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CHAPTER 2

REVIEW OF BATHTUB-SHAPED FAILURE

RATE DISTRIBUTIONS

2.1 Introduction

Attempts in modeling or summarizing survival data are mainly based on three

types of distributions: lifetime distributions with constant failure rate, IFR and

DFR. However, there seems to be an increased interest in non-monotone failure

rate distributions, especially BFR distributions and UBFR distributions. These

distributions serve as adequate models for the survival time of many industrial

products. Such failure rate curves are also known as the U-shaped or J-shaped

curves. Many parametric families of BFR distributions have been introduced in

literature during past several years. The BFR distributions are widely used in
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reliability engineering and survival analysis. Monotonic ageing concepts are pop-

ular among many reliability engineers. However, in many practical applications,

the effect of age is initially beneficial, but after a certain period of time, it is

effecting adversely. Many products, especially electronic, electro-mechanical and

mechanical items have BFR distribution, see Barlow and Proshan (1975).

Glaser (1980) and Lawless (1982) have been given many examples of BFR life

distributions. Hjorth (1980) described BFR distributions by mixtures of a set of

IFR distribution for competing risk model. Lai et al. (2001) discussed the BFR

distributions. Xie et al. (2002) studied modified Weibull extension models with

BFR function useful in reliability related decision making and cost analysis. Xie

et al. (2003) investigated some models extending the traditional two-parameter

Weibull distribution. Navarro and Hernandez (2004) studied the shape of reliabil-

ity functions by using the s-equilibrium distribution of a renewal process and also

studied how to obtain distribution with BFR using mixture of two positive trun-

cated Normal distributions. Kundu (2004) proposed two parameter exponentiated

Exponential distribution and discussed several properties and different estimation

procedures. Wondmagegnehu et al. (2005) studied the failure rate of the mixture

of an Exponential distribution and a Weibull distribution. Block et al. (2008)

discussed the continuous mixture of whole families of distribution having a BFR

functions. Sarhan and Kundu (2009) derived the generalized linear failure rate

distribution and its properties.

Extension of Weibull distributions to make it compatible with BFR data are

introduced by Mudholkar and Srivastava (1993), Xie and Lai (1995), and Xie

et al. (2002). Chen (2000) also introduced a two parameter BFR model for
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survival data analysis. Wang (2000) studied an additive model based on the Burr

XII distribution for lifetime data with BFR. Wang et al. (2014) derived Weibull

extension with BFR function based on type-II censored samples.

Recently, Lemonte (2013) proposed a new exponential type distribution with

constant failure rate, IFR, DFR, UBFR and BFR function which can be used in

modeling survival data in reliability problems and fatigue life studies. Zhang et

al. (2013) investigated the parameter estimation of 3-parameter Weibull related

model with decreasing, increasing, bathtub and upside-down bathtub shaped fail-

ure rates. Parsa et al. (2014) investigated the difference between the change

points of failure rate and mean residual life functions of some generalized Gamma

type distribution due to the capability of these distribution in modeling various

BFR functions. Wang et al. (2015) discussed new finite interval lifetime distribu-

tion model for fitting BFR curve. Shehla and Ali khan (2016) studied reliability

analysis using an exponential power model with BFR function. Zeng et al. (2016)

derived two lifetime distributions, one with 4 parameters and the other with 5

parameters, for the modeling of BFR data.

Shafiq and Viertl (2017) proposed generalized estimators for the parameters

and failure rates of BFR distributions used to model fuzzy lifetime data. Gauss et

al. (2018) introduced new Lindley Weibull distribution which accommodates uni-

modal and bathtub shaped failure rates. Dey et al. (2019) introduced a new distri-

bution alpha-power transformed Lomax distribution with decreasing and UBFR

distribution. Al-abbasi et al. (2019) proposed a three parameter generalized

Weibull uniform distribution that extends the Weibull distribution to have BFR

or DFR property. Shoaee (2019) investigated two bivariate models, viz., bivariate
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Chen distribution and bivariate Chen-Geometric distribution, that has BFR or

IFR functions. Ahsan et al. (2019) studied the reliability analysis of gas-turbine

engine with BFR distribution. Chen and Gui (2020) discussed the estimation

problem of two parameters of a lifetime distributions with a BFR functions based

on adaptive progressive type-II censored data.

