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CHAPTER 1

INTRODUCTION

1.1 Introduction

Reliability theory deals with the interdisciplinary use of probability, statistics and

stochastic modeling, combined with engineering insights into the system design

and the scientific understanding of the failure mechanisms. The study of reliabil-

ity characteristics and performances requires a comprehensive understanding of

many different concepts of the system. System reliability describes the probabil-

ity of completing the mission with in a pre-specified time interval. An engineer

need to find the probability of successful functioning of many engineering systems

such as Airplanes, linear accelerators, power generation system etc. The compu-

tation of reliability or expected system performance is a problem for engineers and

manufacturers. Traditional reliability theory is built on a statistical framework
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2 Introduction

in which the system and its components can be in one of the two states such as

functioning state or failed state. As a result, the system structure function is a

binary function of binary variables. Reliability calculation is an important task

for increasingly sophisticated technological systems.

The reliability of a unit (a system or a component) is also defined as the

probability that a unit can perform satisfactorily for a specified period of time

without failure. Proper modeling of lifetime with appropriate statistical distribu-

tions makes reliability computation easy. Moreover reliability and maintenance

activities can be planned with the help of distribution of lifetime of the system.

Identification of failure rate model is crucial in reliability analysis to select ap-

propriate distribution for the given data. Many of the distributions available

in literature is not sufficient for explain distributional properties and reliability

analysis for the given data. So searching for more appropriate distributions for

the given data is an open challenge among researchers. Most of the systems are

subjected to certain type of stresses, so reliability computation of stress-strength

models using different distributions is an important research problem. Moreover

identification of failure rate model for the given data or transformed data makes

the selection of distribution for the given data easy. While considering lifetime

data, study on burn-in process is unavoidable to understand the length of time to

burn-in.
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1.2 Binary state system

In the binary state system, the components in the system are assumed to be

in one of the two states, functioning or failed, see Barlow and Proschan (1975).

For a system with n components, let xi indicate the state of the ith component,

i = 1, 2, . . . , n. That is,

xi =


1 if component i is functioning

0 if component i is failed.

for i = 1, 2, . . . , n. Similarly, let Φ be a binary random variable indicating the

state of the system

Φ =


1 if the system is functioning

0 if the system is failed.

We assume that the state of the system is a function of the states of the

components, so that we may write Φ = Φ(x), structure function or structure,

where x = (x1, x2, . . . , xn). For a series system,

Φ(x) =
n∏
i=1

xi = min(x1, x2, . . . , xn)

=


1, if each component is functioning

0, if atleast one of the components is failed.
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For a parallel system,

Φ(x) =
n∐
i=1

xi = max(x1, x2, . . . , xn)

=


1, if atleast one component is functioning

0, if all components are failed

where
∐n

i=1 = 1−
∏n

i=1(1− xi).

A system of components is coherent if its structure function Φ(x) is increasing

in each component and each component is relevant.

The reliability of a system is given by P (Φ(x) = 1) = h = EΦ(x). Under the

assumption of independence of components, we may represent system reliability

as a function of component reliabilities, pi, i = 1, 2, . . . , n. That is h = h(p), p =

(p1, p2, . . . , pn). Accordingly the reliability function of series structure is h(p) =∏n
i=1 pi and the reliability function of parallel structure is h(p) = 1−

∏n
i=1(1−pi).

In Barlow and Proschan (1975), we find that “reliability is the probability of

a device performing its purpose adequately for the period of time intended under

the operating conditions encountered”. Generally the period of time intended is

[0, t]. In many problems, we consider the life lengths of the components of the

system, for the reliability analysis. By lifetime we mean the maximum period for

which the unit can work satisfactorily whereas age of the unit is the time which it

requires for the completion of a particular mission without failure. In general, life

lengths are random variables and therefore lead us to a study of life distributions.

The reliability of a fresh unit corresponding to a mission of duration t is, by
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definition, F̄ (t) = P (T > t) = 1 − F (t), where F is the cumulative distribution

function (cdf) of lifetime of the unit.

There is a reason to believe that in many applications, the lifetime of the

system will be reduced beyond the specified age. That is, survival decreases as

the system ages. If units have this behavior, the corresponding life distributions

are called positive ageing distributions. To understand which real life distributions

are appropriate in reliability data analysis, we need to consider a notion of ageing.

