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ABSTRACT KEY WORDS

Jiang et al. have introduced a quantitative measure known as the AND PHRASES

ageing intensity function for evaluating the ageing properties of a  Bivariate models;
component/system. The present study extends this ageing intensity ~ characterization; reliability
function to the conditionally specified and conditional survival mod- measures; weighted models
els. In a two component system, these two conditional ageing inten- MSC 2010

sity functions provide the ageing patterns of one component when 62E10; 62N05

the other component has either failed or survived a specified period

of time. The proposed conditionally ageing intensity function models

provide simple expressions for some commonly used bivariate life-

time models. Characterization relationships are established for bivari-

ate exponential, bivariate Weibull, conditional proportional hazards

and bivariate weighted models.

1. Introduction

The notion of ageing plays an important role in reliability and survival analysis as it is
an inherent property of all systems and products. The ageing characteristics are gener-
ally determined through the failure (hazard) rate, and classified into: (i) positive ageing,
if the failure rate is increasing, (ii) non-ageing, if the failure rate is constant and (iii)
anti-ageing or negative ageing, if the failure rate is decreasing. Unlike such qualitative
ageing characteristics based on the failure rate, Jiang et al. (2003) proposed a new quan-
titative measure, known as ageing intensity (AI) function, an alternative measure to
study the ageing pattern of probability models. It is defined as follows. Let X be a non-
negative random variable representing lifetime of a living organism, a component or a
system with an absolutely continuous cumulative distribution function Fx(.), survival

function Fx(.) =1 — Fx(.) and hazard rate function hy(.) = ;—:’;(('_)), where fx(.) is the

corresponding density function. Then AI function of X is defined as the ratio of hazard
rate to a baseline hazard rate. When the baseline hazard rate is average hazard rate

L [ hx(u)du, the Al function is defined by
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_ kx@® tfx(t)
=13 =—= & . (1)

1], hx(u)du Fx(t)log (Fx(t))

Jiang et al. (2003) have shown that the failure rate can be viewed as quasi-constant if (1)
is close to 1. Also, they have identified the quasi-constancy, quasi-increasing or quasi-
decreasing properties of probability models based on the quantitative value of Lx(.). For
instance, Lx(t) = 1 for all # > 0 if and only if the failure rate function hx(¢) is constant
(i.e., X is both increasing failure rate (IFR) and decreasing failure rate (DFR) or exponen-
tial), Lx(t) > 1 if hx(t) is increasing in t (i.e., X is IFR), and Lx(t) <1 if hx(t) is
decreasing in t (i.e., X is DFR). Nanda et al. (2007) studied more properties of (1) for
various probability distributions. The AI ordering, and its closure properties under differ-
ent reliability operations, viz., formation of k-out-of-n system, and increasing transforma-
tions are also given in Nanda et al. (2007). The larger the value of Lx(.), the stronger the
tendency of ageing of the random variable X. Also, Lx(t) = ¢, for x > 0, ¢ being a con-
stant, characterizes the Weibull distribution with shape parameter c. It is to be noted that
the failure rate function uniquely determines the AI function but not conversely. More
properties of Al function are available in Nanda et al. (2007), Bhattacharjee et al. (2013),
Sunoj and Rasin (2018), Szymkowiak (2018) and Szymkowiak and Iwiniska (2019).

It is inherently difficult to visualize bivariate distributions. However, conditional den-
sities can be easily visualized unlike marginal or joint densities. Sometimes one could
identify a joint distribution by specifying one of the marginals and a conditional dens-
ity. Alternatively, one may specify the distribution solely in terms of the features of two
families of conditional densities. This approach is called conditional specification of the
joint distribution (see Arnold et al. (1999)). Another popular type of conditioning is the
conditional survival models, where component survival times on events are conditioned.
These two types of models are often useful in two-component reliability systems where
the operational status of one component is known in advance. For more recent works
on conditionally specified and conditional survival models, we refer to Arnold (1995,
2009), Arnold et al. (1999), Gupta (2008), Navarro and Sarabia (2010, 2013), Navarro
et al. (2011), Sunoj and Vipin (2019), Ghosh and Balakrishnan (2017) and the referen-
ces therein. The conditionally specified and conditional survival models are, respectively,
denoted by the random variables, X; given X; = t; or (X;|X; =tj), and X; given X; > t;

Lx(t)

or (X;|X; > tj) for i,j =1,2;i # j. Motivated with the usefulness of various conditional
measures in identifying bivariate lifetime distributions, in the present paper we extend
the concept of Al function in (1) to the conditionally specified and conditional survival
models. The proposed conditional AI functions provide a tool to characterize certain
bivariate models.

The paper is unfolded as follows. In Section 2, we extend Al function for the condi-
tionally specified random variables and prove some characterization results. The Al
function for conditional survival models are studied in Section 3.

2. Ageing Intensity Function for Conditionally Specified Models

In this section, we consider AI function based on conditioning of first type for the ran-
dom variables (X;|X; = ;) and (X,|X; = t;) and study their properties.



