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CHAPTER 3

NEW BATHTUB SHAPED FAILURE RATE

DISTRIBUTIONS

3.1 Introduction

1 In many applied sciences such as medicine, engineering, bio statistics, survival

analysis etc modeling and analysis of lifetime data are crucial, Deshpande and
Suresh (1990). In analyzing lifetime data one often uses the Exponential, Gamma,
Weibull and Generalized Lindley distributions. It is well known that Exponential
distribution has constant hazard function, Generalized Lindley distribution has a
BFR function whereas Weibull and Gamma distributions have constant or mono-
tone (increasing/decreasing) failure rate functions. In this chapter we present two

new simple distributions which have BFR function. The proposed distributions

!Some contents of this chapter are based on Chacko and Deepthi (2018 & 2019).
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54 New Bathtub Shaped Failure Rate Distributions

are capable of modeling the real problems.

In this chapter, Generalized X-Exponential distribution and Weibull-Lindley
Distribution are discussed in section 3.2 and 3.3. Summary are given in section

3.4.

3.2 Generalized X-Exponential distribution

Here we consider a new distribution named as Generalized X-Exponential dis-
tribution, having BFR function, which generalizes the distribution having df
F(z) =1—(1+ Xx?)e?®, 2 > 0, A > 0, Chacko (2016). The failure rate func-
tion of X-Exponential distribution appears monotonically decreasing and bathtub
shape. The generalization considered is the distribution of a series system hav-
ing distribution function F(z) = 1 — (1 4+ Az2)e &+2) 2 > 0, A > 0, for its

components.

In section 3.2.1, the distribution function of the Generalized X-Exponential
distribution (GXE) is given. In section 3.2.2 discussed the statistical properties
of the distribution. In section 3.2.3 discussed the distribution of maximum and
minimum to address the reliability problems of parallel system and series system,
respectively. The maximum likelihood estimation of the parameters is explained
in section 3.2.4. In section 3.2.5 discussed the asymptotic confidence bounds of
MLESs of the distribution. In section 3.2.6 a simulation study is given. Two real
data sets are analyzed in section 3.2.7 and the results are compared with some

existing distributions.
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3.2.1 Generalized X-Exponential Distribution

Let X be a life time r.v having cdf with parameter a and A,
F(z) = (1 — 1+ /\xQ)Q—A(rQH))a? z>0, a>0, \>0. (3.2.1)

Clearly F'(0) = 0, F(co) = 1, F is non-decreasing and right continuous. More
over F'is absolutely continuous. Then the pdf of the r.v X is given by

a—1

f(z) = ae_’\($2+m)()\(1 +A2%) (22 + 1) — 2\7) (1 —(1+ /\1.2)6—>\(ac2+:c)> ,

>0, a,A>0. (3.2.2)

Here a and A are the shape and scale parameters. It is clear that F'is a positively
skewed distribution. The distribution with pdf of the form (3.2.2) is named as
GXE distribution with parameters o and A and denoted by GXE(a, A). Failure

rate function of GXE distribution is

a—1
ae AT (N (1 4+ A2?) (22 + 1) — 2\x) (1 —(1+ )\x2)e”\(12+’”)>

rie) = 1= (1= (1+ Aa2)e 2ara)” ’

x>0, a,A>0. (3.2.3)

Considering the behavior near the change point o, 7y > 0 and if ZLh(zo) = 0.

(i) f0 < @< 1/2, and 0 < A < 1, then “h(z) < 0 when 0 < z < zo and

Lh(x) >0 when z > o, %h(:{:) > 0 for = xo.

(ii) If 0 < v < 1/2, and A > 1, then “Lh(z) < 0 when 0 < z < zg, “h(z) > 0
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Figure 3.1: PDF of GXE distribution for values of parameters a =
0.5,2,3,3.5,4,2.5,5 and A = 1.5,3,4,5,6,7,7.5 with color shapes purple, blue,
plum, green, red, black and dark cyan, respectively.

when = > z, %h(m) > 0 for z = xy.

(iii) If 1/2 < a < 1, and 0 < A < 1, then Lh(z) < 0 when 0 < z < z( and

L h(x) > 0 when z > %h(x) > 0 for x = xo.

(iv) If1/2 < a < 1,and A > 1, then Lh(z) < 0 when 0 < z < ¢ and Lh(z) > 0

2
when z > z, - h(z) > 0 for = .

(v) If @ > 1, and A > 1, then “£h(z) > 0 for z > 0.

The shape of (3.2.3) appears monotonically decreasing or to initially decrease and
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then increase, a bathtub shape if @ < 1. GXE(a, ) allows for monotonically de-
creasing, monotonically increasing and bathtub shapes for its failure rate function.
As « decreases from 1 to 0, the graph shift above whereas if \ increases from 1 to

oo the shape of the graph concentrate near to 0, see Figures. 3.1, 3.2, 3.3.

1.0

0.8

F(X)

0.4

0.2

—e— a=1.5b=2.5-e= a=4.5b=5

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.2: CDF of GXE distribution for values of parameters o = 1.5,2,3.5,4.5,5
and A = 2.5,3,4,5,6 with color shapes red, green, plum, dark cyan and orange
respectively.

3.2.2 Moments

In order to calculate moments of X, we require the following lemma.



58 New Bathtub Shaped Failure Rate Distributions
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Figure 3.3: Failure rate function GXE distribution for values of parameters a =
0.0001,0.1,0.5,2.5,0.475 and A = 0.75,5,1.5,7,8 with color shapes orange, red,
grey, plum and green, respectively.