The aim of this chapter is to provide a review of BFR and UBFR models.

Basic definitions and results are given in section 2.2. Construction of BFR or

UBFR model is recalled in section 2.3.

2.2 Definitions and Results

In this section, some definitions of BFR distributions are presented.

Definition 2.2.1. (Glaser, 1980). Let F be a cdf with a failure rate function r(t)

which is continuous. Then F is BFR distribution if there exists a to such that:

(a) r(t) is decreasing for t < to,

(b) r(t) is increasing for t > to. i.e., r′(t) < 0 for t < to, r
′(to) = 0 and r′(t) > 0

for t > to.

Here, when r(t) is increasing (decreasing), it is strictly increasing (decreasing).

The bathtub curves given in this definition would probably represent some U-

shaped tubs. There is no interval for which r(t) is a constant.

Definition 2.2.2. (Deshpande and Suresh, 1990). A life distribution F having

support on [0,∞) is said to be a BFR distribution if there exists a point to such
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that − log F̄ (t) is concave in [0, to) and convex in [t0,∞).

Definition 2.2.3. (Mitra and Basu, 1995). An absolutely continuous life distri-

bution F having support [0,∞) is said to be a BFR distribution if there exists a,

to ≥ 0 such that r(t) is non-increasing for [0, to) and non-decreasing on [to,∞).

Definition 2.2.4. (Mi, 1995). A lifetime distribution F is said to be a BFR

distribution if there exists 0 ≤ t1 ≤ t2 <∞ such that:

(a) r(t) is strictly decreasing if 0 < t < t1;

(b) r(t) is a constant if t1 ≤ t ≤ t2; and

(c) strictly increasing if t > t2.

The points t1 and t2 are the change points of r(t). If t1 = t2 = 0, then r(t)

becomes IFR, and if t1 = t2 → ∞, then r(t) becomes DFR. In general, if t1 = t2

then the interval for which r(t) is constant degenerates to a single point. The

points in the interval (t1, t2) are not change points according to Mi (1995).

If F is not absolutely continuous, then BFR property can be explained through

the conditional reliability function

F̄ (x|t) =
F̄ (t+ x)

F̄ (t)
, F̄ (t) = 1− F (t) > 0, t > 0, x > 0. (2.2.1)

Definition 2.2.5. (Haupt and Scabe, 1997). F is said to be BFR if there exists

a to such that

• F̄ (x|t) is increasing in t for 0 ≤ t < to, 0 ≤ x ≤ (to − t),

• F̄ (x|t) is decreasing in t for to < t <∞, x ≥ 0.
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2.2.1 Some Basic Properties

Mitra and Basu (1996a) presented some basic properties of the survival functions

and moments of a BFR distribution. Let T represent lifetime r.v with cdf F .

• Suppose F is BFR, then F̄ (t) ≤ Ḡ(t) where G is exponential with mean

r(to)
−1. Here to is a change point at which r(t) is minimum.

• E(T k) ≤ Γ(k+1)
{r(to)}k , k > 0.

• A BFR life distribution F with E(T k) = Γ(k+1)
{r(to)}k is necessarily an exponential.

• Convolution of BFR distributions is not necessarily BFR.

• The mixture of BFR distributions need not be BFR.

• Suppose we have a competing risk model: F̄ (t) = F̄1(t)F̄2(t) where the

lifetime of each component is BFR with a common turning point to. Then

the lifetime of the system is again has a BFR distribution with to as one of

its turning points.

• A parallel system of two independent BFR components need not be BFR.

In many distributions, survival functions and failure rate functions do not have

an analytically tractable form. In such cases, Glaser’s technique can be applied,

Glaser (1980).

Assume that the pdf f(t) of T is positive on (0,∞) and that it is twice dif-

ferentiable on (0,∞). Let η(t) = −f ′(t)
f(t)

, g(t) = 1
r(t)

, then, we have following the

results. Clearly g′(t) =
∫∞
t

[f(y)/f(t)] [η(t)− η(y)] dy.
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Theorem 2.2.1. (Glaser, 1980)

(a) If η′(t) > 0 for all t > 0, then F is IFR.

(b) If η′(t) < 0 for all t > 0, then F is DFR.

(c) ∃ to > 0 such that η′(to) = 0, η′(t) < 0 ∀ t ∈ (0, to) and η′(t) > 0 ∀ t > to.