AMERICAN JOURNAL OF MATHEMATICAL AND MANAGEMENT SCIENCES @ 3

Let (X;,X;) be a non-negative random vector admitting an absolutely continuous dis-
tribution function Fy, x, with respect to Lebesgue measure in the positive octant Ry =
{(t1,t2)|t1,t, > 0} of the two dimensional Euclidean space R,. The joint probability
density function and survival function of (X;, X,) are denoted by fx, x, and Fx, x,,
respectively. Consider the conditionally specified random variables (X;|X; = ;) for i,j =
1,2;i # j, with survival function, probability density function and hazard rate function
as

_ 0 _
Fxx(til) = P(Xi > 61X, = 1),  fxx(tilt) = —ngllxj(tiVj)
1

and

0 -
by, (tilty) = — 5 -log Fxyx; (tilt;),
respectively, for i,j = 1,2;i # j. Using (1), the AI function for (X;|X; = ¢;) is defined as
a vector
(Lxl‘Xz(tl|t2)’LX2‘X1(t2|t1)) = (L(X1|X2=t2)(t1|t2)’L<X2‘X1=t1)(t2|t1))’

where
Gy (BlG) tifx, x; (ilt)

log Fy,x; (tit))  Fxx, (tilt;) log Fxx; (tilt;)

Ly, x, (tilt) = hj=1,21i# ], (2)
is the conditional Al function of X; evaluated at the point t; given that X; = ¢,

Like the univariate measure Ly(f) due to Jiang et al. (2003), the conditional Al
function Lyx (ti|tj)) =1 if the conditional failure rate hy,x (t(t;) is quasi-constant.
Lx,x (tiltj) > 1 if hxx (ti|t;)) is increasing in t, and Ly,x (tlt;) <1 if hyx(tilt) is
decreasing in f. Thus, Ly,x (ti[t;) takes larger (smaller) values to indicate a stronger
tendency of ageing (anti-ageing).

The following example provides bivariate models with some simple forms of
conditional Al function Ly, x (t[t;). From a reliability point of view, the conditional Al
function with each of these models gives the ageing behavior of a component X; in a
two-component system (X;,X,) that follows a bivarate distribution when the other
component X; has failed at time #;.

Example 1. Consider a bivariate family of distributions proposed by Navarro and
Sarabia (2013) whose conditional distributions follow proportional hazards model, with
probability density function given by

f(ti, 1) = c(P)araz i (1) 22(t2) exp (—ar1 A1 (1) — a2A2(8) — parax Aq () A2(82)),  (3)

ti,t > 0,a1,a > 0,¢ >0, where 4;(#;) and A;(t;) = jof Zi(u)du denote respectively the
baseline hazard and the cumulative hazard functions of the random variable X;,i = 1, 2.
The model given in (3) is a re-parametrization of the bivariate conditional proportional
hazards model given in Arnold and Kim (1996). The case when ¢ = 0 corresponds to
the case of independence. Then the conditional distributions

fX,»|Xj(ti|tj) = a,%,-(t,-) (1 + d)a]AJ(tJ)) exp (—a,-A,»(t,»)(l + d)él]/\](t]))), l,] =1, 2; i 75],
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assume the proportional hazards model, with conditional AI function given by

Ly (tlt) = L (#),6j = 1,251 # jy “@

where Ly, (t;) = t}\”’(( ’)) Some important bivariate distributions, who are members of the

family (3), provide the following forms to Ly, (ti[#;)-

(i) When A;(t;) = t;,i = 1,2 in (3), we have the bivariate distribution with expo-
nential conditional due to Arnold and Strauss (1988) having density
f(ti, 1) = c(P)araz exp (—arty — axty — Qpajaztrty)

Then Ly,x (ti|tj)) = 1,i = 1,2 is a characterizing property of bivariate distribu-
tion with exponential conditionals, as proved in Theorem 2.1.
(i) For Ai(t;) =t/',y; > 0,i = 1,2, (3) reduces to a bivariate Weibull model,
f(tt) = c(P)arary pot]) 82 exp (—art] — axt) — parast]'ty?)

such that Ly, x (#ilt;) = y,, i = 1,2, another characterization to bivariate Weibull.
(iii) When A(t;) = log (Bitt) H’ ,p;>0.i=1,2, (3) turns into a bivariate Pareto
model with probablhty den51ty function given by

ar+1 a+1
f(ti, 1) = c(Pp)araz <ﬂ1ﬁ‘¢ tl) <Bzﬁ+2 t2> exp (—¢a1a2 log <ﬁll;: t1> log <ﬂ2/;2 t2>)

1,2,

such that Ly x (i]tj) =

Biti i—
(Bi+t:)(log (Bi+t:)— logh)> ! =
(iv)  When A;(t;) = log —== ﬁ’H By > 0.i=1,2 in (3), we get a bivariate Burr dis-

tribution
ﬂl a;+1 ﬂz a+1 pi—1 31
ti, ) = 1 . - H'oB?
f(ti,ty) = c(P)arazy 7, <ﬁ1 ) B, + 10 1 b
t?"l tVz
By B,
with Ly x (tiltj) = Bty i=1,2.