Lemma 3.2.1. For a, A\ >0, x > 0,

a—1

K(a, )\, C) = / x° (1 — (1 + /\1;2)6—)\(12—#93)) 6—)\(9:2+r) dr.
0

Then,

a—1 1 .
—1 Y
=S5 (T (i [
- - ] i 0
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Proof. Using Binomial expansion, (1 — z)*~! = 3% (*71) (=1)'2%, we have,

> a—1
K(a, A\ ¢) = / z° <1 —(1+ )\xQ)e—A(x%ra:)) o~ A@+a) g,

0
a—1
(O& Z >(_1)z/ [(1 + )\.CB ) —\(x? +x)} —\(x2+x) dr
(O[ - 1) / Z ( ) —(+1)A (2% +x) dr
=0
a—1 1 1 )
= a- ! (—1)° )\J/ gPItee M@ ) go
— [ J 0

The result of the lemma follows by the definition of the Gamma function. The

I
(]

ﬂ
_ O

oa—

first raw moment is

BE(X) = a)K(a,\ 1) +2aX* K (a, \, 4) + aX*K (a, )\, 3).

The ' raw moment is

E(X™) = a K (a, \,n) + 20X’ K (o, \,n + 3) + aX*K (a, A\, n + 2).

Moment Generating Function

Moment generating function can be obtained from following formula

-1

Mx(t) :/ e M) (A4 A2® 42Xz 3)( — (14 A?)e @ +a:)> dr
0
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o0 o1 ,
:/ o (/\+)\x2 1 2/\2x3) ( ~ (14 Aae Az +z)> oM@ ta)+tr g
0

Characteristic Function

Characteristic function can be obtained from following formula

¢X(t) :/ ez'txae Az?+x) (/\‘i‘)\ZE +2)\2 3)( (1+/\CL’ ) Az +x)>04—1 e
0

= / o (A4 Aa? +20%7) (1= (14 Aa?)e +w>) e NaP )it g
0

Mean Deviation About Mean

The scatter in a population is measured by using Mean deviation about the mean

1 is defined by

MD (mean) = 2uF' (@) — 21 + 2/00 zf(x) dx

= 2uF () — 20+ 2 (aAL(c, A, 1, 1) + 20N’ L(a, A, 4, 1))

+ 20N L(a, A, 3, 1)

where

o0

22 a—1 5

1 . 00
() () (DX ( [T,
o § J W

=0 j=

I
T
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Similarly, Mean deviation about the Median M is defined by

MD(Median) = —M + 2/OO zf(x) dx
M

= —M +2 (aAL(a, A\, 1, M) + 20N> L, A, 4, M)

+ 20N L(a, A, 3, M).

3.2.3 Distribution of Maximum and Minimum

Series, Parallel, Series-Parallel and Parallel-Series systems are general system
structure of many engineering systems. The theory of order statistics provides
a useful tool for analysing life time data of such systems. Let X, X5,..., X, be a
random sample from GXE distribution with cdf and pdf as in (3.2.1) and (3.2.2),
respectively. Let X(1), X(2),..., X(») denote the order statistics obtained from this

sample. The pdf of X, is given by,

1

Jira (@) = B(r,n —r+1) [(1 -1+ )\wQ)e*A(l“%x))a] -t

[1 _ (1 (14 )\332)67’\(’32”))?

n—r

ae XEFD (N1 + Ax?) (22 4 1) — 2Az)

a—1
(1 1+ )\xQ)e_)‘(””2+x)> L 23>0, a, > 0. (3.2.4)

The cdf of X, is given by
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[1— (1—(1+/\x) —“”)) r_j, >0 a,A>0. (3.2.5)

The pdf of the smallest and largest order statistics X(;y and X, are respectively

given by:
1 aygn—1 a1
filz) = B(Ln) [1 — (1 — (1 + Mz?)e ~A(z? +z)> } (1 — (14 A2d)e Az +x))
ae*/\(xua:)()\(l +A2?) (22 + 1) —2\x), >0, a, A > 0, (3.2.6)
and
24, aqgn—1
@) = 5oy [(1— (1 4 Az2)e A >) ]

—1
ae M) (N1 4 Ax?) (22 + 1) — 2\7) (1 (14 Ma)e 2+w>> ,

>0, a,A>0. (3.2.7)

The cdf of the smallest and largest order statistics X(;) and X, are respectively

given by
Fi(x)=1- [1 - <1 —(1+ A:UQ)e’)‘(x2+“))a] , >0, a,A>0
and

Fo(z) = [(1—(1—1—)\90) *A“@)a]n, >0, a,A> 0.
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Reliability of a series system having n components with GXE(a, A) is
R(x) = [(1 —(1+ /\:EQ)G_A(QCQH))(T”
Reliability of a parallel system having n components having GXE(a, \) is
R(z)=1— [(1 — 1+ Ax?)e—x<x2+x>>a]".

Both the reliability functions can be used in various reliability calculations.

3.2.4 Parameter Estimation

In this section, estimation of the unknown parameters of the GXE by using the

method of moments and method of maximum likelihood is explained.

