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CHAPTER 3

NEW BATHTUB SHAPED FAILURE RATE

DISTRIBUTIONS

3.1 Introduction

1 In many applied sciences such as medicine, engineering, bio statistics, survival

analysis etc modeling and analysis of lifetime data are crucial, Deshpande and

Suresh (1990). In analyzing lifetime data one often uses the Exponential, Gamma,

Weibull and Generalized Lindley distributions. It is well known that Exponential

distribution has constant hazard function, Generalized Lindley distribution has a

BFR function whereas Weibull and Gamma distributions have constant or mono-

tone (increasing/decreasing) failure rate functions. In this chapter we present two

new simple distributions which have BFR function. The proposed distributions

1Some contents of this chapter are based on Chacko and Deepthi (2018 & 2019).
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54 New Bathtub Shaped Failure Rate Distributions

are capable of modeling the real problems.

In this chapter, Generalized X-Exponential distribution and Weibull-Lindley

Distribution are discussed in section 3.2 and 3.3. Summary are given in section

3.4.

3.2 Generalized X-Exponential distribution

Here we consider a new distribution named as Generalized X-Exponential dis-

tribution, having BFR function, which generalizes the distribution having df

F (x) = 1 − (1 + λx2)e−λx, x > 0, λ > 0, Chacko (2016). The failure rate func-

tion of X-Exponential distribution appears monotonically decreasing and bathtub

shape. The generalization considered is the distribution of a series system hav-

ing distribution function F (x) = 1 − (1 + λx2)e−λ(x2+x), x > 0, λ > 0, for its

components.

In section 3.2.1, the distribution function of the Generalized X-Exponential

distribution (GXE) is given. In section 3.2.2 discussed the statistical properties

of the distribution. In section 3.2.3 discussed the distribution of maximum and

minimum to address the reliability problems of parallel system and series system,

respectively. The maximum likelihood estimation of the parameters is explained

in section 3.2.4. In section 3.2.5 discussed the asymptotic confidence bounds of

MLEs of the distribution. In section 3.2.6 a simulation study is given. Two real

data sets are analyzed in section 3.2.7 and the results are compared with some

existing distributions.
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3.2.1 Generalized X-Exponential Distribution

Let X be a life time r.v having cdf with parameter α and λ,

F (x) =
(

1− (1 + λx2)e−λ(x2+x)
)α
, x > 0, α > 0, λ > 0. (3.2.1)

Clearly F (0) = 0, F (∞) = 1, F is non-decreasing and right continuous. More

over F is absolutely continuous. Then the pdf of the r.v X is given by

f(x) = αe−λ(x2+x)(λ(1 + λx2)(2x+ 1)− 2λx)
(

1− (1 + λx2)e−λ(x2+x)
)α−1

,

x > 0, α, λ > 0. (3.2.2)

Here α and λ are the shape and scale parameters. It is clear that F is a positively

skewed distribution. The distribution with pdf of the form (3.2.2) is named as

GXE distribution with parameters α and λ and denoted by GXE(α, λ). Failure

rate function of GXE distribution is

r(x) =
αe−λ(x2+x)(λ(1 + λx2)(2x+ 1)− 2λx)

(
1− (1 + λx2)e−λ(x2+x)

)α−1

1− (1− (1 + λx2)e−λ(x2+x))
α ,

x > 0, α, λ > 0. (3.2.3)

Considering the behavior near the change point x0, x0 > 0 and if d
dx
h(x0) = 0.

(i) If 0 < α < 1/2, and 0 < λ < 1, then d
dx
h(x) < 0 when 0 < x < x0 and

d
dx
h(x) > 0 when x > x0, d2

dx2
h(x) > 0 for x = x0.

(ii) If 0 < α < 1/2, and λ > 1, then d
dx
h(x) < 0 when 0 < x < x0, d

dx
h(x) > 0
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Figure 3.1: PDF of GXE distribution for values of parameters α =
0.5, 2, 3, 3.5, 4, 2.5, 5 and λ = 1.5, 3, 4, 5, 6, 7, 7.5 with color shapes purple, blue,
plum, green, red, black and dark cyan, respectively.

when x > x0, d2

dx2
h(x) > 0 for x = x0.