(i) If ∃ yo > 0 such that g′(yo) = 0, then F is BFR.

(ii) If there does not exists yo > 0 such that g′(yo) = 0, then F is IFR.

(d) ∃ to > 0 such that η′(to) = 0, η′(t) > 0 ∀ t ∈ (0, to), and η′(t) < 0 ∀ t > to.

(i) If ∃ yo > 0 such that g′(yo) = 0, then F is UBFR.

(ii) If there does not exists yo > 0 such that g′(yo) = 0, then F is DFR.

We can use η′(t) when the failure rate function is very complicated or not

determined.

Following two results from Glaser further ease the computations by avoiding

the complications which usually arise because of the function g(t).

Lemma 2.2.2. (a) Let ε = lim
t↓0

f(t). If the condition (c) of Theorem 2.2.1 hold

and if ε = ∞, then the corresponding distribution is BFR. If the condition

(d) of Theorem 2.2.1 hold and if ε = 0, then the corresponding distribution

is UBFR.

(b) Let δ = lim
t↓0

g(t)η(t). If the condition (c) of Theorem 2.2.1 hold and if δ > 1,

then the corresponding distribution is BFR. If the condition (d) of Theorem

2.2.1 hold and if δ < 1, then the corresponding distribution is UBFR.
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The conditions on ε and δ in the above results are reflections of the high infant

mortality rate, a characteristic of the bathtub distributions.

2.3 Construction Techniques for Bathtub Distri-

butions

There are lots of ways available for the construction of BFR distribution. Schabe

(1994a) has constructed BFR distributions from DFR distributions by trunca-

tions. Techniques for construction of a BFR model are given below.

1. Convex function: Define a BFR by choosing a positive convex function

r(t) over (0,∞) such that
∫
r(t) dt = ∞ (Rajarshi and Rajarshi, 1988).

The distribution having a failure rate function r(t) = exp{α + βt + γt2}, a

strictly increasing function of BFR function, is BFR.

2. Glaser’s technique: Glaser’s theorem (Theorem 2.2.1 above) can be ap-

plied to derive new bathtub distributions. i.e., we can choose a function η(t)

that satisfies the conditions of the theorem.

3. Function of random variables: This procedure is due to Griffith (1982).

Let T be a continuous r.v and let g(u) be a strictly increasing function which

is differentiable on [0,∞) with g(0) = 0. Let g−1 be the inverse function of

g. Then the failure rate function of g(T ) is given by

rg(T )(t) = rT (g−1(t))[g−1(t)]′ (2.3.1)
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Let T be an exponential r.v and let g(u) be a strictly increasing differentiable

function on [0,∞) with g(0) = 0. If g is a convex on (0, τ ] and concave on

[τ,∞) for a positive τ , then the distribution of g(T ) is a bathtub distribution.

4. Series system (competing risk model): Suppose we have a series system

of two independent components. Everyone knows that the system failure

rate is the sum of the two component failure rates. If one of them has IFR

distribution and the other has DFR distribution, the system distribution

may be BFR. This type of models are obtained by Murthy et al. (1973).

5. Mixtures: Mixtures of distributions often give rise to bathtub distributions.

For example, Glaser (1980) showed that Gamma mixture has BFR distri-

bution. The mixture of the two increasing linear failure rate distributions

provided a BFR distribution, Block et al. (2008).

6. Sectional models: Shooman (1968) reported BFR with piecewise linear

shape in three areas. Other sectional models that give rise to bathtub dis-

tributions were given in Murthy and Jiang (1997).

7. Polynomial of finite order: Jaisingh et al. (1987) suggested a polynomial

of finite order failure model: r(t) = a0 + a1t + . . . + antn. As the constants

ai, i = 0, . . . , n may be positive or negative, bathtub shapes for r(t) can be

achieved.

8. TTT Transform: In Kunitz (1989) and Haupt and Schabe (1997), the

TTT transform was used to construct parametric bathtub life distributions.
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9. Truncation of DFR distribution: Schabe (1994a) has constructed BFR

distributions from DFR distributions by truncations.

2.4 Some BFR and UBFR Distributions

Several parametric families of BFR and UBFR life distributions have been con-

structed in various contexts over the past two decades. Ideally, we should classify

them into groups according to some common characteristics. (1) Lifetime distri-

butions with explicit expressions for failure rates and (2) Lifetime distributions

with inefficient or unknown failure rate functions.