(Bi+t;7) (log (Bi+t;")—log ;)
The situations in which it may be difficult to derive closed form expression for
Ly,x,(ti|t;), obtaining bounds of Ly, (tt;) in terms of other measures are of import-
ance. Accordingly, we now obtain a lower (upper) bound for Ly,x (#(t;). From (2), we
get

—Ly,jx; (ti14) log Fx, x; (tilt;) = tihx,x; (t:]4)-
Differentiating the above equation with respect to t;, we get

8LX ix; (tilt) ahx,p(](t It;)
ot; ot;

or equivalently,

log Fx|x; (tilt;) + Lx,jx, (tiltj ) b, x, (ti]t) = + hx,x, (8i]t),
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OLx,x, (ti]t;)
ot

Ohy,x,(tilt)

log Fx,x; (tilt;) = (Lx,jx, (ti14) — 1) hxx (tilt) — i ot

When Ly, x (#i[t;) is increasing (decreasing) partially with respect to t; for i = 1,2, that
OLy.ix. (1]t
is, % > (<)0, we get

Olog hy,x, (tilt;)
Ly, x, (tilt;) = (S)ti+

thus providing a lower (upper) bound for Ly, (i[t;)-

+1,

Similar to Lyx(.) for a univariate random variable, the conditional AI function can
also be treated as a quantitative measure. For specified values of #; and &, Lyx (tlt)
provides a measure to determine the ageing behavior of a two-component system. In
particular, Ly, x, (t:]t,) measures the ageing pattern of the first component conditioned
on the fact that the second component has failed at time #,. A better interpretation of
Lx,x,(t1|t2) in some applied problems, say in the actuarial studies, is as follows. Let X,
and X, denote respectively the ages of a woman and her husband who bought life
insurance at possibly different ages. Then Ly, x,(68]72), say, provides the ageing behav-
ior of the woman given that her current age is 68 and her husband died at 72.

In the univariate case Lx(.) =1 when X is both IFR and DFR or exponential. Now
Lx,x, (tilt;) holds an equivalent property for the bivariate model (5).

Theorem 1. The conditional Al function Ly, x (ti|tj) = 1,i,j = 1,2;i# j if and only if
(X1,X,) follows bivariate distribution with exponential conditionals (Arnold and Strauss
(1988)) having joint probability density function, given by

f(tl, tz) =K; exp (—/lltl — /121'2 — gtltz),Kl, /11, ;»2, 0, ti,t, > 0. (5)

Proof. When (X;,X,) follows (5), we have fy,x (tt;) = (4 + 0t;)e=At00)t j j = 1,230 #
j, and using (2) we obtain Lyx (t|tj) = 1,i,j = 1,2;i # j. Conversely, assume that
Lx,x (tiltj) = 1,4,j = 1,2;i # j holds. Using (2), we get
—log Fy,x, (1) = tihxx, (ti]t))-
Differentiating both sides with respect ¢; yields
Ohx,x, (tilty)
o, 7
or equivalently,
hXi|)£'j(ti|tj) = A,‘ + B,‘(tj), l,] = 1,2; i 75]
Applying the proof of Theorem 3.4 of Sunoj and Vipin (2019), we obtain the required
model (5). This completes the proof. O

For some applications of (5) in the context of random stress-dependent and acceler-
ated lifetime models, refer to SenGupta (2006). The following theorem extends the uni-
variate characterizing property of Weibull distribution that Lx(t) = ¢, where ¢ is the
shape parameter to the bivariate Weibull model using the conditional AI function.
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Theorem 2. The conditional Al function Ly, x (ti|t}) = 7;,i,j = 1,2;i #j if and only if
(X1,X,) follows bivariate Weibull distribution given in Example 1 with joint probability
density function, given by

f(tuta) = c(P)arayy 1 t] 6 exp (—arf] — @ty — parart]'t3?), (6)

ti,ty > 0,a1,a2,71,7, > 0,¢ > 0, where v,,i = 1,2 represents the shape parameter of (6).
Proof. When (X;,X5) follows a bivariate Weibull distribution given in (6), we have

in\Xj(ti|tj) — aiyit;/i—l (1 + qsajt]?j)e—(1+¢ajtj’1)ait}}

v

and Fyx (ti]t) = ¢ (1F945)at" o that Lx,x,(tiltj) = 7;4,j = 1,2;i # j. To prove the con-
verse part, we assume that L x (fi[tj) = 7;,i,j = 1,2;i # j holds. Using (2), we obtain

—tihy,x, (tilt) = 7;log Fx,x (til)-
Differentiating both sides with respect to t;, we get

Ohx,x, (tilt;)
—tiTj — b, (8il;) = —7ihx (8:]8),

or, equivalently,

(7 — 1).

L

0
a_t,-log hyx; (tilt) =

Integrating with respect to t;, we get
loghxi|Xj(t,-|tj) = (y; — 1)logt; + log K;(t;),
where Kj(tj) is the constant of integration. This, in turn, results
hxx (B16) = Ki(t) 8 i j = 1,231 # . 7)

From the definition of h;(t;|t;) we have

0 - fltu,t) . ..
hyx (tilt) = — 5-log Fxx (tilt) = —5—=——,ij = 1,2;i #j.
i ot; A %F(ti,tj)
Then (7) becomes,
- t, £
éF(ti, tj) — _fglliz)
o oK)

Differentiating with respect to t;, we get, after some algebra,

P (3. —1) .
1 irlj) — : —t
ati ng(t t]) t: tl

1

Ki(t))

Now integrating with respect to t;, we obtain

Ki t: tVi
logf(tt;) = (y; — 1)logt; — i + log m;(t;),

i
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where m;(t;),i,j = 1,2;i # j is the constant of integration, and equivalently we get

Ki(p)t!

fltot) = 0 mi(t)e™ o Lij=1,2;i #J. (8)
Applying for i = 1,2 and equating we get,

Ky (1)) Ky(1)1?