Ageing can be conveniently defined in terms of the failure rate function.

1.2.1 Notion of ageing

The notion of ageing plays a significant role in reliability theory. Several classes

of life distributions based on the notion of ageing have been studied and explored

during the past several years. Most common ageing properties like increasing

failure rate (IFR), decreasing failure rate (DFR), increasing failure rate average

(IFRA), decreasing failure rate average (DFRA), new better than used (NBU),

new worse than used (NWU), new better than used in expectation (NBUE), new

worse than used in expectation (NWUE), increasing mean residual life (IMRL),

decreasing mean residual life (DMRL) etc. are discussed by Barlow and Proschan

(1975) and Deshpande et al. (1986). The discrete and continuous versions of these

classes have become very common in literature. Concepts of ageing describes how

a component or system improves or deteriorates with age. The most popular

lifetime distributions such as Exponential, Weibull, Gamma, Rayleigh, Pareto and

Gompertz have monotonic failure rate functions, see Lawless (1982). If we observe
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a constant failure rate pattern for a data, then Exponential distribution serves as

very useful model for reliability analysis. The Poisson process has many direct

and indirect applications in reliability, especially in formulating shock models. ‘No

ageing’ means that the age of a component does not influence the distribution of

the remaining life of the component or system. Positive ageing means adverse

effect of age exist on the random residual life of the component or system whereas

negative ageing means beneficial effect of age exist on the random residual life

of the component or system. Positive ageing describes the situation where the

residual lifetime tends to decrease, in some probabilistic sense, with increasing age

of the component. This situation is common in reliability engineering, as increased

wear and tear may worsen over time. Negative ageing, on the other hand, has the

opposite effect during the rest of life. Negative ageing is also known as beneficial

ageing. In other words, the residual lifetime is monotonic with respect to age.

However, in many practical applications, the effect of age is initially beneficial

but after a certain period of time, adverse indicating a ‘ware-out’ phase where

age is positive. Certain lifetime data, for example, human mortality, machine life

cycles and data from some biological and medical studies require non-monotonic

shapes like bathtub shape or upside-down bathtub shape. Initially, the failure rate

(death rate) of the newborn babies is very high especially in the first six months

after birth, caused by deformities, heart dysfunctions or other infant diseases.

Then, the risk of death decreases rapidly until it reaches its lowest level and

remains approximately constant for a long period. At some point, during the ages

between 50 and 80 the death risk increases over time. This kind of non-monotonic

ageing phenomenon is often modeled using life distributions that display bathtub
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shaped failure rate (BFR). Model the lifetime data using a distribution with BFR

is important in reliability analysis. An upside-down bathtub shape is analyzed

by Efron (1988) in the context of head and neck cancer data, in which the failure

rate initially increased, reached a maximum and then decreased before it finally

stabilized because of a therapy.

Let X be a continuous non-negative random variable (r.v) representing the

lifetime of a unit which is in operation. This unit may be a living organism, a

mechanical component, a system of components etc. Now we describe the failure

rate function or hazard function, see Barlow and Proschan (1975). Let F (x) be

the cdf of X, then the survival function of a fresh unit is F̄ (x) = 1 − F (x) =

P (X > x). Also let F (x|t) = P (X > t + x|X > t) be the survival probability or

reliability of a unit which has attained the age t. It can be seen that F̄ (x|t) =

F̄ (x+ t)/F̄ (t). Note that this represents the survival function of a unit of age t,

i.e., the conditional probability that a unit of age t will survive for an extra x

units of time. When t = 0, F̄0(x) = F̄ (x) is the survival function of a new unit.

When the derivative F ′(t) = f(t) exists, where f(t) be the probability density

function (pdf), failure rate (hazard rate) of a component is defined as r(t) =

f(t)/F̄ (t), F̄ (t) > 0. This can also be written as r(t) = lim
∆→0

Pr(t≤X<t+∆|t≤X)
∆

.

Thus for small ∆, r(t)∆ is approximately the probability of a failure occurring in

(t, t+ ∆] given no failure has occurred in (0, t].

It follows that, if r(t) exists, then − log F̄ (t) =
∫ t

0
r(x) dx represents the

cumulative failure rate (cumulative hazard rate) which may be denoted by H(t).

