
Anakha K K & Chacko V M 

ON EXPONENTIAL-WEIBULL DISTRIBUTION 
RT&A, No 1 (56) 

Volume 15, March 2020  

20 

 

On Exponential-Weibull Distribution Useful in Reliability 

and Survival Analysis 

  
 Anakha K. K & Chacko V. M 

• 
Department of Statistics, St. Thomas’ College (Autonomous), Thrissur 

Kerala-680 001, India 

 Email: anakhaappu@gmail.com, chackovm@gmail.com 

 

 

Abstract 

 

In this paper, mixture of Exponential and Weibull distributions is considered for modelling real 

lifetime data. The basic mathematical properties including moments, generating functions, order 

statistics etc are derived. We obtain the reliability of stress-strength model. The maximum 

likelihood method is performed to estimate the parameters and a simulation study is conducted to 

validate the maximum likelihood estimators. The model is fitted to a real data set. 
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I. Introduction 

 
Lifetime distributions have a significant role in Reliability theory and survival analysis. 

Exponential, Gamma, Weibull and log-Normal distributions are some of the distributions 

commonly used for modeling lifetime data. Exponential and Weibull distributions are more 

popular than Gamma and log-Normal because the survival function of Gamma and log-Normal 

distributions doesn’t have a closed form.  

Mixture distributions have been used widely in reliability and survival analysis studies 

recently. It has been getting great attention, since mixture models are more appropriate and 

multiple causes of failure can be simultaneously modeled. Due to high flexibility, survival mixture 

models are better choice to analyze the reliability or survival data in situations when the data are 

believed to be heterogeneous and a single parametric distribution may not be sufficient to analyze 

the data. 

There are several mixture distributions and generalizations of existing distributions, available 

in literature. A study on Generalized Lindley distribution useful in reliability study  is given by 

Nadarajah et.al (2011).  Nadarajah and Gupta (2007) studied on Exponentiated Gamma 

distribution with application to drought data.   Mustafa et.al (2016) proposed Weibull Generalized 

Exponential Distribution. Gupta and Kundu  (2001) studied on Exponentiated Exponential family 

as an alternative to gamma and Weibull.   A detailed study on Statistical Models and Methods for 

Lifetime Data can be seen in Lawless (2003). Chacko et. al (2018) proposed Weibull-Lindly 

Distribution for modeling a bathtub shaped failure rate data. 

In section 2, the mixture of Exponential and Weibull distributions is considered. The failure 

rate or hazard rate function is given in section 3. Moments are given in section 4 and generating 

functions are given in section 5.  Conditional moments are given in section 6 and Quantile function 

is given in section 7. Mean deviation is given in section 8 and distributions of order statistics are 
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given in section 9. Bonferroni and Lorenz Curves are given in section 10. Reliability in stress-

strength model is given in section 11. Estimation of parameters using maximum likelihood 

estimation method is described in section 12. Simulation study and real data analysis are given in 

section 13 and 14 respectively. Conclusions are given in last section. 

 

2. Exponential-Weibull distribution 

 
Here we consider the mixture of two lifetime distributions, namely Exponential and Weibull 

distributions. The cumulative distribution function (cdf) of mixture of Exponential and Weibull 

distribution can be represented as 

F(x) = θFE(x) + (1-θ)FW(x), 

where θ = λ/(1+λ), λ > 0, 0,0,1)( −= − xexF x

E 
, the cdf of Exponential distribution with 

scale parameter λ and 
( ) ,0,1)( −= − 


x

W exF , α > 0, x>0, the cdf of Weibull distribution with 

scale parameter λ and shape parameter α. The mixture of Exponential and Weibull distributions 

can be written as, 
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The corresponding probability density function(pdf) is 
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Let X be a random variable, then we say that X has a ‘Exponential-Weibull distribution’ (EW(α, λ)) 

with scale parameter α and shape parameter λ, if it has the pdf (2). 