Let X1, X5, ..., X, are random sample taken from GXE. Let m; = % Yo X
and my = %Z;;l X?. Equating sample moments to population moments we get

moment estimators for parameters.

my = aAK (a, A\, 1) + 200K (a, A\, 4) + aX* K (a, A, 3)

my = aAK (a, A, 2) + 200K (a, A, 5) + a X’ K (a, A, 4)

where K(a,\, 1) = 307} Z;:o () (=N [T 22+~ 42) gy The solu-

? J

tion of these equations are moment estimators.
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To find MLE, consider likelihood function as

n

Lz, ) = [ f(a)

=1
n

— e A i (@ +w) [T+ A2y (22 + 1) — 27a)

=1

n 2 a—1

=1

The log-likelihood function is

I =log L(x;a, \) = nlogoH—Zlog (A

=1

— AZ(QE? + ;) +
=1

(14 Xx?)(22; + 1) — 2)\@)

i=1

(= 1)) log (1= (1+ Aaf)e et +e).

The first partial derivatives of the log-likelihood function with respect to the two-
parameters are

ol n - 2 —)\(z2+xi)
%0 a+;log<1—(1+)\:ﬁi)e )
ol
=0
foJe}
— h=—- log (1 — (1 + Ag2)e A ”ﬂ) (3.2.8)
ol = "L (2 + 1)(1 + 2)\2?) — 22)
d —~=- z
M T Zx+x J“Z AL+ Aa?) (22, + 1) — 2y
(1 + )\x e AT i) (32 4 ) — e M) g2)
+ (a—1 !
( )ZZI (1_(1+)\$) x+xz))
ol

5:0
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~, 5 O (2w + 1)(1+ 22a?) — 2a,)
- ;(xi )= ,Zl (AL + Ax?) (22 + 1) — 2\;)

n

t(a—1) 3 WAl & ) — e M)
o — .
(1-(1+ /\x?)e_A(I?’L"’i))

(3.2.9)

Solving this system of equations (3.2.8) and (3.2.9) in o and A gives the MLE of
«a and A. Estimates can be obtained by using ‘nlm’ package in R software with

arbitrarily initial values.

3.2.5 Asymptotic Confidence bounds

In this section, since the MLEs of the unknown parameters o > 0 and A > 0
cannot be obtained in closed forms, we derive the asymptotic confidence intervals
of these parameters when o > 0 and A > 0, by using variance covariance matrix

I7', where I~ is the inverse of the observed information matrix which is defined

as follows
2 2
B R O o
E(-&L) B(-2h)

The second partial derivatives are

32l_ n

da2  a?’
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g2 ()\(1 +Aa2) (2@ + 1) — 2)\xi) [202(22; + 1)]

I\ 2 2

0X* = <)\(1 A2) (20 + 1) — 2Ag;i)
"L ((2a + 1)1+ 2)0a2) — 22,)°

- 2

i=0 ()\(1 + A2?)(2z; + 1) — 2/\xi>

n

g2e MEHT) (1 4 \p2)e Mot (22 4 :EZ)> + e @) (22 4 ;)

+Z (1—(1+)\:c)*Ax+’”l))

i=1

2
n ((1 + Ax2)e M) (22 4 py) — xze_A(“”?”i))

i=1 (1= (14 Azf)e = HZ))Q
Pl _ §~ (L Aad)e 0T (af 4 3y) — e At
and — = .
dar = (1 — (14 Aa2)e Aai+z))

We can derive the (1 — 0)100% confidence intervals of the parameters a and A by

using variance matrix as in the form

&=+ Zg\/Var(d), A £ Z%\/Var()\)

where Z s is the upper (g)th percentile of the SN distribution.

3.2.6 Simulation

To understand the performance of the MLEs given by (3.2.8) and (3.2.9) with

respect to sample size n, a simulation study for assessment is considered:

(i) Generate five thousand samples from (3.2.2). Using Newton Raphson method,
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values of the GXE random variable are generated using

1

(14 Az?)e M+ = 1 — ya

where u ~ U(0,1).

(ii) Compute the MLEs for the five thousand samples, say (a4, A;) for i =
1,2, ...,5000.

(iii) Compute the biases of the estimator and mean squared errors using
biasy(n) = s 32000 (hy — h) and MSEy(n) = w5 S-2%%(hy — h)? for h =
(a, N).
We repeated these steps for n = 10,20,...,100 with different values of

parameters, for computing biasy,(n) and MSE(n) for n = 10,20, ..., 100.

3.2.7 Data Analysis

In this section, we present the analysis of a real data for using the GXE(a, \)
model and compare it with Generalized Lindley (GL) distribution using AIC,
BIC and K-S statistic. We considered the survival data for psychiatric inpatients
(Klein and Moesch Berger (1997)) to estimate the parameter values. The data
are given in Table 3.2. Table 3.3 provides the parameter estimates, standard
errors obtained by inverting the observed information matrix and log-likelihood
values. Table 3.4 provides values of AIC, BIC, and p-values based on the K-S
statistic. The corresponding probability plots and histogram are shown in Figure