Hence F̄ (t) = exp
{
−
∫ t

0
r(x) dx

}
= exp{−H(t)}.
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Now we consider a unit which does not age stochastically, that is, probability

distribution of the residual lifetime at age t of the unit does not depend on t. Hence

F̄t(x) = F̄0(x) ∀ t, x > 0. This is equivalent to F̄ (t+x) = F̄ (t)F̄ (x) ∀ t, x > 0.

It is well known that among the continuous survival functions only the exponen-

tial survival function F̄ (x) = e−λx, x > 0, λ > 0 satisfies the above equation,

and this property is known as lack of memory property or no-ageing property of

Exponential distribution in reliability theory.

We recall the definition of failure rate behaviors IFR, DFR, IFRA, DFRA,

NBU, NWU, NBUE, NWUE, IMRL and DMRL (Barlow and Proschan (1975)).

Definition 1.2.1. When the density exists, IFR (DFR) is equivalent to r(t) =

f(t)/F̄ (t) is increasing (decreasing) in t ≥ 0. When F is not absolutely continu-

ous, F is said to be IFR (DFR) distribution if F̄ (x|t) is decreasing (increasing) in

t, 0 ≤ t <∞ for each x > 0. F is IFR (DFR) iff − log F̄ (t) is convex (concave).

Definition 1.2.2. F is said to be IFRA (DFRA) if and only if
∫ t

0
r(x) dx/t

increasing (decreasing) in t ≥ 0 equivalently −(1/t) log F̄ (t) is increasing (de-

creasing) in t ≥ 0 (This is equivalent to − log F̄ (t) being a star-shaped function)

equivalently F̄ (αt) ≥ F̄α(t), 0 < α < 1, t ≥ 0.

Definition 1.2.3. F is said to be NBU (NWU) if F̄ (x|t) ≤ (≥)F̄ (x) equivalently

F̄ (x+ t) ≤ (≥) F̄ (x)F̄ (t) for x, t ≥ 0 equivalently log F̄ (x+ t) ≤ (≥) log F̄ (x) +

log F̄ (t) equivalently
∫ t

0
r(u) du ≤ (≥)

∫ x+t

x
r(u) du.

Definition 1.2.4. F is said to be NBUE (NWUE) if
∫∞

0
F̄ (x|t) dx ≤ (≥) µ for

t ≥ 0.
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Definition 1.2.5. F is said to be IMRL (DMRL) if µ(t) =
∫∞

0
F̄ (x|t) dx is

increasing (decreasing) in t, i.e., µ(s) ≥ µ(t) for 0 ≤ s ≤ t.

We assume that the failure rate function r(t) is a real-valued differentiable

function r(t) : R+ → R+. As usual, by increasing we mean non-decreasing and

by decreasing, we mean non-increasing. r(t) is said to be

1. strictly increasing if r′(t) > 0 for all t;

2. strictly decreasing if r′(t) < 0 for all t;

3. bathtub shaped if r′(t) < 0 for t ∈ (0, to), r
′(to) = 0, r′(t) > 0 for t > to;

4. upside-down bathtub shaped if r′(t) > 0 for t ∈ (0, to), r
′(to) = 0, r′(t) < 0

for t > to;

5. modified bathtub shaped if r(t) is first increasing and then bathtub shaped;

6. roller-coaster shaped if there exist n consecutive change points 0 < t1 <

t2 < . . . < tn <∞ such that in each interval [tj−1, tj], 1 ≤ j ≤ n+ 1, where

to = 0, tn+1 =∞, r(t) is strictly monotone and it has opposite monotonicity

in any two adjacent such intervals.

A class of life distributions that has received considerable attention is the class of

BFR life distributions, see Rajarshi and Rajarshi (1988) for a systematic review.

We say that F is BFR model, if failure rate decreases first, then remains constant

for a period, and eventually increases over time. In other words, the failure rate

function has bathtub shape. This corresponds to the three distinct phases of a
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unit: early life, useful life and wear out as shown in Figure 1.1. In the initial

region that begins at time zero, product is characterized by a high but rapidly

decreasing failure rate. This region is known as the early failure period (also

referred to as infant mortality period). Next, the failure rate levels off and remain

roughly constant for the majority of the life of the product. This long period of

a constant failure rate is known as the useful period. Many systems spend most

of their lifetimes operating in this flat portion of the bathtub curve. Finally, if

unit remain in use long enough, the failure rate increase as materials wear out and

degradation failures occur at an ever increasing rate. This is called the wear-out

period (Rajarshi and Rajarshi (1988)).