The reliability function of the EW(α, λ) distribution is  
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and corresponding failure rate or hazard rate function is  
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The mode for the mixture model EW(α, λ) can be found by solving the derivative of the (2) 
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By solving  (4), we observe that the mixture model EW(α, λ) is  unimodal. Figure 1 shows the pdf 

of EW(α, λ) for various choices of parameters. 
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Figure 1: pdf f(α, λ) of EW(α, λ) for values of parameters  

f1(x) = f(0.2, 0.4), f2(x) = f(1, 2), f3(x) = f(5, 10) and f4(x) = f(10, 2)   

 

3. Failure Rate Function 

 
The failure rate or hazard rate function of the mixture EW(α, λ) distribution is given as follows: 
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EW(α, λ) distribution has increasing, decreasing, upside-down bathtub shape behaviors for its 

failure rate. When α = 1; h(x) = λ, a constant, i.e. it has Exponential distribution with lack of 

memory property. From (3) 
1

)(lim
2

0
+

=→



xhx , a constant and 0)(lim =→ xhx . Figure 2 

shows the failure function of EW(α, λ) distribution with various choice of parameters. These 

shapes of failure function show that EW(α, λ) distribution fit in with both monotonic and non-

monotonic behaviors which are more likely to be come across when dealing with  lifetime data. 

 

 

Figure 2: Failure function of EW(α, λ) distribution for various choice of parameters 

 h1(x) = h(0.2, 0.6), h2(x) = h(1, 2), h3(x) = (2, 3) and h4(x) = (4, 2.5)  for h(α, λ) 
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4. Moments 

 
The rth raw moment of the EW(α, λ) distribution with pdf in (2) is given by, 
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The first four raw moments are, 
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The variances of EW(α, λ) distribution is given by; 
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Central moments can be obtained using raw moments. 

 

5. Generating Functions 

 
Let X be a random variable with probability density function (2). Its moment generating function 

(mgf) is given by, 
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The characteristic function (cf) of X is ( )itxeEt =)( , which is 
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The cumulant generating function (cgf) of X is given by, 

  KX(t) = )(log tX  
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6. Conditional Moments 

 
The conditional expectation for the EW(α, λ) distribution is given by, 
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In particular, 
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7. Quantile  Function 

The pth quantile say Q(p), p ϵ (0,1) is  defined by Q(p) = p. Let X be a EW random variable with pdf 

(2), then its quantile function is the root of the equation, 
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8. Mean Deviation 

The average amount of scatter in a population from either the mean or the median is termed as 

mean deviation. The mean deviation about mean and, mean deviation about median are defined 

by, 
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9.  Order Statistics 

 
Let X1, X2,.....Xn be a random sample of EW(α, λ)  distribution with cdf and pdf as in (1) and (2) 

respectively. Their corresponding order statistics is denoted by X(1) <  X(2) < X(3) ······ < X(n) . The pdf  

and cdf of the rth order statistic are, 
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The pdf of X(r) of EW(α, λ)  distribution is , 
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The pdf of 1st order statistic is  
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and the pdf of nth order statistic is 
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The distribution of order statistics can be used for obtaining reliability of series or parallel system.  
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10. Bonferroni & Lorenz Curves 

Bonferroni and Lorenz curves  are the popular tools for analyzing data emerging in Economics and 

Reliability. They are the fundamental tool for income analysis. The Bonferroni and Lorenz curves 

are defined by 
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respectively, where μ = E(X) and q = F-1(p). For a random variable X with pdf (2), the Bonferroni 

and Lorenz curves are 
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respectively. 