tf‘flml (tz)ei " = t;rlmz(tl)ef 2, (9)
As t; — 1, (9) becomes
o M_Kz(l){"z
mi(b) = my(1)ip e

and when t, — 1, (9) reduces to

_1 Rt Kl(l)t{1

mz(tl) = ml(l)tfl e n

Substituting m;, (t,) and m,(#;) in (9) provides

Ky KWE? k()
=L

n—1n—1 = - ;
_ tl/l ty my(l)e 7 2 1
f(tl’tz) - PR Kl(l)ti‘l Kz(fl)tgz L Ka(1) (10)
gy (e T

where m; (1), my(1) > 1. Taking logarithm, (10) reduces to

Ki ()t KDt K(t K (DT K () K(t
log m» (1) — ()t _ 2(1)6 n 1(2): log m1 (1) — (g B 2(0)t) N 2 1).
Y1 72 71 71 72 72

(11)

Setting t; = t, = 1, we get

log my(1) = logm; (1) +

and substituting it in (11) gives,

2 (1) + BB ) - B (g - RO ),

V2 71 71 72

or, equivalently,

K1<t2>y_ Ki(1) (1-£) = KZ(tl)y_ K(1) (1),

or
Ki(t) —Ki(1) _ Ky(t) — K(1)
7’1(1 - téz) Vz(l - tivl)
where the left and the right sides are functions of t, and t; alone, but (12) holds for all

t; and t, and therefore both sides of (12) must be equal to a constant, say ¢. This
implies that

(12)

Ki(ty) = Ky (1) + ¢y, (1 — £3*) (13)



8 @ S. M. SUNOJ ET AL.

Lx, 1 x=t,(t1 | &2)

Sk _
4k T ——— — Br=
s e T Fr=2
................................................. B1=3
N S Bi=
N e — ——— B1=5
L 1 1 I L 1 t1
1 2 3 4 5
Figure 1. Conditional Al function of X;|X, = t; for bivariate Pareto.
and
Ky(t1) = Ka1) + by, (1= 1) (14)
Substituting (13) and (14) in (10) and by choosing ¢, K;(1) and K,(1) appropriately, we
obtain the required bivariate Weibull model (6). This completes the proof. O

Even if LXi|Xj(t,-|tj),i,j = 1,2;i # j are univariate functions of t;,i = 1,2, Theorem 1
and Theorem 2 prove that components of Ly (#;|tj) unity (resp. constant) characterize
bivariate exponential model (5) (resp. bivariate Weibull model (6)). The ageing behavior
of bivariate Pareto and Burr distributions given in Example 1 based on Ly,x (t|tj) can
be obtained from Figures 1 and 2 respectively.

In survival studies, the most widely used semi-parametric model is the Cox propor-
tional hazard rates (PHR) model. Let (X;,X;) and (Y}, Y,) be two bivariate random vec-
tors with joint probability density functions fx, x, and gy, y, and joint survival functions
given by Fx, x,(t1,t) = F(t;,t,) =P(X; > £,X, > ) and Gy, v,(t1,6) = G(f1, 1) =
P(Y; > t,,Y, > t;), respectively. Let us assume that the common support is S =
(I oo) x (I,00) for I > 0. Also let gy,y,(-|t;), Gy,y,(-]t;), and ky,y,(-|t;) denote respectively
the probability density function, the survival function and the hazard rate function of
(Yi|Y; =t;) for i = 1,2,i # j. Analogous to the proportional hazard rates model for uni-
variate random variables, the random vectors (X;,X;) and (Y;,Y>) satisfy the condi-
tional PHR model (see Sankaran and Sreeja (2007)) when, for i = 1,2,i # j,

ky,y,(tilt)) = 0i(t;)hx,x (ti]) (15)

where 0;(t;) is a nonnegative function of ¢;.
In the following theorem, conditional PHR model is characterized in terms of the
equality of the conditional AT functions for the conditionally specified model.

Theorem 3. Let Ly,y (ti|tj) denote the conditional Al function of the random variable
(YilY; = t;). Then Ly,y (tilt;) = Lx,x (tilt;) for i=1,2,i#j if and only if (Xi,X,) and
(X1,X5) satisfy the conditional PHR model (15).
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LX1 |X2=t2(t1 I t2)

6 ____\\\\
5 e \ p1=1: Y1 =2
~ N\

S \\ """ B1=1, y1=
A N N s
3mmmmae RN == By=t, v4=5
) \“~~\\ \\\\\ ——— B4=1, y1=6

L I 1 — t1
0.5 1.0 1.5 2.0

Figure 2. Conditional Al function of X;|X, = t, for bivariate Burr.