Quadratic model and its generalization

Bain (1978) considered a quadratic failure rate model,

r(x) = α + βx+ γx2, α ≥ 0, − 2(αγ)1/2 ≤ β < 0, γ > 0, x > 0, (2.4.1)

which has a bathtub shape. Here, r(0) = α, r(x) → ∞ as x → ∞. It is easy to

verify that r̂(x) = er(x) also has a bathtub shape if r(x) has a bathtub shape.

A flexible family

Gaver and Acar (1979) have proposed a BFR model with r(x) = λ+ g(x) + k(x)

where g(x) is a non-negative decreasing function of x with lim
x→∞

g(x)→ 0 whereas

k(x) is an increasing function of x such that k(0) = 0, lim
x→∞

k(x) → ∞ and λ is
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any real number such that r(x)→ 0. This is a popular method for making BFR

functions. Several special cases of this family are presented below:

• r(x) = λ + θ
x+φ

+ αxp, x > 0, φ > 0, α > 0, θ > 0, p > 0; the model is

an extension of Murthy et al. (1973). If both g(x) and k(x) are failure rate

functions, then this model is simply a competing risks model involving three

distributions.

• r(x) = θ1α1x
α1−1 + θ2 + θ3α3x

α3−1, α3 > 2, 0 < α1 < 1. r(x)→∞ as x→

0 or ∞, the model is studied by Canfield and Borgman (1975).

Additive Weibull Distribution

Xie and Lai (1995) considered a competing risk model involving two Weibull

distributions. For α > 0, θ > 0, β > 0, γ < 1, pdf, cdf and failure rate function

are

f(x) =
(
αθxθ−1 + βγxγ−1

)
e−αx

θ−βxγ , x > 0,

F (x) = 1− e−αxθ−βxγ , x > 0

and r(x) = αθxθ−1 + βγxγ−1, x > 0. (2.4.2)

The function r(x) has a bathtub shape when α < 1 and β > 1. Also r(0) =

r(∞) =∞. The turning point xo is given by

xo =

[
α(1− α)θα

β(1− β)γβ

] 1
α−β

.
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Additive Burr XII Distribution

Wang (2000) considered an additive Burr XII model that combines two Burr XII

distributions, one with DFR property and another with IFR property. The failure

rate function of the additive Burr XII is given by

r(x) =
k1c1(x/s1)c1−1

s1[1 + (x/s1)c1 ]
+

k2c2(x/s2)c2−1

s2[1 + (x/s2)c2 ]
, x > 0, (2.4.3)

where k1 ≥ 0, k2 ≥ 0, s1 ≥ 0, s2 ≥ 0, 0 < c1 < 1 ≥ 0, c2 > 2. It was shown that

r(x) has bathtub shape.

Modified Weibull Distribution

Lai et al. (2003) proposed a modified Weibull (MW) distribution with cdf

F (x) = 1− e−βxγeλx , β > 0, γ, λ ≥ 0, x > 0,

where at most one of γ, λ is equal to zero. The pdf of the MW distribution is

f(x) = β(γ + λx) xγ−1eλxe−βx
γeλx , β > 0, γ, λ ≥ 0, x > 0.

The corresponding failure rate function is

r(x) = β(γ + λx) xγ−1eλx, β > 0, γ, λ ≥ 0, x > 0. (2.4.4)



Review of Bathtub-shaped Failure rate Distribution 37

The pdf of the MW distribution can be unimodal or decreasing. The failure rate

function can be increasing or bathtub shaped.

Sectional model with two Weibull Distributions

Murthy and Jiang (1997) have considered two sectional models involving two

Weibull distributions having failure rate function

r(x) =


(α1/β1)(x/β1)α1−1; 0 ≤ x ≤ xo, α1 > 0, β1 > 0

(α2/β2)
(
x−γ
β2

)α2−1

; xo < x <∞, α2 > 0, β2 > 0

with change point xo = [βα1
1 (α/β2)α2 ]1/(α1−α2), γ = (1− α)xo where α = α2

α1
, and

r(x) is continuous at xo. i.e.,

For α1 < α2, r(x) have a bathtub shape if α1 < 1 and α2 > 1.