Another important family of life distributions is known as the upside-down

bathtub-shaped failure rate (UBFR) class. Chang (2000) proposed a UBFR

model. We say that F is its upside-down bathtub shaped failure rate, its failure

rate increases first, then remains constant for a period, and eventually decreases

over time.

Figure 1.1: Bathtub failure rate curve



Introduction 11

1.3 Failure Rates of Mixtures of Distributions

Mixture of distributions arise naturally in a number of reliability situations. For

example, suppose a manufacturer produces p100 percent of a certain product in

production line 1 and (1−p)100 percent in production line 2, 0 ≤ p ≤ 1. Suppose,

the life length of a unit produced in production line 1 has distribution F1, where as

the life length of a unit produced in production line 2 has distribution F2(6= F1).

After production, units from both production lines will be allowed to campaign

together, in such a way that outgoing lots consist of a random mixture of the

output of the two production lines. Then, a unit selected at random from a lot

would have life distribution F = pF1 + (1− p)F2, a mixture of the two underlying

distributions. More generally, the distribution being mixed may be uncountably

infinite in number. See Barlow and Proschan (1975) for more details.

Mixtures are important in burn-in procedures. The pdf of a mixture of two sub-

populations with density functions f1 and f2 is f(t) = pf1(t) + (1 − p)f2(t), t ≥

0, 0 ≤ p ≤ 1. Survival function of a mixture is also a mixture of the two

survival functions, i.e., F̄ (t) = pF̄1(t) + (1 − p)F̄2(t). The mixture failure rate is

r(t) = pf1(t)+(1−p)f2(t)

pF̄1(t)+(1−p)F̄2(t)
where fi(t), F̄i(t) are the pdf and survival function of the

distribution having failure rate ri(t), i = 1, 2, see Lai and Xie (2006) for more

details.

Below Lai and Xie (2006) has given some examples in mixture failure rates.

Example 1.3.1. Consider two IFR Weibull distributions with pdfs f1(t) = 2t exp{−t2},

t > 0 and f2(t) = 3t2 exp{−t3}, t > 0. If p = 0.5, r(t) is IFR.
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The next example shows that a mixture of two IFR distributions results in a

DFR distribution.

Example 1.3.2. Let r1(t) = 1 − exp{−5t}, t > 0, r2(t) = 6 − exp{−5t}, t > 0.

We note that r1(t) strictly increases to 1 and r2(t) strictly increases to 6. However,

if p = 0.5, r(t) is DFR and strictly decreases to 1.

Example 1.3.3. Take f1(t) = exp{−t}, t > 0, pdf of exponential distribution,

f2(t) = 16t exp{−4t}, t > 0, pdf of Gamma distribution with IFR property. Let

p = 0.5. In this case, r(t) is UBFR.

Example 1.3.4. Let f1(t) = 4 exp{−4t}, t > 0, pdf of exponential distribution,

f2(t) = t exp{−t}, t > 0, pdf of Gamma distribution with IFR property. Let

p = 0.5. Then r(t) is BFR.

Example 1.3.5. Consider two Weibull distributions, f1(t) = 2t exp{−t2}, t > 0

and f2(t) = 4t3 exp{−t4}, t > 0. Let p = 0.5; both r1(t) and r2(t) increases to ∞.

The mixture failure rate r(t) is BFR, see Jiang and Murthy (1998).

Example 1.3.6. Consider the mixture of two Gamma probability densities: f(t) =

pf1(t) + (1− p)f2(t) where fi(t) = λαi tαi
Γ(αi)

e−λt, t > 0, αi, λ > 0, i = 1, 2. Assum-

ing α1 < α2, Glaser (1980) was able to determine the shape of the failure rate

of the distribution in all cases except for one case: α1 > 1, α2 − α1 > 0 with

α1− 1 < (α2− α1− 1)2/4. For this case, he conjectured that the mixture density

is IFR.