3.4 and 3.5. We can see that the GXE distribution provides the smallest AIC
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Table 3.1: Simulation study on different choices of parameter values
a=25 A=0.75 a=05 X =0.001
n Bias MSE Bias MSE Bias MSE Bias MSE
10 | 037515 1.40735 0.03116 0.00971 0.00256 | 6.537x107° | -7.531x107% | 5.6723x10710
20 | 0.00777 0.00121 0.00967 0.00187 | -0.001132 | 2.5621x107 | 6.3116x10°° | 7.9673x10-1°
30 | -0.00347 | 0.000361 -0.00133 | 5.2076x107° | 0.00992 0.001967 | 3.9965x107° | 3.1944x 10710
40 | 0.002158 | 0.0001863 | -0.001515 | 9.1865x10™° | 0.001568 | 9.8350x1075 | -1.1745x 107 | 5.5179x 10!
50 | -0.008035 | 0.003228 | 0.001646 | 0.0001354 | 0.000202 | 2.0495x10° | 5.5596x1076 | 1.5455x10°
60 | 0.00111 | 7.4300x107 | -7.695x1076 | 3.5528x 107 | -0.000341 | 6.9802x107% | -2.9708x 107 | 5.2953x 10710
70 | 0.002488 | 0.0004332 | -0.0001722 | 2.0761x107% | -0.000331 | 7.6762x10° | -3.4171x1076 | 8.1738x 1010
80 | 0.001709 | 0.0002337 | 5.6173x107° | 2.5243x 1077 | 2.4323x107° | 4.7331x10™ | 7.1859x 1077 | 4.1309x 10"
90 | 0.001912 | 0.0003292 | 0.0001403 | 1.7714x1076 | 0.000429 | 1.6546x10" | -4.3202x10°7 | 1.6798x 10"
100 | 0001929 | 00003720 | 0.000216 | 4.6694x107° | 0.001706 | 0.0002910 | 2.5672x107° | 6.5907x 10~
a=1 A=05 a=15 A=1
10| 000465 | 0.000216 -0.00458 0.00021 -0.05683 0.03229 -0.04672 0.02183
20 | -0.00292 | 0.000171 0.02258 0.0102 -0.020347 | 0.008281 -0.00697 0.000973
30 |-9.052x107° | 2.4583x10°7 | -0.00184 0.000102 | 0.001420 | 6.0464x1075 |  0.005746 0.000991
40 | -0.000876 | 3.0695x1075 | -0.000901 | 3.2446x107° | -0.003607 | 0.0005203 | 0.006072 0.001475
50 | 0.00128 | 8.1932x107° | -0.000622 | 1.9383x107° | 0.00479 0.001149 | 0.002649 0.000351
60 | 0.000594 | 2.117x107° | 0.00118 | 8.3813x1075 | 0.001702 | 0000174 | -0.000463 | 1.288x10~°
70 | -0.00155 | 0.000168 | -0.000892 | 5.5728x107° | 0.003831 | 0.001027 | 0.000398 | 1.1106x10°
80 | -0.000983 | 7.7277x107 | -0.000934 | 6.9806x107° |  0.00285 0.000649 | 0.000584 | 2.7314x105
90 | 0.001544 | 0.000214 | -5.4667x107" | 2.6896x10°7 | 0.000841 | 6.359x1075 | 0.000968 | 8.4369x10°
100 | 0.001396 | 0.000195 | 0.000373 | 1.3918x10™° | 0.000537 | 2.8865x1075 | 0.000275 | 7.5845x 107
a=25 A=125 a=3 A=175
10 | 0008654 | 0.000749 0.01351 0.001825 0.03068 0.009415 0.02618 0.006855
20 | -0.005014 | 0.000503 -0.00401 0.000321 | 0.017103 0.00585 0.009213 0.001698
30 | 000994 | 0.002063 | 0.002236 | 0000149 | -0.00845 | 0.002143 0.00851 0.002172
40 | -0.004481 | 0.000803 | -0.000823 |2.7113x107° | -0.00231 | 0.000213 | 0.003504 0.000491
50 | 000666 | 0.002220 | -0.000140 | 9.8505x10°7 | 0.005896 | 0001738 | 0.000748 | 2.801x107°
60 | 0.000206 | 2.5387x107%| 0.001005 | 6.0642x107° | 0.000311 | 5.7859x107° |  0.002391 0.000343
70 | -4.04x1075 | 1.1425x10°7 | 0.000722 | 3.6513x10°° | 0.001375 | 0.0001324 | -0.000786 | 4.3222x10°°
80 | 0.000882 | 6.2230x1077 | 0.001149 | 0.000106 | 0.001103 | 9.7265x107 | 0.000192 | 2.9403x107
90 | 0.000732 | 4.8281x1075 | -0.000923 | 7.6744x10°% | -0.000874 | 6.8733x107° | -0.000445 | 1.7813x10°
100 | -0.000957 | 9.1617x107° | 0.000349 | 1.2245x107° | 8.322x10° | 6.9256x10°7 | -0.000947 | 8.9755x 10
Table 3.2: Survival data for psychiatric inpatients
1 1] 2 (223028321114 (36]|31]33]|33
3713525312226 |24|35|34|30|35]40]| 39
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value and BIC value, the largest p-value based on the K-S statistic. Hence, the

GXE distribution provides the better fit. The variance covariance matrix /=! of

Table 3.3: MLEs of parameters, SE and Log-likelihood

Model ML estimates Standard error  Log L

GXE a = 0.6967 0.03313 -99.360
A =0.00184  7.852x10°

GL o= 1.0691 0.05637 107657
A =0.07547  0.00274

Table 3.4: AIC, BIC, K-S Statistic and p-value of the model

Model  AIC BIC K-S Statistic p value

GXE  202.721 205.237 0.2113 0.1962
GL 219.315 221.831 0.3011 0.0179

the MLEs of GXE distribution for the data set 1 is computed as

2.8532 x 1072 3.9810 x 1075
3.9810 x 1075 1.6031 x 1077

Thus, the variances of the MLE of o and A\ are Var(a) = 2.853 x 1072 and
Var(j\) = 1.603 x 1077, respectively. Therefore, 95% confidence intervals for o
and A are [0.6417, 0.7507] and [0.0017, 0.00197], respectively. The data set 2
consist of the lifetimes of 50 devices (Aarset (1987)) and it is provided in Table

3.5. The parameter estimates, standard errors of the estimators and the various
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Figure 3.4: Probability plots of data set 1.