Proof. Assume that (X;,X;) and (Y3, Y,) satisfy the conditional PHR model (15), which

is equivalent to saying that Gyi‘y'j(ti‘tj) = (Pxi\)(j(ti|tj))6i(tj). Then using (2), we get
Lyt (t]t) = — tikyi|yj(l‘i|tj) _ tigi(tj)hx[\xj(tihj) _ tihX,-\Xj(ti|tj) — Ly (4]1)
TR log Gy, (tilt;) — 0i(t) log Fx,x,(tilt;) log Fixpy (t]t) — "7
(16)
The converse part is obtained by retracing (16). O

Next, we consider a random vector (X}, X}') that has a bivariate weighted distribution
associated to (X;,X;) and two nonnegative real functions w;(.) and w,(.). Then its joint
probability density function is given by

w1 (tl)W2<t2)
Wi (X])Wz (Xz

() = E( )>f<f1, ),

where 0 < E(w;(X;)w2(X2)) < oo. For different properties of a more general weight
function w(-,-) one may refer to Nanda and Jain (1999). Using this definition it is easy
to see that the marginal random variable X}" has a univariate weighted distribution asso-
ciated with X;, and weight function w}(t;) = w;(t;)E(w;j(X;|X; = t;)) for i=1,2,i#j.
Also, (X'|X}" =1) has a (univariate) weighted distribution associated with (X;|X; = t)
with weight w;(#;) for i =1,2,i # j. When w;(t;) = t;,i = 1,2, the corresponding ran-
dom vector (X},X)) is called the length-biased random vector. Navarro et al. (2011)
have proved that when (X},X}') and (X;,X5) satisfy the conditional PHR model, (15)
characterizes conditional Kullback-Leibler discrimination information and (X;,X;) have
the joint probability density function given by

Fltnt) = caray—2atWa(B) <—¢a1a2 <log Wl(tl)) <log W2(t2))> (17)

wit (1)ws (1) wi (1) wa(I)

for t;,t, > I, where ¢ > 0,¢p >0 and a; > 1 or a; < 0 for i = 1,2. The model in (17) is
a truncated version of bivariate model due to Arnold and Strauss (1988) in the support
S=(L,oo) x (,oo) and when =0 both models coincide. For different weight




10 @ S. M. SUNOJ ET AL.

functions, the model (17) contains many parametric models. For instance, when /=1
and wi(t;) = t1, wa(f) = t, for t1,t, > 1, (17) reduces to bivariate Pareto model,

ca1a
f(t, ) = Wexp (—¢a1a2(log t1)(log tz)); ti,ty > 1,¢>0,a5,a, > 1,¢ > 0.
1 b

Now using Theorem 3 of Navarro et al. (2011) and Theorem 3 given above, the charac-
terization result of Theorem 4 is obtained.

Theorem 4. Let (X}, X}') be a random vector which has the bivariate weighted distribu-
tion associated to (X;,X,) with two nonnegative and differentiable weight functions wi(.)
and wy(.). Let us assume that the support of (X1,X3) is S = (I,00) x (I,00) for 1> 0.
Then the following conditions are equivalent:

(@) (XY, XY) and (Xy,X,) satisfy the conditional PHR model (15) for i = 1,2.
(b) Ly, (tilty) = Lxx,(tiltj) for i =1,2,i # j.
()  (X1,X>) has the joint probability density function (17).

3. Ageing Intensity Function for Conditional Survival Models

In this section, we consider AI function based on conditioning of the second type
for the random variables (5(1,5(2), where X; = (X1]X; > t,) and X, = (X,]X; > t).
Let  Fy x>y (ti) = P(Xi > 6]X; > ), fx x>, (1) = —%in\xpzj(fi) and By, x5 (1) =
—a%logpxi|xj>tj(ti) for i,j =1,2;i # j, respectively denote the survival functions, the
probability density functions and the hazard rate functions corresponding to (X;,X>).
Here, fy,x>4(ti) is the simple hidden truncation model due to Arnold (2009), and is
given by

Fyx,(tjt)
() = L=
fXI|XI>t]( 1) FXj(t])

Here, the marginal density of X; and the conditional density of X; given X; will deter-
mine the resulting hidden truncation model. Also, model (18) is a weighted version of
the original density for X; with weight function Fxx (t|ti) (see Arnold (2009)).
Motivated with this, we propose a second measure of Al function based on the condi-

fx (t:). (18)

tional random variables (X1, X;).

Let (X;,X,) be a non-negative random vector admitting an absolutely continuous dis-
tribution function Fx, x, with respect to Lebesgue measure in the positive octant R} =
{(t1,t2)|t1,t > 0} of the two dimensional Euclidean space R,. Then the AI function for
(X1,X,) is defined as a vector

(Lx, x>0 (1) Ligy x4, (2)) 5
where
tihx x> (1) tifxix> (6)

L.‘ (t;) = — = —_ — = =, )l>:1)2717é (19)
s (1) log Fx, x>, (ti) Fx x>t (ti) log Fx, x> (i) ! !

is called the conditional survival Al
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Ly, x>t (t1)

2 4 6 8 10 12 14
Figure 3. Al function of X; for bivariate Pareto Il (a; = a, = b = 1) when X, has survived different
t, values.

Eq. (19) is equivalent to

tihi(t1, 1)
log F(t1,t,) — log F;(t;)

Ly x4 (t) = hj = 1,211 #j, (20)
where hi(ti, 1) = hx, x> () = —%logl_:(tl,tz),i,j = 1,2;i #j, denotes the ith compo-
nent of the vector-valued bivariate failure rate h(ty,t) = (hi(t1,5), ha(t1, t2)) due to
Johnson and Kotz (1975) and F;(t;)) = P(X; > t;) denotes the marginal survival function
of the random variable Xj,j = 1, 2.

Even if both Ly, x (ti(t;) and L, x - (t;) are defined based on the conditional distribu-
tions, Ly,x~; (%) in (20) stands different as it can be computed from the joint distribu-
tion of (X;,X;) and can be used as an easy tool to determine ageing behavior of a
bivariate random vector.