(iii) If 1/2 < α < 1, and 0 < λ < 1, then d
dx
h(x) < 0 when 0 < x < x0 and

d
dx
h(x) > 0 when x > x0, d2

dx2
h(x) > 0 for x = x0.

(iv) If 1/2 < α < 1, and λ > 1, then d
dx
h(x) < 0 when 0 < x < x0 and d

dx
h(x) > 0

when x > x0, d2

dx2
h(x) > 0 for x = x0.

(v) If α > 1, and λ > 1, then d
dx
h(x) > 0 for x > 0.

The shape of (3.2.3) appears monotonically decreasing or to initially decrease and
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then increase, a bathtub shape if α < 1. GXE(α, λ) allows for monotonically de-

creasing, monotonically increasing and bathtub shapes for its failure rate function.

As α decreases from 1 to 0, the graph shift above whereas if λ increases from 1 to

∞ the shape of the graph concentrate near to 0, see Figures. 3.1, 3.2, 3.3.
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Figure 3.2: CDF of GXE distribution for values of parameters α = 1.5, 2, 3.5, 4.5, 5
and λ = 2.5, 3, 4, 5, 6 with color shapes red, green, plum, dark cyan and orange
respectively.

3.2.2 Moments

In order to calculate moments of X, we require the following lemma.
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Figure 3.3: Failure rate function GXE distribution for values of parameters α =
0.0001, 0.1, 0.5, 2.5, 0.475 and λ = 0.75, 5, 1.5, 7, 8 with color shapes orange, red,
grey, plum and green, respectively.

Lemma 3.2.1. For α, λ > 0, x > 0,

K(α, λ, c) =

∫ ∞
0

xc
(

1− (1 + λx2)e−λ(x2+x)
)α−1

e−λ(x2+x) dx.

Then,

K(α, λ, c) =
α−1∑
i=0

i∑
j=0

(
α− 1

i

)(
i

j

)
(−1)iλj

∫ ∞
0

x2j+ce−λ(x2+x) dx.
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Proof. Using Binomial expansion, (1− z)α−1 =
∑α−1

i=0

(
α−1
i

)
(−1)izi, we have,

K(α, λ, c) =

∫ ∞
0

xc
(

1− (1 + λx2)e−λ(x2+x)
)α−1

e−λ(x2+x) dx

=
α−1∑
i=0

(
α− 1

i

)
(−1)i

∫ ∞
0

xc
[
(1 + λx2)e−λ(x2+x)

]i
e−λ(x2+x) dx

=
α−1∑
i=0

(
α− 1

i

)
(−1)i

∫ ∞
0

xc
i∑

j=0

(
i

j

)
(λx2)je−(i+1)λ(x2+x) dx

=
α−1∑
i=0

i∑
j=0

(
α− 1

i

)(
i

j

)
(−1)iλj

∫ ∞
0

x2j+ce−λ(x2+x) dx.

The result of the lemma follows by the definition of the Gamma function. The

first raw moment is

E(X) = αλK(α, λ, 1) + 2αλ2K(α, λ, 4) + αλ2K(α, λ, 3).

The nth raw moment is

E(Xn) = αλK(α, λ, n) + 2αλ2K(α, λ, n+ 3) + αλ2K(α, λ, n+ 2).

Moment Generating Function

Moment generating function can be obtained from following formula

MX(t) =

∫ ∞
0

etxαe−λ(x2+x)
(
λ+ λx2 + 2λ2x3

) (
1− (1 + λx2)e−λ(x2+x)

)α−1

dx
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=

∫ ∞
0

α
(
λ+ λx2 + 2λ2x3

) (
1− (1 + λx2)e−λ(x2+x)

)α−1

e−λ(x2+x)+tx dx.