Table 3.5: Lifetimes of 50 devices

0102 1 1 1 1 1 2 3 6 7 11 12 18 18
18 18 18 21 32 36 40 45 46 47 50 55 60 63 63
67 67 67 67 72 75 79 82 82 83 &84 &4 84 8 85
8 85 8 86 86

measures are given in Table 3.6. The corresponding histogram and probability

plots are shown in Figure 3.6 and 3.7.

We can see again that the GXE distribution gives the smallest AIC value,

the smallest BIC value, and largest p-value based on the K-S statistic, see Table

3.7. Hence, the GXE distribution again provides the better fit. The variance

covariance matrix ' of the MLEs under the GXE distribution for the data set
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Density Plot
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Figure 3.5: Histogram with fitted Pdfs for the data set 1.
Table 3.6: MLEs of parameters, SE and Log-likelihood
Model ML estimates Standard error  Log L
axp &= 0.3181 0.00715 i 931609
A = 0.000302 1.0452x10
GLD a = 0.4547 0.01123 ~938.9909

A = 0.0278 0.000691

2 is computed as

2.5596 x 107 1.7080 x 1076
1.7080 x 107% 5.4625 x 10~*
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Table 3.7: AIC, BIC, K-S Statistic and p-value of the model

Model  AIC BIC K-S Statistic p value

GXE  467.218 471.042 0.1555 0.1783

GLD  481.982 485.806 0.1936 0.0472

Thus, the variances of the MLEs of a and A are Var(&@) = 2.56 x 1073 and

Var(S\) = 5.463 x 1077, respectively. Therefore, 95% confidence intervals for o

and A are [0.3064, 0.3299] and [0.00029, 0.00032], respectively.
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0.0
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Figure 3.6: Probability plots of data set 2.
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Figure 3.7: Histogram with fitted Pdfs for the data set 2.

3.3 Weibull-Lindley Distribution

Let X be a random variable with the cdf,
x)B _
F(z;a,0)=1— e_a<(1+x)e( ) 1>, x>0, a3>0. (3.3.1)

The r.v X is said to have Weibull-Lindly (WL) distribution if its distribution
function is in the form (3.3.1). It will be denoted by WL(«, 5). Then, the pdf



74 New Bathtub Shaped Failure Rate Distributions

corresponding to (3.3.1) is given by

f(l'; Q, B) =« (B$ﬁ1<1 + x)exﬁ 4 emﬁ> e—a((1+g;)ezﬁ_1)’

x>0, a>0, >0 (33.2)

Here [ is shape parameter. The pdf of WL distribution can be rewritten as

B _ o e’ _
f(l'Q «, 5) = Oéﬁxﬁfl(l + :c)exﬂe_a«l"_x)e 1) + Ozezﬁe ((1+ ) 1)7

r>0, a>0,5>0. (3.3.3)

By using the power series expansion for the exponential function, we obtain

i z'

( (1+z)e™ — 1) (3.3.4)

0o
1+ze - _Z

=0

Substituting (3.3.4) in (3.3.3), we get

| ( + :c)exﬁ — 1>i

o —1)iet i
+a€zaz( »)04 <<1+x)ew"_1), 2>0, a>0,8>0 (3.3.5)

Using the generalized binomial theorem, we have

i |

(42~ 1)i -y m (a+ x>exﬁ)i_j (1), (3.3.6)

j=o
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Inserting (3.3.6) in (3.3.5), we get

flz;a, B) = aBr” (1 + z) xsz I 21_)1?; ((1—|— ) xﬁ)
i=0 j=
lal

(3.3.7)

The pdf can be further simplified as

o i z+1J

z+]az+1ﬁ(z _] + 1) Bri o
P (i—j+1) ,.f+k—1
o =33 3 Tt i,

o0
28 (i-j+1) ym
P Zzﬂm!(i—j—m)!e 7" >0, a>0,5>0.

(3.3.8)

Figure 3.8 provide the pdfs of WL(«, ) for different parameter values. From the
below figures it is immediate that the pdfs are unimodal. The survival function
S(z), failure rate function r(x), reversed failure rate function h(x) and cumulative

failure rate function H(z) of X are

P _
S(z;a, B) = (e =1) 0 00,80 (3.3.9)
r(z;a, ) = a(ﬁxﬁ_l(l +2)e”’ + emg), x>0, a>0,5>0. (3.3.10)

P _
a (ﬁxﬁl(l +z)e”” + e“ﬁ) ¢+ 1)

1 — e—a((l+x)elg—l> ’

hz; o, B) =

x>0, a>0 6>0.