Exponential power Distribution

Smith and Bain (1975) studied the exponential power model having density func-

tion

f(x) = λα(λx)α−1exp{−(e(λx)α − (λx)α − 1)}, x > 0, α > 0, λ > 0.

The survival function is

F̄ (x) = exp{−(e(λx)α − 1)}, x > 0, α > 0, λ > 0. (2.4.5)
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The failure function is given by

r(x) = λα(λx)α−1e(λx)α , x > 0, α > 0, λ > 0. (2.4.6)

For α < 1, r(x)→∞ when x→ 0 or x→∞, r(x) has bathtub shape.

Weibull Extension Distribution

Consider the case λ = 1 in the exponential power model. Then (2.4.5) becomes

F̄ (x) = exp{−(ex
α − 1)}, α > 0, x > 0. (2.4.7)

Chen (2000) introduced another parameter λ to the distribution specified in

(2.4.7), so that the new cdf becomes

F̄ (x) = exp{−λ(ex
α − 1)}, α > 0, λ > 0, x > 0

with failure rate function

r(x) = λαxα−1ex
α

. (2.4.8)

The parameter λ here does not alter the shape of the failure rate function so

(2.4.8) behaves similarly to the function given in (2.4.6). In particular, r(x) is

increasing for α ≥ 1 and r(x) is bathtub shaped for α < 1.
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Double Exponential power Distribution

Paranjpe et al. (1985) considered the following model having failure rate function

r(x) = βαxα−1e(βxα)exp{e(βxα) − 1}, α < 1, β > 0, x > 0. (2.4.9)

The above expression is obviously quite complex. Clearly, r(x)→∞ as x→ 0 or

x→∞, so a bathtub shape is obtained.

Power-function Distribution

Mukherjee and Islam (1983) proposed a finite range distribution with a bathtub

failure rate:

r(x) =
pxp−1

θp − xp
, 0 ≤ x < θ, p < 1, θ > 0 (2.4.10)

and r(x)→∞ when x→ 0 or θ, thus bathtub is obtained.

Beta failure rate Distribution

Moore and Lai (1994) proposed another finite range distribution, an extension of

beta function, with BFR function,

r(x) = c(x+ p)a−1(q − x)b−1, 0 < a < 1, b < −1, 0 ≤ x < q, c > 0, p ≥ 0.

(2.4.11)

Clearly r(0) = cpa−1qb−1, r(x)→∞ as x→ q.
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Integrated beta failure rate Distribution

Lai et al. (1998) considered a lifetime distribution with failure rate function

r(x) = xa−1(1− x)b−1{a− (a+ b)x}, 0 < x < 1, a > 0, b > 0. (2.4.12)

It is obvious that r(x)→∞ as x→ 0 or 1 and hence r(x) is bathtub shaped.

J-shaped Distribution

Topp and Leone (1955) proposed J-shaped distribution. Nadarajah and Kotz

(2003) discussed moments of J-shaped distribution. For 0 < v < 1, b > 0, J-

shaped distribution has pdf and cdf

f(x) =
2v

b

(x
b

)v−1 (
1− x

b

)(
2− x

b

)v−1

, 0 < x < b,

and

F (x) =


(
x
b

)v (
2− x

b

)v
; if 0 ≤ x ≤ b <∞

0; if x < 0

1; if x > b.

The failure rate function r(x) is

r(x) =
2v

b

y(1− y2)v−1

1− (1− y2)v
, (2.4.13)

where y = 1 − (x/b). r(x) → ∞ as x → 0 and x → b for all v ∈ (0, 1) and r(x)

attains a minimum at x = x0, where y0 = 1 − (x0/b) is the root of the equation
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(1− y)v = 1− 2vy/(1 + y).

Beta Distribution

For p > 0, q > 0, 0 < x < 1, the standard beta distribution has pdf and cdf

f(x) =
xp−1(1− x)q−1

B(p, q)

and

F (x) =
Bx(p, q)

B(p, q)

respectively, where Bx(., .) is the incomplete beta function defined by

Bx(p, q) =

∫ x

0

tp−1(1− t)q−1dt, 0 < x < 1, p > 0, q > 0.

The failure rate function r(x) can be expressed as

r(x) =
xp−1(1− x)q−1

B(p, q)−Bx(p, q)
, 0 < x < 1, p > 0, q > 0. (2.4.14)

Ghitany (2004) showed that r(x) is bathtub-shaped if p < 1.