Characteristic Function

Characteristic function can be obtained from following formula

φX(t) =

∫ ∞
0

eitxαe−λ(x2+x)
(
λ+ λx2 + 2λ2x3

) (
1− (1 + λx2)e−λ(x2+x)

)α−1

dx

=

∫ ∞
0

α
(
λ+ λx2 + 2λ2x3

) (
1− (1 + λx2)e−λ(x2+x)

)α−1

e−λ(x2+x)+tx dx.

Mean Deviation About Mean

The scatter in a population is measured by using Mean deviation about the mean

µ is defined by

MD(mean) = 2µF (µ)− 2µ+ 2

∫ ∞
µ

xf(x) dx

= 2µF (µ)− 2µ+ 2
(
αλL(α, λ, 1, µ) + 2αλ2L(α, λ, 4, µ)

)
+ 2αλ2L(α, λ, 3, µ)

where

L(α, λ, c, µ) =

∫ ∞
µ

xc
(

1− (1 + λx2)e−λ(x2+x)
)α−1

e−λ(x2+x) dx

=
α−1∑
i=0

i∑
j=0

(
α− 1

i

)(
i

j

)
(−1)iλj

(∫ ∞
µ

x2j+c+1e−(j+1)λ(x2+x)dx

)
.
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Similarly, Mean deviation about the Median M is defined by

MD(Median) = −M + 2

∫ ∞
M

xf(x) dx

= −M + 2
(
αλL(α, λ, 1,M) + 2αλ2L(α, λ, 4,M)

)
+ 2αλ2L(α, λ, 3,M).

3.2.3 Distribution of Maximum and Minimum

Series, Parallel, Series-Parallel and Parallel-Series systems are general system

structure of many engineering systems. The theory of order statistics provides

a useful tool for analysing life time data of such systems. Let X1, X2, . . . , Xn be a

random sample from GXE distribution with cdf and pdf as in (3.2.1) and (3.2.2),

respectively. Let X(1), X(2), . . . , X(n) denote the order statistics obtained from this

sample. The pdf of X(r) is given by,

f(r:n)(x) =
1

B(r, n− r + 1)

[(
1− (1 + λx2)e−λ(x2+x)

)α]r−1

[
1−

(
1− (1 + λx2)e−λ(x2+x)

)α]n−r
αe−λ(x2+x)(λ(1 + λx2)(2x+ 1)− 2λx)(

1− (1 + λx2)e−λ(x2+x)
)α−1

, x > 0, α, λ > 0. (3.2.4)

The cdf of X(r) is given by

Fr:n(x) =
n∑
j=r

(
n

j

)
F j(x)[1− F (x)]n−j

=
n∑
j=r

(
n

j

)[(
1− (1 + λx2)e−λ(x2+x)

)α]j
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[
1−

(
1− (1 + λx2)e−λ(x2+x)

)α]n−j
, x > 0, α, λ > 0. (3.2.5)

The pdf of the smallest and largest order statistics X(1) and X(n) are respectively

given by:

f1(x) =
1

B(1, n)

[
1−

(
1− (1 + λx2)e−λ(x2+x)

)α]n−1 (
1− (1 + λx2)e−λ(x2+x)

)α−1

αe−λ(x2+x)(λ(1 + λx2)(2x+ 1)− 2λx), x > 0, α, λ > 0, (3.2.6)

and

fn(x) =
1

B(n, 1)

[(
1− (1 + λx2)e−λ(x2+x)

)α]n−1

αe−λ(x2+x)(λ(1 + λx2)(2x+ 1)− 2λx)
(

1− (1 + λx2)e−λ(x2+x)
)α−1

,

x > 0, α, λ > 0. (3.2.7)

The cdf of the smallest and largest order statistics X(1) and X(n) are respectively

given by

F1(x) = 1−
[
1−

(
1− (1 + λx2)e−λ(x2+x)

)α]n
, x > 0, α, λ > 0

and

Fn(x) =
[(

1− (1 + λx2)e−λ(x2+x)
)α]n

, x > 0, α, λ > 0.
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Reliability of a series system having n components with GXE(α, λ) is

R(x) =
[(

1− (1 + λx2)e−λ(x2+x)
)α]n

.