The ageing behavior of (X;|X, > t,), in terms of te conditional survival AI, for
different values of t,, when the joint distribution of (X;, X,) is bivariate Pareto II, is
described in the following example.

Example 2. Let (X;,X;) follow a bivariate Pareto II distribution with survival function
given by

F(t,t) = (1 + ety + axty) ot > 0,a1,a, > 0,6 > 1.

Then Ly x-, () = baiti ,iii=1,2:i#ij. Th i havior of th
. X"X’>t’(t1) (1+a1t1+a2t2)log(7(1+allillzz2t2>) b 7 ¢ ageing behavior of the

above bivariate Pareto II distribution based on Ly, x~(t) is given in Figure 3.
Example 3. Let (X;,X,) be a bivariate random vector defined on R;. Then its bivariate

equilibrium distribution is the distribution of a random vector (XF,XZ) such that the
probability density functions of (X¥|X% > 1,) and (X£|XF > ) are given by
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Fx,jx;>4 (t)

» b 1 2 21
E(Xi|Xj > t]) ] 17&] ( )

gxf|xf>t,-(ti> =

Further, the corresponding survival function is given by

rx x4 () Fx x>0 () _ ri(ti,)E(f, 1)
E(Xi[Xj > 1)) E(Xi[X; > 1))

>

GXf\Xf>tj () =
where

00
rX;|Xj>tj(ti> = E( — t |X1 > tl,Xz > tz) J F(ui, tj)du,- = T’i(tl, tz)

F(t, 1)
denotes the ith component of the vector-valued mean residual life function (Arnold and
Zahedi (1988)), and hence the conditional survival Al is derived as

t; ..
ri(t1, 12) (log ri(t1, &) E (1, 1) — log B(X,|X; > 1))

Lty (6) = — =1,2;i #].
In the following characterization theorem we prove that L |x .1 (#;) assumes the value unity
for Gumbel’s bivariate exponential distribution with survival function given in (22).

Theorem 5. The conditional survival Al function Ly, x~(t;) = Li,j = 1,2;i #j if and
only if (X1,X5) follows bivariate exponential distribution due to (Gumbel (1960)) with
joint survival function given by

F(t), 1)) = exp (=it — Aoty — Ot112), K1, A1, A2, 0, 11, 15 > 0. (22)

Proof. Assume that Ly, x~(t;)) = 1,4,j = 1,2;i # j. Then using (20), we have
— IOgF(tl, tz) —+ lOgF](t]) = tihi(tl, tz), l,] = 1,2;1 #]

Differentiating both sides with respect to ¢; yields,
Ohi(ty, t2)
o,
which gives
hi(ti, t;) = Ci 4 Dy(t;). (23)
It is well-known that the vector-valued hazard rate uniquely determines a bivariate dis-
tribution using the following identity (Johnson and Kotz (1975)),

exp (— fotl hy(u, ty)du — J"Otz h, (0, v)dv),tl, >0
P(tl) tZ) = (24)
exp ( fo (u,0)du — & hz(tl,v)dv),tl,tz > 0.

Substituting (23) in (24) we get
. exp (—Cit; — Coty — Dy ()t1 — Dy(0)1), 11, 1, > 0
E(t, 1) = (25)
exp (—Cltl — Cztz — D1 (O)tl — Dz(tl)tz), t, b Z 0.
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The pair of identity (25) is equivalent to

efcltlfcztszl(tz)t] —D,(0)t, —Cit1—Cyt,—Dy (0) 7D2(t1)t2. (26)

=e
Eq. (26) implies that
D, (t2)t1 + D1(0)t, = Dy (0)ty + Da(t1)a,

which is possible if and only if Dy (t,) = 0t, and D, (t;) = 0t,, where 0 is a positive constant,
which, in turn, reduces to the required model (22). The converse part is straightforward. O

In the following theorem, the bivariate Weibull distribution is characterized in terms
of a given value of the conditional survival AI function.

Theorem 6. The conditional survival Al function Ly, x~,(t;) = v,i,j = 1,2;i #j if and
only if (X1, X;) follows bivariate Weibull distribution with joint survival function given by

E(ti, 1) = exp (=it} — Aath — O68)), A1, 42, 0,7, 11,1, > 0. (27)

Proof. The proof of ‘only if’ part is straightforward. To prove the ‘if part’, assume that
Lx,x;>1(ti) = 7,1,j = 1,2;i # j holds. Using (20), we have

_tihi(tl, t2) =Y lOgF(tl, tz) — legF](t]), l,_] = 1, 27 i 75_]
Differentiating both sides with respect to ¢; and simplifying we get

aloghi(tl, tz) Y= 1 .
= ,i=1,2. 28
o, b (28)

Integrating (28) with respect to t;, we have
hi(t, ty) = t;'/_lpi(tj); (29)

where p;(tj),i,j = 1,2;i # j denote the constant of integration. Substituting (29) in (24),
and equating, we get

()t 4 p2(0)t5 = p1(0)t] + pa(t1)ty,

which is possible if and only if pi(t;) = oy + 0, and p,(t;) = o, + 0] for some
constants o, o, 0 > 0. This reduces to the required form (27). O