(3.3.11)
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Figure 3.8: PDF of the WL(«, /).

and
H(z;a,p) = / r(t; o, B) dt = a(l + m)emﬁ, r>0, a>0,6>0  (3.3.12)
0

The failure rate function of the WL(«, /) exhibit increasing, decreasing and bath-

tub shapes. We can see from that

oo, B<1

limr(z) = ¢ 20, =1

x—0

a, B>1.
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Figure 3.9 provide the failure rate functions of WL(«, 3) for different parameter
values. From the below figures it is immediate that the failure rate function can

be increasing, decreasing or bathtub shaped. It is clear that the pdf and the

[o0)
S o —— a=0.002, b=7 S —— a=2,b=0.1
© | —— a=0.002, b=5—— a=0.002, b=1 —— a=2,b=0.25—— a=2,b=0.8
© o
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o
—~ —~ o
3 < X - 7
£ 9 A =
o
o 4
N
Q —
o
//':—% © -
o
Q —
=] T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Figure 3.9: Failure rate function of the WL(«, ).

failure rate function have many different shapes, which allows this distribution
to fit different types of lifetime data. For fixed «, the failure rate function is
non-decreasing function if 5 > 1 (left) and non-increasing and bathtub function

if B < 1 (right).

3.3.1 Statistical Properties

In this section, we study the statistical properties for the WL(a, ), specially

Quantile function, Median, Mode, Moments etc.
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Quantile and Median

We obtain the 100p'" percentile,
1
(1+2)e” = ——log(1—p) +1. (3.3.13)

Setting in (3.3.13), we get the median of WL(«, ) from

x, is the solution of above monotone increasing function. Software can be used

to obtain the Quantiles/Percentiles.

Mode

Mode can be obtained as solution of

W (z; a, B) = (h(; 0, 9))?].S (5, B) = 0. (3.3.14)

It is not possible to get an analytic solution in « for (3.3.14). It can be obtained

numerically by using methods such as fixed-point or bisection method.
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Moments

We obtain the 7" moment of WL(«, 3) in the form

uéz/ «" f(x; a, B) do

(o9} o oo ’L i+1 o0
'kz' (1—j—k+1)!
=0 j=0 k= 0

oo 0 0

220, .m,

szOmO

z+] i+1 [e%e]
(0% B(i_s
'/ x’r—f—mex (i—j+1) dr.
(t—=3—m)Jy

By using the definition of Gamma function, we get

o0 i1 i BHr+k r k . r
l (7 — 7 — . . Btrtk
—0 j=0 k=0 kl J k+1)5(2—]+1) E
© LT (cp)yimEt e D)
- B
+ZZZ TR (3.3.15)
i=0 j—=0 m— 'mll_j_ m)! Bli—j+1) 5

If (3.3.15) is a convergent series for any r > 0, therefore all the moments exist and
for integer values of o and 3, it can be represented as a finite series representation.

Therefore putting » = 1, we obtain the mean as

o i il )Z+]+ﬂ+k+1 i+l [(ShtL)

DI ; :

+k+1
zO]OkO Z_j_k+1)ﬁ( —j+1) 7

g D)

(=
i=0 j=0 m=0 gtmi(i = j —m)! Bli—j+ 1>MT+2
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and putting r = 2, we obtain the second moment as

oo i t+l—g i BEEE2 ﬁ+k+2 it F(/B—HH—Z)
B =33 S :
' | _ _ . . B+k+2
i=0 j=0 k=0 (i — k+1)/3(z_]+1) E
o i i7j Z+]+m+3 oit F(mTJr%
+ Z lml (i—j—m) g _ i mi3
i=0 j= O 5<Z_j +1) s

It can be used to obtain the higher central moments and variance.

Moment Generating Function and Characteristic Function

The moment generating function, Mx (), of WL(«, ) is obtained as

t?"
Myt =30
r=0
- Vilkl(s — 4 — ' oo Btrtk
i—0 j=0 k=0 ikl =g k+1)'5(1—]+1) E
i pmertl F(m+ﬁ7’+1)

o r i+j+
I 5) 9 Bl e )

13l (73 — 5 — | . .
i—0 j—0 m=0 rijtml(i = j —m)! Bli—j+1) 5

The characteristic function, ¢x(t), of WL(«, 8) is obtained as

191 | — 7 — . . Btrtk
i=0 j=0 k=0 rjkz J k+1) Bli—j+1) 7
oo 14 1+3+m+§+lai+1 F(m+7‘+1)
B
DR PI
=0 j=0 m=0 T']'m'Z—j— )' ﬂ(l_.]—i_l) E
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3.3.2 Distribution of Maximum and Minimum

Let Xy, Xs,..., X, be a random sample from WL(«, 8) with cdf and pdf as in
(3.3.1) and (3.3.2), respectively. Let X1y, X(2), ..., X(n) denote the order statistics

obtained from this sample. The pdf of X, is given by,

e

1 —a((l—&-a:)ezﬂ—l) T
fem () B(r,n—r+1) { ‘

—a((l—&-a:)ezﬂ —1>:| e

28
a(ﬁxﬁl(l +2)e” + ewﬂ)e‘“«”x)e ‘1), >0, a>0, 08>0, (3.3.16)

The cdf of X, is given by,

r>0, a>0,8>0. (3.3.17)

The cdf of X(y) is

n

xB _
Fx (z;0,8) = P(Xq) <z)=1- ll—e_a((lﬂ’)e 1)] , x>0, a>0,8>
0.
The cdf of X, is

N
Fx (xia,8) = P(X@n <) = lea(mz)e 1>] ., x>0 a>08>0.