Reliability of a parallel system having n components having GXE(α, λ) is

R(x) = 1−
[(

1− (1 + λx2)e−λ(x2+x)
)α]n

.

Both the reliability functions can be used in various reliability calculations.

3.2.4 Parameter Estimation

In this section, estimation of the unknown parameters of the GXE by using the

method of moments and method of maximum likelihood is explained.

Let X1, X2, . . . , Xn are random sample taken from GXE. Let m1 = 1
n

∑n
i=1Xi

and m2 = 1
n

∑n
i=1X

2
i . Equating sample moments to population moments we get

moment estimators for parameters.

m1 = αλK(α, λ, 1) + 2αλ2K(α, λ, 4) + αλ2K(α, λ, 3)

m2 = αλK(α, λ, 2) + 2αλ2K(α, λ, 5) + αλ2K(α, λ, 4)

where K(α, λ, 1) =
∑α−1

i=0

∑i
j=0

(
α−1
i

)(
i
j

)
(−1)iλj

∫∞
0
x2j+1e−λ(x2+x) dx. The solu-

tion of these equations are moment estimators.
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To find MLE, consider likelihood function as,

L(x;α, λ) =
n∏
i=1

f(xi)

= αne−λ
∑n
i=1(x2i+xi)

n∏
i=1

(λ(1 + λx2
i )(2xi + 1)− 2λxi)

n∏
i=1

(
1− (1 + λx2

i )e
−λ(x2i+xi)

)α−1

.

The log-likelihood function is,

l = logL(x;α, λ) = n logα +
n∑
i=1

log
(
λ(1 + λx2

i )(2xi + 1)− 2λxi
)

− λ
n∑
i=1

(x2
i + xi) + (α− 1)

n∑
i=1

log
(

1− (1 + λx2
i )e
−λ(x2i+xi)

)
.

The first partial derivatives of the log-likelihood function with respect to the two-

parameters are

∂l

∂α
=
n

α
+

n∑
i=1

log
(

1− (1 + λx2
i )e
−λ(x2i+xi)

)
∂l

∂α
= 0

=⇒ α̂ = − 1

n
log
(

1− (1 + λx2
i )e
−λ(x2i+xi)

)
(3.2.8)

and
∂l

∂λ
= −

n∑
i=1

(x2
i + xi) +

n∑
i=1

((2xi + 1)(1 + 2λx2
i )− 2xi)

(λ(1 + λx2
i )(2xi + 1)− 2λxi)

+ (α− 1)
n∑
i=1

((1 + λx2
i )e
−λ(x2i+xi)(x2

i + xi)− e−λ(x2i+xi)x2
i )(

1− (1 + λx2
i )e
−λ(x2i+xi)

)
∂l

∂λ
= 0
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=⇒
n∑
i=1

(x2
i + xi) =

n∑
i=1

((2xi + 1)(1 + 2λx2
i )− 2xi)

(λ(1 + λx2
i )(2xi + 1)− 2λxi)

+ (α− 1)
n∑
i=1

((1 + λx2
i )e
−λ(x2i+xi)(x2

i + xi)− e−λ(x2i+xi)x2
i )(

1− (1 + λx2
i )e
−λ(x2i+xi)

) .

(3.2.9)

Solving this system of equations (3.2.8) and (3.2.9) in α and λ gives the MLE of

α and λ. Estimates can be obtained by using ‘nlm’ package in R software with

arbitrarily initial values.