Jiang and Murthy (1998) categorized the possible shapes of failure rate func-

tion for a mixture of two Weibull distributions. The mixture failure rate of two
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strictly IFR Weibull distributions with the same shape parameter can be either

BFR or IFR. The asymptotic behavior of mixtures of exponentials has been stud-

ied by Clarotti and Spizzichino (1990). Al-Hussaini and Sultan (2001) has given

a comprehensive review on reliability and failure rates of mixture models. Finkel-

stein and Esaulova (2001) considered several types of continuous mixtures of IFR

distributions.

1.3.1 Mean Residual Life

Let F̄ be the survival function of an item with a finite first moment µ and X be

the r.v that corresponds to F̄ assuming F (0) = 0. The residual life r.v at age t is

same as the remaining lifetime after the time of inspection. The mean residual life

(MRL) (also known as the mean remaining life) is defined as µ(t) = E(X−t|X > t)

which can be given as

µ(t) = E(X − t|X > t) =

[
1

F̄ (t)

∫ ∞
t

F̄ (x) dx

]
. (1.3.1)

Clearly, µ(0) = µ = E(X). If F has a density f , then we can write

µ(t)− t =

(∫ ∞
t

x f(x) dx

)
/F̄ (t). (1.3.2)

Park (1985) found that, the time at which a bathtub failure rate is a minimum

does not maximize the mean residual life. The mean residual life function µ(t) in

the constant failure rate region of a bathtub shaped failure curve is not constant

but decreasing.
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1.3.2 Decreasing Percentile Residual Life Function

The α-percentile residual life function (α-percentile RLF) was first defined by

Haines and Singpurwalla (1974). Joe and Proschan (1984) showed that this func-

tion may be expressed as

qα,F (t) = F−1(1− (1− α)F̄ (t)). (1.3.3)

A distribution is DFRL-α, if and only if for some α, 0 < α < 1, qα,F (t) decreases

in t.

Launer (1993) has shown that a BFR distribution is DPRL-α for all αo < α < 1

for some αo > 0, provided there exists a to with r(to) ≥ r(0).

1.4 Stress-strength Reliability

The stress-strength reliability model has attracted a great deal of attention in

the fields of reliability engineering, medicine and psychology. In manufactur-

ing process, the information about the mechanical reliability of design through

stress-strength model prior to production can significantly decrease the cost of

production. The concept of stress and strength in engineering devices have been

become the deciding factors of failure of the devices. It has been customary to

define safety factors for longer lives of systems in terms of the inherent strength

that they have and the external stress being experienced by the systems. If x0 is

the fixed strength and y0 is the fixed stress that a system is experiencing, then



Introduction 15

the ratio x0
y0

is called safety factor and the difference x0 − y0 is called safety mar-

gin. Thus in the deterministic stress-strength situation the system survives only

if the safety factor is greater than 1 or equivalently safety margin is positive, see

Pratapa (2012).

In the traditional approach to design a system, the safety factor or the safety

margin is constructed to resolve uncertainties in the values of stress and strength.

Uncertainties in the stress and strength of a system therefore tend to cause the

system life to be viewed as random variables. However, the probabilistic analysis

demands the use of random variables for the concepts of stress and strength for

the evaluation of survival probabilities of such systems. This analysis is particu-

larly useful in situations in which no fixed bound can be put on the stress. For

example, with earthquakes, floods and other natural phenomena, stress can lead

to failures of systems with unusually small strengths. Similarly when economics

is the primary criterion rather than safety, it is best to compare survival perfor-

mance by understanding the increase in the likelihood of failure when stress and

strength are close to each other.

1.5 Total Time on Test Transform

Total time of test (TTT) transform is widely accepted as a statistical tool with

applications in various fields such as reliability analysis, econometrics, crypto-

currency modeling, tail ordering, order of delivery, etc. An important part of the

literature on TTT transformation deals with reliability issues, including the nature

of aging features, model identification, testing of assumptions, age replacement
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policies, adjusting life distributions, and defining new types of life distributions.

TTT transform of a lifetime distribution F is defined as

H−1
F (t) =

∫ F−1(t)

0

(1− F (x)) dx t ∈ [0, 1]

where F−1(t) = inf{x : F (t) ≥ t}. The scaled TTT transform is defined as

φ(t) =
H−1
F (t)

H−1
F (1)

. A detailed description on TTT can be seen in Barlow and Campo

(1975).