Mukherjee and Roy’s Distribution

Mukherjee and Roy (1993) defined a distribution having pdf

f(x) = (δ(|x− a|+ |x− b|)/(b− a)) exp
[
−δa2/(b− a)− δx+ (−1)k(x−a,|x−a|)]

exp
[
((b− a)δ/4)((|x− a|+ |x− b|)/(b− a)− 1)2

]
, x > 0, 0 < a < b <∞, δ > 0,
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and cdf

F (x) =1− exp
[
− δa2/(b− a)− δx

+ (−1)k(x−a,|x−a|)((b− a)δ/4)((|x− a|+ |x− b|)/(b− a)− 1)2
]
,

where k(x, y) is Kronecker’s function taking the value 1 when x = y and 0

whenever x 6= y. The failure rate function r(x) can be expressed as

r(x) = δ(|x− a|+ |x− b|)/(b− a). (2.4.15)

It is clear that r(x) take bathtub shape for all values of δ, a and b.

Haupt and Schabe’s Distribution

Haupt and Schabe (1992) developed a distribution having pdf

f(x) =


1+2β

2T
√
β2+(1+2β)x/T

; if 0 ≤ x ≤ T, ∞ < β <∞, T > 0,

0; otherwise

and cdf

F (x) =


1; if x ≥ T ,

−β +
√
β2 + (1 + 2β)x/T ; if 0 ≤ x ≤ T,

0; otherwise.
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The failure rate function r(x) can be expressed as

r(x) =


1+2β

2T
√
β2+(1+2β)x/T (1+β−

√
β2+(1+2β)x/T )

; if 0 ≤ x ≤ T,

0; otherwise

(2.4.16)

r(x) is bathtub-shaped if −1/3 < β < 1 and r(x) attaining the minimum at

x0 = T (1 + 2β − 3β2)/[4(1 + 2β)].

Schabe’s Distribution

Schabe (1994a) considered a simple distribution having pdf

f(x) =
2γ + (1− γ)x/θ

θ(γ + x/θ)2
, x ≤ θ, θ > 0, −∞ < γ <∞

and cdf

F (x) =
(1 + γ)x

θγ + x
.

The failure rate function r(x) can be expressed as

r(x) =
1

θ(γ + x/θ)
+

1

θ(1− x/θ)
. (2.4.17)

r(x) is bathtub-shaped if γ < 1 and minimum of r(x) occurring at x0 = (θ/2)(1−

γ). r(x)→∞ as x→∞.
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Hjorth’s Distribution

For δ > 0, β > 0, θ > 0, Hjorth (1980) proposed a distribution with pdf and cdf

f(x) =
[(1 + βx)δx+ θ]exp(−δx2/2)

(1 + βx)
θ

β+1

, x > 0

and

F (x) = 1− exp(−δx2/2)

(1 + βx)
θ
β

, x > 0

respectively. The failure rate function r(x) can be expressed as

r(x) = δx+
θ

1 + βx
. (2.4.18)

It is easily seen that r(x) is bathtub-shaped if 0 < δ < θβ.

Gamma mixture Distribution

Gupta and Warren (2001) examined the mixture of Gamma distributions having

pdf

f(x) =
pxα1−1e−x/β

βα1Γ(α1)
+

(1− p)xα2−1e−x/β

βα2Γ(α2)
,

for x > 0, α1 > 0, α2 > 0, β > 0 and 0 < p < 1. Corresponding failure rate

function is bathtub-shaped if either β1 = β2, α1 > 1 and α2 < 1 or α1 > 2.
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Normal mixture Distribution

Navarro and Hernandez (2004) examined the mixture of truncated Normal distri-

butions with pdf

f(x) =
p√

2Πσ0Φ(µ0/σ0)
exp

[
−(x− µ0)2

2σ2
0

]
+

1− p√
2Πσ1Φ(µ1/σ1)

exp

[
−(x− µ1)2

2σ2
1

]
,

for x > 0, −∞ < µ0 < ∞, −∞ < µ1 < ∞, σ0 > 0, σ1 > 0 and 0 < p < 1, in

which the corresponding failure rate function exhibiting a bathtub shape.