3.2.5 Asymptotic Confidence bounds

In this section, since the MLEs of the unknown parameters α > 0 and λ > 0

cannot be obtained in closed forms, we derive the asymptotic confidence intervals

of these parameters when α > 0 and λ > 0, by using variance covariance matrix

I−1, where I−1 is the inverse of the observed information matrix which is defined

as follows

I =

 E(− ∂2l
∂α2 ) E(− ∂2l

∂αλ
)

E(− ∂2l
∂λα

) E(− ∂2l
∂λ2

)



=

 Var(α̂) Cov(α̂, λ̂)

Cov(λ̂, α̂) Var(λ̂)

 .

The second partial derivatives are

∂2l

∂α2
= − n

α2
,
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∂2l

∂λ2
=

n∑
i=0

(
λ(1 + λx2

i )(2xi + 1)− 2λxi

)
[2x2

i (2xi + 1)](
λ(1 + λx2

i )(2xi + 1)− 2λxi

)2

−
n∑
i=0

((2xi + 1)(1 + 2λx2
i )− 2xi)

2(
λ(1 + λx2

i )(2xi + 1)− 2λxi

)2

+
n∑
i=1

(
x2
i e
−λ(x2i+xi) − (1 + λx2

i )e
−λ(x2i+xi)(x2

i + xi)
)

+ e−λ(x2i+xi)(x2
i + xi)(

1− (1 + λx2
i )e
−λ(x2i+xi)

)
−

n∑
i=1

(
(1 + λx2

i )e
−λ(x2i+xi)(x2

i + xi)− x2
i e
−λ(x2i+xi)

)2

(
1− (1 + λx2

i )e
−λ(x2i+xi)

)2

and
∂2l

∂αλ
=

n∑
i=1

(1 + λx2
i )e
−λ(x2i+xi)(x2

i + xi)− x2
i e
−λ(x2i+xi)(

1− (1 + λx2
i )e
−λ(x2i+xi)

) .

We can derive the (1− δ)100% confidence intervals of the parameters α and λ by

using variance matrix as in the form

α̂± Z δ
2

√
Var(α̂), λ̂± Z δ

2

√
Var(λ̂)

where Z δ
2

is the upper ( δ
2
)th percentile of the SN distribution.

3.2.6 Simulation

To understand the performance of the MLEs given by (3.2.8) and (3.2.9) with

respect to sample size n, a simulation study for assessment is considered:

(i) Generate five thousand samples from (3.2.2). Using Newton Raphson method,



New Bathtub Shaped Failure Rate Distributions 67

values of the GXE random variable are generated using

(1 + λx2)e−λ(x2+x) = 1− u
1
α

where u ∼ U(0, 1).

(ii) Compute the MLEs for the five thousand samples, say (αi, λi) for i =

1, 2, . . . , 5000.

(iii) Compute the biases of the estimator and mean squared errors using

biash(n) = 1
5000

∑5000
i=1 (ĥi − h) and MSEh(n) = 1

5000

∑5000
i=1 (ĥi − h)2 for h =

(α, λ).

We repeated these steps for n = 10, 20, . . . , 100 with different values of

parameters, for computing biash(n) and MSEh(n) for n = 10, 20, . . . , 100.

3.2.7 Data Analysis

In this section, we present the analysis of a real data for using the GXE(α, λ)

model and compare it with Generalized Lindley (GL) distribution using AIC,

BIC and K-S statistic. We considered the survival data for psychiatric inpatients

(Klein and Moesch Berger (1997)) to estimate the parameter values. The data

are given in Table 3.2. Table 3.3 provides the parameter estimates, standard

errors obtained by inverting the observed information matrix and log-likelihood

values. Table 3.4 provides values of AIC, BIC, and p-values based on the K-S

statistic. The corresponding probability plots and histogram are shown in Figure

3.4 and 3.5. We can see that the GXE distribution provides the smallest AIC
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Table 3.1: Simulation study on different choices of parameter values

α = 2.5 λ = 0.75 α = 0.5 λ = 0.001

n Bias MSE Bias MSE Bias MSE Bias MSE

10 0.37515 1.40735 0.03116 0.00971 0.00256 6.537×10−5 -7.531×10−6 5.6723×10−10

20 0.00777 0.00121 0.00967 0.00187 -0.001132 2.5621×10−5 6.3116×10−6 7.9673×10−10

