follow a bivariate Pareto II distribution with survival function
given by

�Fðt1, t2Þ ¼ ð1þ a1t1 þ a2t2Þ�b, t1, t2 > 0, a1, a2 > 0, b > 1:

Then LXijXj>tjðtiÞ ¼ baiti
ð1þa1t1þa2t2Þ log ðð1þa1 t1þa2 t2Þ

1þajtj
Þ , i, j ¼ 1, 2; i 6¼ j: The ageing behavior of the

above bivariate Pareto II distribution based on LXijXj>tjðtiÞ is given in Figure 3.

Example 3. Let ðX1,X2Þ be a bivariate random vector defined on Rþ
2 : Then its bivariate

equilibrium distribution is the distribution of a random vector ðXE
1 ,X

E
2 Þ such that the

probability density functions of ðXE
1 jXE

2 > t2Þ and ðXE
2 jXE

1 > t1Þ are given by

Figure 3. AI function of X1 for bivariate Pareto II (a1 ¼ a2 ¼ b ¼ 1) when X2 has survived different
t2 values.
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gXE
i jXE

j >tjðtiÞ ¼
�FXijXj>tjðtiÞ
EðXijXj > tjÞ , i, j ¼ 1, 2; i 6¼ j: (21)

Further, the corresponding survival function is given by

�GXE
i jXE

j >tjðtiÞ ¼
rXijXj>tjðtiÞ�FXijXj>tjðtiÞ

EðXijXj > tjÞ ¼ riðt1, t2Þ�Fðt1, t2Þ
EðXijXj > tjÞ ,

where

rXijXj>tjðtiÞ ¼ EðXi � tijX1 > t1,X2 > t2Þ ¼ 1
�Fðt1, t2Þ

ð1
ti

�Fðui, tjÞdui ¼ riðt1, t2Þ

denotes the ith component of the vector-valued mean residual life function (Arnold and
Zahedi (1988)), and hence the conditional survival AI is derived as

LXE
i jXE

j >tjðtiÞ ¼ � ti
riðt1, t2Þ log riðt1, t2Þ�Fðt1, t2Þ � logEðXijXj > tjÞ

� � , i, j ¼ 1, 2; i 6¼ j:

In the following characterization theorem we prove that LXijXj>tjðtiÞ assumes the value unity

for Gumbel’s bivariate exponential distribution with survival function given in (22).

Theorem 5. The conditional survival AI function LXijXj>tjðtiÞ ¼ 1, i, j ¼ 1, 2; i 6¼ j if and
only if ðX1,X2Þ follows bivariate exponential distribution due to (Gumbel (1960)) with
joint survival function given by

�Fðt1, t2Þ ¼ exp �k1t1 � k2t2 � ht1t2ð Þ,K1, k1, k2, h, t1, t2 > 0: (22)

Proof. Assume that LXijXj>tjðtiÞ ¼ 1, i, j ¼ 1, 2; i 6¼ j: Then using (20), we have

� log �Fðt1, t2Þ þ log �FjðtjÞ ¼ tihiðt1, t2Þ, i, j ¼ 1, 2; i 6¼ j:

Differentiating both sides with respect to ti yields,

ti
@hiðt1, t2Þ

@ti
¼ 0

which gives
hiðt1, t2Þ ¼ Ci þ DiðtjÞ: (23)

It is well-known that the vector-valued hazard rate uniquely determines a bivariate dis-
tribution using the following identity (Johnson and Kotz (1975)),

�Fðt1, t2Þ ¼
exp � Ð t10 h1ðu, t2Þdu� Ð t20 h2ð0, vÞdv

� �
, t1, t2 � 0

exp � Ð t10 h1ðu, 0Þdu� Ð t20 h2ðt1, vÞdv
� �

, t1, t2 � 0:

8>><
>>: (24)

Substituting (23) in (24) we get

�Fðt1, t2Þ ¼
exp �C1t1 � C2t2 � D1ðt2Þt1 � D2ð0Þt2ð Þ, t1, t2 � 0

exp �C1t1 � C2t2 � D1ð0Þt1 � D2ðt1Þt2ð Þ, t1, t2 � 0:

8<
: (25)
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The pair of identity (25) is equivalent to

e�C1t1�C2t2�D1ðt2Þt1�D2ð0Þt2 ¼ e�C1t1�C2t2�D1ð0Þt1�D2ðt1Þt2 : (26)

Eq. (26) implies that

D1ðt2Þt1 þ D2ð0Þt2 ¼ D1ð0Þt1 þ D2ðt1Þt2,
which is possible if and only if D1ðt2Þ ¼ ht2 and D2ðt1Þ ¼ ht1, where h is a positive constant,
which, in turn, reduces to the required model (22). The converse part is straightforward. w

In the following theorem, the bivariate Weibull distribution is characterized in terms
of a given value of the conditional survival AI function.