Exponentiated Weibull Distribution

Mudholkar et al. (1995) introduced the exponentiated Weibull distribution with

pdf

f(x) = aαλαxα−1e−(λx)α(1− e−(λx)α)a−1, x > 0, a > 0, α > 0, λ > 0

and cdf

F (x) = (1− e−(λx)α)a, x > 0, a > 0, α > 0, λ > 0

respectively. The failure rate function r(x) can be expressed as

r(x) =
aα(λx)α−1e−(λx)α(1− e−(λx)α)a−1

1− (1− e−(λx)α)a
(2.4.19)

in which r(x) is bathtub-shaped if α > 1 and aα < 1.
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Stacy’s Weibull Distribution

Stacy (1962) proposed a distribution with pdf

f(x) = cβ−cα(Γα)−1xcα−1e−(x/β)c

and cdf

F (x) = (Γα)−1γ

(
α,

(
x

β

)c)
,

where x > 0, c > 0, α > 0, β > 0, γ(·, ·) denotes the incomplete Gamma function

defined by

γ(a, x) =

∫ x

0

ta−1e−tdt, x > 0, a > 0.

The failure rate function r(x) can be expressed as

r(x) =
cβ−cαxcα−1e−(x/β)c

(Γα)−1γ
(
α,
(
x
β

)c) . (2.4.20)

r(x) is bathtub-shaped if c > 1.

Truncated Weibull Distribution

McEwen and Parresol (1991) proposed doubly truncated Weibull distribution hav-

ing pdf

f(x) =
p(x)

P (b)− P (a)

and cdf

F (x) =
P (x)− P (a)

P (b)− P (a)
,
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where 0 ≤ a < x < b <∞, p(x) and P (x) are the pdf and cdf, respectively, of the

traditional Weibull distribution, p(x) = αλ(λx)α−1e−(λx)α , and P (x) = 1−e−(λx)α ,

for x > 0, α > 0 and λ > 0. Corresponding failure rate function has bathtub

shape.

Xie et al.’s Weibull Distribution

Xie et al. (2002) proposed a modification of the Weibull distribution having pdf

f(x) = λβ
(x
α

)β−1

exp

[(x
α

)β
+ λα

{
1− exp

(x
α

)β}]

and cdf

F (x) = 1− exp

[
λα

{
1− exp

(x
α

)β}]
,

where x > 0, λ > 0, α > 0 and β > 0. The failure rate function r(x) can be

expressed as

r(x) = λβ
(x
α

)β−1

exp
(x
α

)β
. (2.4.21)

It is easily seen that r(x) is bathtub-shaped if 0 < β < 1 with r(x) attaining the

minimum at xo = α(1/β − 1)1/β and r(x) increases to ∞ as x→ 0 and ∞.

Generalized Lindley Distribution

Nadarajah et al. (2011) proposed Generalized Lindley (GL) distribution whose

cdf is

F (x) =

[
1− 1 + λ+ λx

1 + λ
e−λx

]α
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for x > 0, λ > 0, and α > 0. The failure rate function is given by

r(x) =
αλ2

1 + λ
(1 + x)

[
1− 1 + λ+ λx

1 + λ
e−λx

]α−1

e−λx[1− V α(x)]−1 (2.4.22)

for x > 0, λ > 0, α > 0, where V (x) =
[
1− 1+λ+λx

1+λ
e−λx

]
. The shape of the failure

rate function appears monotonically decreasing or to initially decrease and then

increase, a bathtub shape if α < 1, the shape appears monotonically increasing if

α ≥ 1.

Burr XII Distribution

The Burr XII distribution was first introduced by Burr (1942). Burr XII distri-

bution having reliability function

F̄ (x) =
1

(1 + xc)k
, k, c > 0, x > 0.

The failure rate function is

r(x) =
kcxc−1

(1 + xc)
(2.4.23)

For c ≤ 1, the slope is always negative, for c > 1 the slope is positive for xc < c−1

and negative for xc > c− 1. Thus r(x) is decreasing for c ≤ 1 and UBFR if c > 2.
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Birnbaum and Saunders Distribution

Birnbaum and Saunders (1969a,b) introduced a lifetime distribution

F (x) = Φ

{
1

α
.