4. Application to Real Data

In this section, we provide an example of how an empircal estimator can be used for
estimating the AI function of conditinal survival model, I:Xi‘Xij(t,-),i, j=1,2,i%#j and
examine its performance using a cancer recurrence data, from Kulkarni and Rattihalli
(2002). The data for the patients with bladder tumors, given in Table 1, consist of X =
time (in months) to the first recurrence of a tumor and Y = time (in months) to the
second recurrence of a tumor. Let N number of patients be put into test at the begin-
ning of the study. Further, let the number of patients that survived at ordered times t;
and t; + At; be Ni(t) and Ni(tj) + At; respectively. Then an empirical estimator for con-
ditional AI function is given by,
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Table 1. Cancer Data from Kulkarni and Rattihalli (2002).
Patents 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

X 12 10 3 3 7 3 2 28 2 3 12 9 16 3 9 3 2 5 2
Y; 16 15 16 9 10 15 26 30 17 6 15 177 19 6 11 15 15 14 8

Table 2. Empirical estimates of Z)(,\X/>r,(ti)-

th th Ns(t2) Ns(t2) — Ns(t2 + A(t2)) Friosn (t1) hy x>0, (1) Ly p>n, (1)
0 0 19 10 1.00 0.18 -
3 9 1 0.47 0.04 0.11t4
6 8 3 0.42 0.13 0.33t4
9 5 5 0.26 0.33 0.58t
6 0 17 8 1.00 0.16 -
3 9 1 0.53 0.04 0.13t4
6 8 3 0.47 0.13 0.38t
9 5 5 0.29 0.33 0.63t,
9 0 15 6 1.00 0.13 -
3 9 1 0.60 0.04 0.17t,
6 8 3 0.53 0.13 0.46t
9 5 5 0.33 0.33 0.70t,
12 0 13 6 1.00 0.15 -
3 7 1 0.54 0.05 0.18t
6 6 1 0.46 0.06 0.17t,
9 5 5 0.38 0.33 0.80t

6-
linetype
< - =9
Z!; 41 == (=6
»i/ smme =
- _— =12
2-
0 : : :
4 6 8
t4
Figure 4. Plot of [X1 >t (t1) for different values of t,.
. ti{Ns(t;) — Ns(t; + At;) }
LXi|Xj>tj(ti) = J J J 1, 2

_ 1=
Ns(tj)Atj(IOgNs(tj) — IOgN)

We compute now ixl\Xz>tz(tl)- We arbitrarily fixed the second recurrence time of the
tumor (#,) at 0, 6, 9 and 12 respectively, and then estimated the conditional Al function
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of first recurrence times (t;). The computed values of Ly, x> (f1) are displayed in
Table 2, which also provides the empirical estimates of conditional survival and hazard

rate functions, F xix%>6 (f1) and hy, x,>1, (t1) respectively.

To ensure the monotonicity of conditional AI function, we plot the function for dif-
ferent values of #,. The estimates of conditional Al function for the data are plotted in
Figure 4, where the dotted line, the dotdashed line, the dashed line and the longdashed
line are plotted for ¢, = 0,6,9, 12 respectively. It is evident from Figure 4 that irrespect-
ive of second occurrence time of the tumor, the conditional AI functions of first occur-
rence times show an increasing trend, which indicates a faster ageing in the first
occurrence times of the tumor.

Acknowledgements

The first author wish to thank the support of the University Grants Commission, Government of
India, under the Special Assistance Program. We wish to thank the referees for constructive com-
ments and valuable suggestions.

References

Arnold, B. C. (1995). Conditional survival models. Recent Advances in Life-Testing and Reliability
(pp. 589-601). CRC Press.

Arnold, B. C. (2009). Flexible univariate and multivariate models based on hidden truncation.
Journal of Statistical Planning and Inference, 139(11), 3741-3749. https://doi.org/10.1016/j.jspi.
2009.05.013

Arnold, B. C., Castillo, E., & Sarabia, J. M. (1999). Conditional specification of statistical models.
Springer Verlag.

Arnold, B. C., & Kim, Y. H. (1996). Conditional proportional hazards models. In Lifetime data:
models in reliability and survival analysis (pp. 21-28). Springer.

Arnold, B. C., & Strauss, D. (1988). Bivariate distributions with exponential conditionals. Journal
of the American Statistical Association, 83(402), 522-527. https://doi.org/10.1080/01621459.
1988.10478627

Arnold, B. C., & Zahedi, H. (1988). On multivariate mean remaining life functions. Journal of
Multivariate Analysis, 25(1), 1-9. https://doi.org/10.1016/0047-259X(88)90148-0

Bhattacharjee, S., Nanda, A. K., & Misra, S. K. (2013). Reliability analysis using ageing intensity
function. Statistics & Probability Letters, 83(5), 1364-1371. https://doi.org/10.1016/j.spl.2013.
01.016

Ghosh, I., & Balakrishnan, N. (2017). Characterization of bivariate generalized Logistic family of
distributions through conditional specification. Sankhya B, 79(1), 170-186. https://doi.org/10.
1007/s13571-016-0123-9

Gumbel, E. J. (1960). Bivariate exponential distributions. Journal of the American Statistical
Association, 55(292), 698-707. https://doi.org/10.1080/01621459.1960.10483368

Gupta, R. C. (2008). Reliability studies of bivariate distributions with exponential conditionals.
Mathematical and Computer Modelling, 47(9-10), 1009-1018. https://doi.org/10.1016/j.mcm.
2007.06.016