Reliability of a series system having n components with WL(«, ) is
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Reliability of a parallel system having n components with WL(«, 5) is

R(z)=1— [e—a((l—ﬁ—x)ewﬁ_l)]n‘

3.3.3 Parameter Estimation

In this section, point estimation of the unknown parameters of the WL(«, 3) are
conducted using MLE. First partial derivatives of the log-likelihood function with

respect to the two-parameters are

oL n 8
D N1 e 3.3.18
o = e (33.18)
and
B—1 B-1
oL i 5 " 5 g n (14 1) [352 + Ba; logl“i]
— = x; log x;—a ((1 + xz;)e" ;. log xi>+ —
B ; ; ; B N1 4 ;) + 1
(3.3.19)

Setting the left side of the above two equations to zero, we get the likelihood
equations as a system of two non-linear equations in a and . Solving this system
in a and [ gives the MLE of a and 3. It is very easy to obtain estimates using R

software by numerical methods.

3.3.4 Asymptotic Confidence bounds

In this section, we derive the asymptotic confidence intervals of the parameters «

and [, since the MLEs of the unknown parameters o and § cannot be obtained
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in closed forms. Let the variance covariance matrix be denoted by /=1, where I~}

is the inverse of the observed information matrix which defined as follows

[ B B
2 2
B(=35) E(=5)

Var(&)  Cov(a, f)

Cov(B,&4)  Var(p)
where the second partial derivatives of log-likelihood function are

n

2l 2]
ot __n 91 _ Z(l + xi)exfxf log z;
=1

da2 o’ daf

and

n

2 n
g_ﬁlg = Z xf(log 7)) — Z(l + ;) [ewiﬁ (xf log 2;)* + emfxf(log xz)ﬂ
i=1 i=1
n (6:1:?_1(1 + ;) + 1) <B$i’8_1(1 + z;)(log x;)* + 2(1 + xi)xf_1>

+ <B$?_1(1+$i)+1>2

i=1
n ((1 + ;) [Ifil + Bzl logmiDZ

a Z (51;?*1(1 + )+ 1)2

=1

We can derive the (1 —£)100% confidence intervals of the parameters o and 5 as
&+ Ze/Var(a), B+ Zey/ Var(B)

where Z¢ is the upper (g)th percentile of the standard Normal distribution.
2
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3.3.5 Three parameter Weibull-Lindley Distribution

A random variable X is said to have three parameter Weibull-Lindley (3WL)

distribution if its cdf is of the form,
Y
Flz:a,8,)) =1— (000 1) 0 50,85 0,4 > 0, (3.3.20)
The pdf corresponding to Eq.(3.3.20) is given by

B
flza, B,0) = a(ﬁA(Ax)ﬁ—lu + Az)e)” 4 )\e(’\””)ﬁ) oo ((1+32)e0 —1)7

>0, o, B, A>0. (3.3.21)

Here (3 is shape parameter and ) is scale parameter. The distribution of this form
with parameters «, 8, and A will be denoted by 3WL(a, 8, A). The survival func-
tion S(z;a, B, A), failure rate function r(z; «, 5, \), reversed failure rate function

h(z;a, 5,\) and cumulative failure rate function H(x; «, 5, A) of X are

S(z;a,6,\) =1—F(z;a,5,\) = e*a((1+’\x)e(mﬁ*1), x>0, a 5, \>0,
(3.3.22)

r(z;a, B, \) = a(ﬁx\()\x)ﬁ_l(l + )\x)e(’\x)ﬁ — Ae(’\m)ﬂ) x>0, a B, \>0,
(3.3.23)

a (5A(>\x)ﬂ1(1 + Az)eP)’ 4 /\e(m)ﬁ> e ((rane0” 1)

h "'E; a7 Y A = Y
( 6 ) 1 6704((14*)\56)6()@)[371)

x>0, a B, A>0 (3.3.24)
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and
H(z;a,B,)) = / r(t; o, B, \)dt = a(l—l—)\x)e(m)ﬁ, x>0, a B, A>0 (3.3.25)
0

respectively. Figure 3.10 and Figure 3.11 provide the pdfs and the failure rate
functions of 3WL(a, 3, A) for different parameter values. From the below figures
it is immediate that the pdfs can be unimodal and the failure rate function can

be increasing, decreasing or bathtub shaped. It is clear that the pdf and the

—— a=3,b=1.2,1=2

—o— a=3,b=14,|=1.5—— a=3, b=1.7,1=0.8
LD —
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N —
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Figure 3.10: PDF of the 3WL(a, 3, A).

failure rate function have many different shapes, which allows this distribution to

fit different types of lifetime data. For fixed a, F'is IFR if § > 1 and A > 1, (left)
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Figure 3.11: Failure rate function of the 3SWLD(a, 3, ).

and DFR and BFR if § <1 and A < 1 (right).

Parameter Estimation

In this section, point estimation of the unknown parameters of the 3WL(a, 8, A)
are done by method of maximum likelihood. The first partial derivatives of the

log-likelihood function with respect to the three-parameters are

g_i - g > (1 M) e 4o, (3.3.26)

1=0

55 Z Az:)? log(Aa:) —aZ(”sz M”’YAxi)ﬁlog(mi))*

o (L) (0 )
2 B0 L+ Aa) §

(3.3.27)

=1
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and

=7 + Zxﬂﬁ)\ﬁ ! az ( (14 Azy)eP) 2, 8(Aa;)° + xie(m)ﬁ)—l—

n BT ((5 DAB=2) 4 ;80— 1)

> (3.3.28)
i=1 (B(Axi)ﬁl(l + Ax;) + 1)

Setting the left side of the above three equations to zero, we get the likelihood
equations as a system of three non-linear equations in «, # and \. Solving this
system in «, § and A gives the MLEs of «, § and \. It is very easy to obtain

estimates using R software by numerical methods.