1.6 Burn-in

Burn-in is a widely used engineering screening technique to eliminate vulnerable

units. Systems can be electronic systems such as circuit boards having different

types of chips and printed circuits. An air conditioner having a condenser, fan

and circuits is an example for a typical mechanical system. A population of

components may include both strong components with long lifetimes and weak

components with very short lifetimes. To ensure that only strong components

are given to the customer, a manufacturer can subject all components to tests

in normal or harsh use conditions so that the weak components will fail during

the test, leaving only the strong components. This type of test can be performed

on systems to determine weak or strong components or to detect defects during

assembly. These tests are usually called burn-in tests in reliability.

Let the lifetime T of a component have a continuous bathtub shaped failure

rate r(t). This component is required to accomplish a mission which lasts for
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time τ . The reliability of completing the mission is thus F̄ (τ). If we burn-in

the component for a time b and if the component survives the burn-in, then the

conditional reliability of accomplishing the mission is given by

F̄ (b+ τ)

F̄ (b)
= exp

{
−
∫ b+τ

b

r(t) dt

}
.

1.7 Goodness of Fit Tests

There are different methods that can be used for testing whether a given random

sample x1, x2, . . . , xn, of n observations, are coming from a population with specific

distribution or for comparing the underlying distribution with other distributions

for fitting a given data set. Some of the test for the confirmation of distributions

are given below.

1.7.1 Kolmogorov-Smirnov Test

Kolmogorov (1933) proposed the Kolmogorov-Smirnov test (K-S test) for testing

whether a given random sample x1, x2, . . . , xn belongs to a population with a

specific distribution or not. The K-S test calculates the distance between the

empirical distribution function of the given sample and the estimated cdf of the

distribution. The null and alternative hypotheses are H0 : sample follow the

specific distribution versus H1 : H0 is false.

Let F (xi) denote the value of the cumulative distribution function of the can-

didate distribution at xi and F̂ (xi) denote the value of the empirical distribution
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function at xi. The value of the K-S test statistic is defined by

K-S test statistic = max
{
|F (xi)− F̂ (xi)|, |F (xi)− F̂ (xi−1)|

}
,

where F̂ (xi) =
{xj :xj≤xi}

n
.

The computed K-S statistic is then compared with the tabulated K-S value at

a pre-specified significance level to decide whether a distribution is appropriate

or not. Moreover, if there are more than one distributions to be compared, the

distribution with smaller K-S value will be more appropriate to fit the given

sample.

1.7.2 Anderson-Darling Test

The Anderson-Darling (A-D) test is used to test if a sample of data is coming

from a population with a specific distribution. It is a modification of the K-S test

and gives more weight to the tails than does the K-S test. The A-D test makes use

of the specific distribution in calculating critical values. This has the advantage

of allowing a more sensitive test and the disadvantage that critical values must

be calculated for each distribution, see Stephens (1974). The A-D test is defined

as: H0 : The data follow a specified distribution. H1 : The data do not follow the

specified distribution. The test statistic is

A2 = −N − S
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where

S =
N∑
i=1

(2i− 1)

N
[logF (Yi) + log 1− F (YN+1−i)].

F is the cdf of the specified distribution. Note that the Yi are the ordered data.

1.7.3 Akaike’s information criterion

Akaike’s information criterion (AIC) compares the quality of a set of statistical

models to each other. AIC will take each model and rank it from the best to

the worst. The “best” model may be inappropriate or overly compatible. AIC is

usually calculated with software. The basic formula is defined as:

AIC = −2l + 2K,

where:

• K is the number of model parameters.

• l denotes the log-likelihood function. Log-likelihood is a measure of model

fit. The higher the number, the better the fit.

1.7.4 Bayesian information criterion

Bayesian information criterion (BIC) is a criterion for model selection among a

finite set of models. It is based, in part, on the likelihood function, and it is closely
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related to AIC. Mathematically BIC can be defined as

BIC = −2l +K log n,

• K is the number of model parameters.

• l denotes the log-likelihood function. Log-likelihood is a measure of model

fit.

• n is the sample size.

The theory of AIC requires that the log-likelihood has been maximized. When

comparing models fitted by maximum likelihood to the same data, the smaller the

BIC, the better the fit. Standard Normal (SN) distribution is uses for obtaining

asymptotic distribution of estimators.

1.8 Objectives of the Study

The objectives of the study are listed below.

1. To study on bathtub shaped failure rate distributions and its applications

for modeling life time data.