Jiang, R., Ji, P., & Xiao, X. (2003). Aging property of unimodal failure rate models. Reliability
Engineering ¢ System Safety, 79(1), 113-116. https://doi.org/10.1016/S0951-8320(02)00175-8

Johnson, N. L., & Kotz, S. (1975). A vector multivariate hazard rate. Journal of Multivariate
Analysis, 5(1), 53-66. https://doi.org/10.1016/0047-259X(75)90055-X


https://doi.org/10.1016/j.jspi.2009.05.013
https://doi.org/10.1016/j.jspi.2009.05.013
https://doi.org/10.1080/01621459.1988.10478627
https://doi.org/10.1080/01621459.1988.10478627
https://doi.org/10.1016/0047-259X(88)90148-0
https://doi.org/10.1016/j.spl.2013.01.016
https://doi.org/10.1016/j.spl.2013.01.016
https://doi.org/10.1007/s13571-016-0123-9
https://doi.org/10.1007/s13571-016-0123-9
https://doi.org/10.1080/01621459.1960.10483368
https://doi.org/10.1016/j.mcm.2007.06.016
https://doi.org/10.1016/j.mcm.2007.06.016
https://doi.org/10.1016/S0951-8320(02)00175-8
https://doi.org/10.1016/0047-259X(75)90055-X

16 @ S. M. SUNOJ ET AL.

Kulkarni, H., & R. N. Rattihalli, (2002). Nonparametric estimation of a bivariate mean residual
life function. Journal of the American Statistical Association, 97(459), 907-917. https://doi.org/
10.1198/016214502388618690

Nanda, A. K., Bhattacharjee, S., & Alam, S. S. (2007). Properties of ageing intensity function.
Statistics ¢ Probability Letters, 77(4), 365-373. https://doi.org/10.1016/j.spl.2006.08.002

Nanda, A. K., & Jain, K. (1999). Some weighted distribution results on univariate and bivariate
cases. Journal of Statistical Planning and Inference, 77(2), 169-180. https://doi.org/10.1016/
S0378-3758(98)00190-6

Navarro, J., & Sarabia, J. M. (2010). Alternative definitions of bivariate equilibrium distributions.
Journal of Statistical Planning and Inference, 140(7), 2046-2056. https://doi.org/10.1016/j.jspi.
2010.01.044

Navarro, J., & Sarabia, J. M. (2013). Reliability properties of bivariate conditional proportional
hazard rate models. Journal of Multivariate Analysis, 113, 116-127. https://doi.org/10.1016/j.
jmva.2011.03.009

Navarro, J., Sunoj, S. M., & Linu, M. N. (2011). Characterizations of bivariate models using
dynamic Kullback-Leibler discrimination measures. Statistics ¢ Probability Letters, 81(11),
1594-1598. https://doi.org/10.1016/j.spl.2011.05.016

Sankaran, P. G., & Sreeja, V. N. (2007). Proportional hazard model for multivariate failure time
data. Communications in Statistics - Theory and Methods, 36(8), 1627-1641. https://doi.org/10.
1080/03610920601125888

SenGupta, A. (2006). Random stress-dependent strength models through bivariate exponential
conditionals distributions. In Advances in distribution theory, order statistics, and inference (pp.
327-339). Birkhauser.

Sunoj, S. M., & Rasin, R. S. (2018). A quantile-based study on ageing intensity function.
Communications in Statistics-Theory and Methods, 47(22), 5474-5484. https://doi.org/10.1080/
03610926.2017.1395049

Sunoj, S. M., & Vipin, N. (2019). Some properties of conditional partial moments in the context
of stochastic modelling. Statistical Papers, 60(6), 1971-1929. https://doi.org/10.1007/s00362-
017-0904-x

Szymkowiak, M. (2018). Characterizations of distributions through aging intensity. IEEE
Transactions on Reliability, 67(2), 446-458. https://doi.org/10.1109/TR.2018.2817739

Szymkowiak, M., & Iwinska, M. (2019). Some results about bivariate discrete distributions
through the vector of aging intensities. Communications in Statistics-Theory and Methods,
48(9), 2175-2184. https://doi.org/10.1080/03610926.2018.1459714


https://doi.org/10.1198/016214502388618690
https://doi.org/10.1198/016214502388618690
https://doi.org/10.1016/j.spl.2006.08.002
https://doi.org/10.1016/S0378-3758(98)00190-6
https://doi.org/10.1016/S0378-3758(98)00190-6
https://doi.org/10.1016/j.jspi.2010.01.044
https://doi.org/10.1016/j.jspi.2010.01.044
https://doi.org/10.1016/j.jmva.2011.03.009
https://doi.org/10.1016/j.jmva.2011.03.009
https://doi.org/10.1016/j.spl.2011.05.016
https://doi.org/10.1080/03610920601125888
https://doi.org/10.1080/03610920601125888
https://doi.org/10.1080/03610926.2017.1395049
https://doi.org/10.1080/03610926.2017.1395049
https://doi.org/10.1007/s00362-017-0904-x
https://doi.org/10.1007/s00362-017-0904-x
https://doi.org/10.1109/TR.2018.2817739
https://doi.org/10.1080/03610926.2018.1459714

	Abstract
	Introduction
	Ageing Intensity Function for Conditionally Specified Models
	Ageing Intensity Function for Conditional Survival Models
	Application to Real Data
	Acknowledgements
	References