3.3.6 Application

In this section, we present the analysis of a real data set using the WL(«, #) and
3WL(«, 5, A) model and compare it with the other bathtub models such as Gen-
eralized Lindley distribution (GL), Nadarajah et al. (2011) and Exponentiated
Weibull distribution (EW), Pal et al. (2006), using K-S statistic. We considered
two sets of data, which are strengths of 1.5 cm glass fibers data, Smith and Naylor
(1987) and infection for AIDS data, Klein and Moesch Berger (1997).

Data Set 1: The data are the strengths of 1.5 cm glass fibers, Smith and Naylor
(1987), measured at the National Physical Laboratory, England. The data set 1
is given in Table 3.8. Table 3.9 gives MLEs of parameters of the WL(«, 3), GL,
EW and 3WL(a, 5, A) and goodness of fit statistics.

3WL(a, B, A) gives the smallest K-S value and largest p-value. The second
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Table 3.8: Strengths of 1.5 cm glass fibres

0.55 093 125 136 149 152 158 1.61 1.64 1.68
1.73 1.81 2 074 104 127 139 149 153 1.59
1.61 1.66 1.68 1.76 1.82 2.01 0.77 1.11 1.28 1.42
1.5 154 16 162 166 1.69 1.76 1.84 224 0381
1.13 129 148 1.5 155 161 1.62 166 1.7 1.77
1.84 084 124 13 148 151 155 161 1.63 1.67
1.7 1.78 1.89

Table 3.9: MLEs of parameters, Log-likelihood

Model MLEs of Parameters log L K-S p-value

WL a=0.0285 “16.639 0.1368  0.189
3=1.893

GL 0=26.172 -30.6199 0.2264 0.00314
A=2.9901

a=17.285

EW 3=0.67122 -14.676  0.146  0.135
A=0.582
a=0.000212

3WL 3=0.8378 -14.4228 0.1256  0.273

\=5.3257

smallest K-S value and largest p-value are obtained for the WL distribution. The
second largest log-likelihood value is given by the EW distribution. Fitted pdfs
and probability plots of the three best fitting distributions for data set 1 are given
in Figure 3.12 and 3.13.

Data Set 2: Consider times to infection for AIDS for two hundred and ninety five
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Figure 3.12: Fitted Pdfs of the three best fitting distributions for data set 1.

patients, Klein and Moesch Berger (1997). Table 3.10 gives MLEs of parameters
of the WL(«, 5), GL, EW and 3WL(a, 8, A) and goodness of fit statistics.

Here, the smallest K-S value and largest p-value are obtained for SWL(«, 3, A).
EW gives the largest log-likelihood value and second largest p-value. The third
largest log-likelihood value and p-value based are obtained for WL(«, 5). Tt is
observed that 3WL(«, 5, \) fits as the best in the first data set whereas EW fits
as the best in the second data in terms of likelihood and in terms of KS Statistic.
Therefore, it is not guaranteed the 3WL(«, 5, \) will behave always better than
WL(a, 5) or EW but at least it can be said in certain circumstances 3WL(«, 3, \)

might work better than WL(«, 5) or EW. Fitted pdfs and probability plots of the
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Figure 3.13: Probability plots of the three best fitting distributions for data set 1.

three best fitting distributions for data set 2 are given in Figure 3.14 and 3.15.
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91

Table 3.10: MLEs of parameters, Log-likelihood

Model MLEs of Parameters log L K-S p-value
WL a=0.0355 457.302 0.0776  0.0893
3=0.5712
GL a=2414 453.523  0.717 2.22x10~16
A=0.8929
4=1.9566
EW 3=0.9598 -450.131  0.064 0.2426
A=0.3213
G=8.752x10~%
3WL $=0.2094 -451.875 0.0619  0.2755
A=15.0999
Density Plot
N |
o // TN
g_ \%\%
o-_I T T 1
0 2 4 6

Figure 3.14: Fitted Pdfs of the three best fitting distributions for data set 2.
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Weibull-Lindley Probability Plot 3WLD Probability Plot
e o |
- -
© ©
o 7 S 7
© o
g S T S ]
> >
@ @
%] %]
o) Qo
o < o = ]
o o
N N
o 7 S 7
o Ol o
o 7 o
I T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Expected Expected

Exponentiated Weibull Probability Plot

Observed

0.0 0.2 0.4 0.6 08

Expected

Figure 3.15: Probability plots of the three best fitting distributions for data set 2.

3.4 Summary

GXE is generalizes the X-Exponential distribution. Several properties of the dis-

tribution, hazard rate function, moments, moment generating function etc are
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derived. Also we presented the maximum likelihood estimation of this distribu-
tion. A simulation study is performed for validate MLE. Two real data sets are
analyzed. The first data set provided smallest AIC and BIC value, the largest
p-value for GXE distribution than GLD distribution. And also the second data
set also provided smallest AIC and BIC value, the largest p-value for GXE distri-
bution than GLD distribution. It shows that the proposed distribution is a better

alternative among BFR models.

We proposed Weibull-Lindley distribution which exhibits bathtub shaped fail-
ure rate function, with high initial failure rate, which decreases rapidly and then
slowly increases. Three parameter Weibull-Lindley distribution (3WLD) is intro-
duced for avoid scale problem. We have studied maximum likelihood estimators
and the parameters estimation is carried out in the presence of real data. We
present two real life data sets, where in one data set it is observed that 3WLD
has a better fit compare to EW or WLD but in the other the EW has a better fit

than 3WLD or WLD.