2. To propose new bathtub shaped failure rate models.

3. To compare existing bathtub shaped failure rate distributions.

4. To study on the stress-strength reliability models and its estimation process.
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5. To enhance the application of bathtub shaped failure rate distribution in

system engineering and other scientific area.

6. To develop the theory and application of TTT transformation in identifica-

tion of bathtub shaped failure rate model.

7. To explore the applications of bathtub shaped failure rate models in Burn

in process.

1.9 An Outline of the Present Work

The thesis is arranged into eight chapters. Two new lifetime distributions for

modeling bathtub shaped failure rate distributions and one lifetime distribution

for modeling upside down bathtub shaped failure rate distribution are proposed.

Stress-strength reliability estimation in the context of multi-component reliability

data has been done using Three-Parameter Generalized Lindley (TPGL) distri-

bution and Power Lindley (PL) distribution. Identification procedure of failure

rate distribution of increasing convex (concave) transformation of lifetime data is

given.

The chapters of thesis are organized as below.

In chapter 1, basic concepts and definitions used in this thesis are given.

In chapter 2, extensive reviews of some of these bathtub (or upside down bath-

tub) shaped failure rate distributions have been presented. This review includes

the existing bathtub life distributions that have been proposed in the last several
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years. In order to attain the results of proposed research work, a review study has

been conducted on increasing, decreasing, bathtub shaped, upside down bathtub

shaped and constant failure rate distributions. The importance of bathtub shaped

failure rate distribution and its practical relevance are studied.

In chapter 3, two new bathtub shaped failure rate distributions, Generalized

X-Exponential Distribution and Weibull-Lindley distribution are proposed and

studied in detail. The new distributions provided a better fit than other well

known distributions. Some of the mathematical properties, moments, moment

generating function, characteristics function and order statistics, etc., are studied.

The estimation of parameters by maximum likelihood is discussed. The proposed

distributions are applied to several real data sets and compared with some other

bathtub shaped life distributions.

In chapter 4, a new upside down bathtub shaped failure rate distribution,

based on DUS transformation using Lomax distribution as baseline, is proposed.

A very few study on upside down bathtub shaped failure rate models are available

in literature. The shapes of its probability density and failure rate functions

are investigated. Some of the properties including moments, moment generating

function, characteristic function, quantiles, entropy of DUS Lomax distribution

are studied. Distributions of minimum and maximum are obtained. Estimation

of parameters of the distribution is performed via maximum likelihood method.

Reliability of stress-strength models is derived. Using a simulation study the

performance of the maximum likelihood estimators (MLE) with respect to biases

and mean squared errors are studied. The proposed distribution is applied to

three real data sets and compared with other lifetime distributions.
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In manufacturing, if we have any information about the mechanical reliability

of design through stress-strength model prior to production, a manufacturer can

significantly decrease the cost of production. The inherent strength and external

stress being experienced by the systems are customary to define safety factors for

their long lives. In chapter 5, stress-strength reliability in two different cases using

three parameter Generalized Lindley distribution and Power Lindley distribution

are discussed. The procedure of estimating reliability of single component and

multi-component stress-strength models are considered. Performance of the MLEs

are presented by the way of a simulation study. Two applications are provided to

show how the distribution work in practice using real data sets.

The total time on test transforms is a widely accepted statistical tool, which

has applications in different fields such as reliability analysis, econometrics, stochas-

tic modeling, tail ordering, ordering of distributions, etc. TTT transform tech-

nique is discussed in chapter 6 for the problem of identification of failure rate

behavior of increasing convex (concave) function of random variable based on dis-

tributional properties of the baseline lifetime variable. In this chapter, various

properties of TTT transform of increasing convex (concave) function of random

variable are studied. Some results about the ageing patterns are investigated.

Burn-in is a technology that used to improve the quality of components and

systems which delivered to a customer using the item under normal or accelerated

environmental conditions prior to export. If the burn-in procedure is effective, the

items delivered to the user are better than those delivered without burn-in. In

chapter 7, expression of long run average cost function per unit time for obtaining

optimal burn-in time and optimal age using Weibull Lindley and and Generalized
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X-Exponential distributions are given.

In Chapter 8, the conclusion of the thesis is given and presented possible future

work. The references are appended at the end of the thesis.