[(
x

β

)1/2

−
(
x

β

)−1/2
]}

= Φ

{
1

α
ξ

(
x

β

)}
, x > 0,

where ξ(x) = x1/2 − x−1/2, α, β > 0 and Φ(.) denotes the cdf of the standard

normal. While the failure rate of Birnbaum and Saunders is zero at x = 0, then

increases to a maximum for some x0 and finally decreases to a finite positive value

(i.e., r(x) is UBFR) when β = 1 and α > 0.8, the failure rate of the log-Normal

also has a UBFR function but decreases to zero.

Inverse Gaussian Distribution

The name ‘inverse Gaussian’ was first applied to a certain class of distributions

by Tweedie (1947). The density function of the inverse Gaussian is

f(x) =

√
λ

2πx3
exp

[
− λ

2µ2x
(x− µ)2

]
, λ > 0, x ≥ 0.

The corresponding distribution function is

F (x) = Φ

{√
λ

x

(
x

µ
− 1

)}
+ e2λ/µΦ

{
−
√
λ

x

(
x

µ
+ 1

)}

and the expression for r(x) is quite complicated. By Glaser’s theorem, r(x) is

UBFR.
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Inverse Weibull Distribution

The cdf of two-parameter inverse Weibull distribution is given by

F (x) = exp

{
−
(α
x

)β}
, α, β > 0, x > 0.

The failure rate function is

r(x) = βαβx−(β+1) exp

[
−
(α
x

)β]{
1− exp

[
−
(α
x

)β]}−1

. (2.4.24)

It has been shown that lim
x→0

r(x) = lim
x→∞

r(x) = 0 and r(x) ∈ UBFR.

Log-Logistic Distribution

The pdf, cdf and failure rate of Log-Logistic distribution are given by

f(x) =
kρ(xρ)k−1

[1 + (ρx)k]2
, x > 0, ρ > 0, k > 0

F (x) = 1− 1

1 + (ρx)k

and

r(x) =
kρ(ρx)k−1

1 + (ρx)k
. (2.4.25)

It can be shown easily that r(x) is DFR when k ≤ 1; r(x) is UBFR when k > 1.



Review of Bathtub-shaped Failure rate Distribution 51

Log-Normal Distribution

The distribution function and failure rate function of log-Normal distribution are

F (x) = Φ

(
log x− µ

σ

)

and

r(x) =
(1/2πxσ) exp{−(log ax)2/2σ2}

1− Φ{log ax/σ}
, (2.4.26)

where a = e−α. r(0) = 0 and r(x)→ 0 when x→∞.

2.5 Optimal burn-in time

Burn-in plays an important role in reliability engineering, Jensen and Petersen

(1982). In this section, we discuss the concepts of burn-in.

2.5.1 Concepts of burn-in

Due to the high failure rate (most importantly, silicon and integrated circuits) in

the early stages of module life, burn-in is widely accepted as a method of screen-

ing failures before sending or delivering these components to the field operations.

That is, before delivery to the customers, the components are tested in approxi-

mate electrical or thermal conditions that approximate the working conditions in

field operation. The components that fail in the burn-in process are removed or

repaired, and only those that survive the burn-in process are considered to be of

high quality. These are how users send them to the field or to the field function.
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With adequate burn-in, a high initial failure rate results in high maintenance

costs. A general background on burn-in can be found in Kuo and Kuo (1983),

and Kuo (1984).

Estimating change points is particularly relevant for BFR in the context of

maintenance policies, naturally, do not consider replacing a component of such

a life distribution before the ‘threshold’ unknown age to is reached. Kulasekera

and Saxena (1991) have constructed kernel density estimators and empirical cdf

to estimate f , F , r and its change point.

Mitra and Basu (1995) considered the problem of estimating change points

in different monotonic aging models. Suresh (1992) also obtained two estimates

of the change point; one by using the definition of BFR distribution, another by

a characterization of BFR distribution in terms of TTT transform. Nguyen et

al. (1984) considered the estimation of the turning point of a two-step piece-

wise linear failure rate function. Pham and Nguyen (1993) considered estimating

the turning point of a truncated BFR function. Gupta et al. (1999) considered

estimation of the turning point of the failure rate function in the case of the log-

Logistic model. Details about optimal burn-in time can be seen in Myung and

Young (2002). The expressions of long run average cost function per unit time

for obtaining optimal burn-in time and optimal age for various distributions is an

open problem.

This chapter gave a comprehensive review of known BFR and UBFR distri-

butions. Some tools and methods that will be used for data analysis are also

reviewed.