 

11. Stress-Strength Reliability 

 

Let X1 and X2 be two independent random variables, where X1 represents the strength and X2 

represents the stress. Suppose X1 and X2 follows EW distribution, with parameters (α1, λ1) and (α2, 

λ2) respectively. Then the system reliability is  
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12. Estimation of Parameters 

If X1, X2,....Xn  is a random sample from EW(α, λ), then its likelihood function is 
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It is familiar that maximum likelihood estimate of the parameters is the value of the parameter 

which maximizes the likelihood function. The partial derivatives of log L  with respect to unknown 

parameters α and λ are, 
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By equating the above equations to zero we get two non-linear equations. 

and 
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A solution of the non-linear equation gives the maximum likelihood estimates of α and λ. The 

normal equations cannot be solved by analytically, so that Newton-Raphson’s iteration method or 

any other numerical approximation methods are required.  Since the maximum likelihood 

estimator (MLE)s cannot be expressed in explicit forms, we consider their asymptotic distribution 

and confidence interval for α > 0 and λ > 0. For large samples, the MLE 






 

 ,  of ( ) ,  is 

( ) ( ) ( ) 
( )

0
1log1log

1
12

1

=
+

+−−

=

−−−

−−n

i
x

i

x

ii

x

i

ii

i

exe

xxex














Anakha K K & Chacko V M 

ON EXPONENTIAL-WEIBULL DISTRIBUTION 
RT&A, No 1 (56) 

Volume 15, March 2020  

29 

asymptotically normal with mean zero and variance covariance matrix I-1, where 
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We can derive the approximate (1- δ)100% confidence interval of the parameters α and λ. By using 

variance covariance matrix, the confidence intervals are 
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13. Simulation Study 

 
Here we performed a simulation study to validate the maximum likelihood estimation procedure 

for EW(α, λ)  distribution using Newton-Raphson method. For this purpose, we generated samples 

of sizes 25, 50, 100, 500, 1000 for different combinations of α and λ. We computed the maximum 

likelihood estimates for each sample and repeated this process thousand times then computed the 

bias and mean square error(MSE)s of the parameter estimates. 

The simulation is conducted for the selected values of α and λ. Here we considered α = 1 , 

λ = 1 ; α = 1 , λ = 1.2 ; α = 2 , λ = 1.5 and α = 3, λ = 1.5 as initial parameter values. The Tables 1, 2, 3 

and 4 gives the values of the estimates, bias and MSEs of the corresponding parameters. From the 

tables, it can be seen that, as sample size increases the bias and MSE of the estimates decreases.  

 

Table 1: Estimates, Bias and MSE for α = 1 and λ = 1 

N Estimates Bias MSE 

25 α =  1.293439 

λ =  1.038358 

0.2934385 

0.03835775 

0.81239 

0.05436978 

50 α =  1.087168 

λ =  1.019775 

0.08716756 

0.0197749 

0.0942621 

0.0244342 

100 α =  1.043303 

λ =  1.009724 

0.08716756 

0.0197749 

0.0942621 

0.0244342 

500 α = 1.011771 

λ =  1.000085 

0.01177124 

8.461249e-05 

0.005638945 

0.002088029 

1000 α = 1.006076 

λ =  1.000816 

0.006076378 

0.0008162859 

0.002621145 

0.001182026 
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Table 2 Estimates, Bias and MSE for α = 1 and λ = 1.2 

N Estimates Bias MSE 

25 α =  1.275423 

λ =  1.250335 

0.2754229 

0.05033506 

0.7921809 

0.07960997 

50 α =  1.123425 

λ =  1.227627 

0.1234254 

0.02762709 

0.1598412 

0.03496351 

100 α =  1.054752 

λ =  1.203634 

0.1234254 

0.02762709 

0.1598412 

0.03496351 

500 α =  1.008541 

λ =  1.198176 

0.008540759 

-0.001823803 

0.00660528 

0.003205042 

1000 α =  1.006074 

λ = 1.202171 

0.006073959 

0.002171475 

0.003285917 

0.001605966 

 

Table 3: Estimates, Bias and MSE for α =2 and λ = 1.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Estimates, Bias and MSE for α = 3 and λ = 1.5 

N Estimates Bias MSE 

25 α =  4.016253 

λ = 1.514296 

1.016253 

0.01429607 

10.68158 

0.04879727 

50 α = 3.388975 

λ = 1.508105 

0.3889748 

0.008105423 

1.99424 

0.02228412 

100 α = 3.177544 

λ =  1.504892 

0.1775441 

0.004891745 

0.7521783 

0.01055644 

500 α =  3.019977 

λ = 1.498705 

0.01997658 

-0.00129502 

0.09545959 

0.00199238 

1000 α =  3.007664 

λ =  1.500396 

0.007664266 

0.0003962086 

0.04595611 

0.001004574 

 