Theorem 6. The conditional survival AI function LXijXj>tjðtiÞ ¼ c, i, j ¼ 1, 2; i 6¼ j if and
only if ðX1,X2Þ follows bivariate Weibull distribution with joint survival function given by

�Fðt1, t2Þ ¼ exp �k1t
c
1 � k2t

c
2 � htc1t

c
2

� �
, k1, k2, h, c, t1, t2 > 0: (27)

Proof. The proof of ‘only if’ part is straightforward. To prove the ‘if part’, assume that
LXijXj>tjðtiÞ ¼ c, i, j ¼ 1, 2; i 6¼ j holds. Using (20), we have

�tihiðt1, t2Þ ¼ c log �Fðt1, t2Þ � c log �FjðtjÞ, i, j ¼ 1, 2; i 6¼ j

Differentiating both sides with respect to ti and simplifying we get

@ log hiðt1, t2Þ
@ti

¼ c� 1
ti

, i ¼ 1, 2: (28)

Integrating (28) with respect to ti, we have

hiðt1, t2Þ ¼ tc�1
i piðtjÞ, (29)

where piðtjÞ, i, j ¼ 1, 2; i 6¼ j denote the constant of integration. Substituting (29) in (24),
and equating, we get

p1ðt2Þtc1 þ p2ð0Þtc2 ¼ p1ð0Þtc1 þ p2ðt1Þtc2,
which is possible if and only if p1ðt2Þ ¼ a1 þ htc2 and p2ðttÞ ¼ a2 þ htc1 for some
constants a1, a2, h > 0: This reduces to the required form (27). w

4. Application to Real Data

In this section, we provide an example of how an empircal estimator can be used for

estimating the AI function of conditinal survival model, L̂XijXj>tjðtiÞ, i, j ¼ 1, 2, i 6¼ j and

examine its performance using a cancer recurrence data, from Kulkarni and Rattihalli
(2002). The data for the patients with bladder tumors, given in Table 1, consist of X ¼
time (in months) to the first recurrence of a tumor and Y ¼ time (in months) to the
second recurrence of a tumor. Let N number of patients be put into test at the begin-
ning of the study. Further, let the number of patients that survived at ordered times tj
and tj þ Dtj be NsðtjÞ and NsðtjÞ þ Dtj respectively. Then an empirical estimator for con-
ditional AI function is given by,
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L̂XijXj>tjðtiÞ ¼ � tifNSðtjÞ � NSðtj þ DtjÞg
NSðtjÞDtjð logNSðtjÞ � logNÞ , i ¼ 1, 2:

We compute now L̂X1jX2>t2ðt1Þ: We arbitrarily fixed the second recurrence time of the
tumor (t2) at 0, 6, 9 and 12 respectively, and then estimated the conditional AI function

Table 1. Cancer Data from Kulkarni and Rattihalli (2002).
Patients 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Xi 12 10 3 3 7 3 2 28 2 3 12 9 16 3 9 3 2 5 2
Yi 16 15 16 9 10 15 26 30 17 6 15 17 19 6 11 15 15 14 8

t2 = 0

t2 = 6

t2 = 12

t2 = 9

Figure 4. Plot of L̂X1jX2>t2ðt1Þ for different values of t2.

Table 2. Empirical estimates of L̂Xi jXj>tjðtiÞ:
t2 t1 NSðt2Þ NSðt2Þ � NSðt2 þ Dðt2ÞÞ �̂FX1 jX2>t2 ðt1Þ ĥX1 jX2>t2 ðt1Þ L̂X1 jX2>t2 ðt1Þ
0 0 19 10 1.00 0.18 –

3 9 1 0.47 0.04 0:11t1
6 8 3 0.42 0.13 0:33t1
9 5 5 0.26 0.33 0:58t1

6 0 17 8 1.00 0.16 –
3 9 1 0.53 0.04 0:13t1
6 8 3 0.47 0.13 0:38t1
9 5 5 0.29 0.33 0:63t1

9 0 15 6 1.00 0.13 –
3 9 1 0.60 0.04 0:17t1
6 8 3 0.53 0.13 0:46t1
9 5 5 0.33 0.33 0:70t1

12 0 13 6 1.00 0.15 –
3 7 1 0.54 0.05 0:18t1
6 6 1 0.46 0.06 0:17t1
9 5 5 0.38 0.33 0:80t1
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of first recurrence times (t1). The computed values of L̂X1jX2>t2ðt1Þ are displayed in
Table 2, which also provides the empirical estimates of conditional survival and hazard

rate functions, �̂FX1jX2>t2ðt1Þ and ĥX1jX2>t2ðt1Þ respectively.
To ensure the monotonicity of conditional AI function, we plot the function for dif-

ferent values of t2: The estimates of conditional AI function for the data are plotted in
Figure 4, where the dotted line, the dotdashed line, the dashed line and the longdashed
line are plotted for t2 ¼ 0, 6, 9, 12 respectively. It is evident from Figure 4 that irrespect-
ive of second occurrence time of the tumor, the conditional AI functions of first occur-
rence times show an increasing trend, which indicates a faster ageing in the first
occurrence times of the tumor.
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