 

 

N Estimation Bias MSE 

25 α = 2.737266 

λ = 1.53967 

0.7372658 

0.03966983 

6.287694 

0.07501019 

50 α = 2.304472 

λ = 1.512797 

0.3044722 

0.01279734 

1.261294 

0.03309165 

100 α = 2.122918 

λ = 1.508089 

0.122918 

0.008089073 

0.3660359 

0.01584789 

500 α = 2.029113 

λ = 1.50079 

0.0291133 

0.0007895803 

0.04937387 

0.003182324 

1000 α = 2.012721 

λ = 1.500226 

0.01272087 

0.0002263662 

0.02528183 

0.001405722 
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14. Data Analysis 
 

In this section, we considered a real data set of survival times (in days) of 72 guinea pigs infected 

with virulent tubercle bacilli, observed and reported by Bjerkedal (1960). This data set is used to 

explain the supremacy of the EW(α, λ)  distribution. The data are presented in Table 5:  

 

Table 5: Data set of survival times of 72 guinea pigs infected with virulent tubercle bacilli 

12 48 60 75 109 258 15 52 60 76 110 258 22 53 61 76 121 263 24 54 62 81 127 297 24 54 63 83 129 341 32 

55 65 84 131 341 32 56 65 85 143 376 33 57 67 87 146 34 58 68 91 146 38 58 70 95 175 38 59 70 96 175 43 

60 72 98 211 44 60 73 99 233 

 

 

We fitted EW(α,λ) distribution to the given data set and compared the results with  Exponential 

distribution and Weibull distribution.  The comparison is carried out based on the values of 

Kolmogorov-Smirnov (K-S) statistic, p-value, log-likelihood value, Akaike information criterion 

(AIC) and Bayesian information criterion (BIC). 

The Kolmogorov-Smirnov test is defined by: 
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where F is the cdf of the distribution and N is the number of classes being ordered. 

The AIC and BIC are defined by 









−=



LkAIC ln22  

and                                                            ( ) 
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
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where 


L denote the maximum value of the likelihood function and k is the number of parameters 

and n is the sample size. By comparing the values of K-S statistic, p-values, likelihood value, AIC 

and BIC, Table 6 shows that EW(α, λ)  distribution has smallest K-S statistic value and largest p-

value among them. The AIC and BIC values of EW(α, λ) distribution indicates that the amount of 

information lost by the model is less than that of Exponential and Weibull distributions. This 

points out that the proposed model provided a better fit as well as more precise estimates.  

 

Table 6: Parameter Estimates, log-likelihood, p-value, AIC and BIC values of model fitted 

 

 

 

MODEL PARAMETER  

ESTIMATES 

LOG 

LIKELIHOOD 

K-S 

STATISTIC 

P-

VALUE 

AIC BIC 

MEW a=1.396574502 

b=0.009055284 

-397.1651 0.1459 0.09327 798.3302 802.8836 

WEIBULL a=1.393170797 

b=0.009045585 

-421.9635 0.14645 0.09114 847.927 852.4804 

EXPONENTIAL b= 0.01001842 -422.1097 0.2116 0.003168 846.2193 848.496 
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15. Conclusions 

 

In this paper, the mixture of Exponential and Weibull distributions are considered. The failure rate 

or hazard rate function is given. Moments, generating functions, Conditional moments,  Quantile 

function, Mean deviation,   distributions of order statistics,  and  Bonferroni and Lorenz Curves are 

obtained. Reliability in stress-streangth model is computed. Method of estimation of parameters 

using maximum likelihood estimation method is described and a simulation study is conducted to 

validate the maximum likelihood estimation procedure. A real data analysis is given, which shows 

the mixture distribution, EW(α, λ)  distribution is a better alternative in certain situations of 

reliability and survival analysis. 
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