30 -0.00347 0.000361 -0.00133 5.2976×10−5 0.00992 0.001967 3.9965×10−6 3.1944×10−10

40 0.002158 0.0001863 -0.001515 9.1865×10−5 0.001568 9.8350×10−5 -1.1745×10−6 5.5179×10−11

50 -0.008035 0.003228 0.001646 0.0001354 0.000202 2.0495×10−6 5.5596×10−6 1.5455×10−9

60 0.00111 7.4300×10−5 -7.695×10−6 3.5528×10−9 -0.000341 6.9802×10−6 -2.9708×10−6 5.2953×10−10

70 0.002488 0.0004332 -0.0001722 2.0761×10−6 -0.000331 7.6762×10−6 -3.4171×10−6 8.1738×10−10

80 0.001709 0.0002337 5.6173×10−5 2.5243×10−7 2.4323×10−5 4.7331×10−8 7.1859×10−7 4.1309×10−11

90 0.001912 0.0003292 0.0001403 1.7714×10−6 0.000429 1.6546×10−5 -4.3202×10−7 1.6798×10−11

100 0.001929 0.0003720 0.000216 4.6694×10−6 0.001706 0.0002910 2.5672×10−6 6.5907×10−10

α = 1 λ = 0.5 α = 1.5 λ = 1

10 0.00465 0.000216 -0.00458 0.00021 -0.05683 0.03229 -0.04672 0.02183

20 -0.00292 0.000171 0.02258 0.0102 -0.020347 0.008281 -0.00697 0.000973

30 -9.052×10−5 2.4583×10−7 -0.00184 0.000102 0.001420 6.0464×10−5 0.005746 0.000991

40 -0.000876 3.0695×10−5 -0.000901 3.2446×10−5 -0.003607 0.0005203 0.006072 0.001475

50 0.00128 8.1932×10−5 -0.000622 1.9383×10−5 0.00479 0.001149 0.002649 0.000351

60 0.000594 2.117×10−5 0.00118 8.3813×10−5 0.001702 0.000174 -0.000463 1.288×10−5

70 -0.00155 0.000168 -0.000892 5.5728×10−5 0.003831 0.001027 0.000398 1.1106×10−5

80 -0.000983 7.7277×10−5 -0.000934 6.9806×10−5 0.00285 0.000649 0.000584 2.7314×10−5

90 0.001544 0.000214 -5.4667×10−5 2.6896×10−7 0.000841 6.359×10−5 0.000968 8.4369×10−5

100 0.001396 0.000195 0.000373 1.3918×10−5 0.000537 2.8865×10−5 0.000275 7.5845×10−6

α = 2.5 λ = 1.25 α = 3 λ = 1.75

10 0.008654 0.000749 0.01351 0.001825 0.03068 0.009415 0.02618 0.006855

20 -0.005014 0.000503 -0.00401 0.000321 0.017103 0.00585 0.009213 0.001698

30 0.00994 0.002963 0.002236 0.000149 -0.00845 0.002143 0.00851 0.002172

40 -0.004481 0.000803 -0.000823 2.7113×10−5 -0.00231 0.000213 0.003504 0.000491

50 0.00666 0.002220 -0.000140 9.8505×10−7 0.005896 0.001738 0.000748 2.801×10−5

60 0.000206 2.5387×10−6 0.001005 6.0642×10−5 0.000311 5.7859×10−6 0.002391 0.000343

70 -4.04×10−5 1.1425×10−7 0.000722 3.6513×10−5 0.001375 0.0001324 -0.000786 4.3222×10−5

80 0.000882 6.2230×10−5 0.001149 0.000106 0.001103 9.7265×10−5 0.000192 2.9403×10−6

90 0.000732 4.8281×10−5 -0.000923 7.6744×10−5 -0.000874 6.8733×10−5 -0.000445 1.7813×10−5

100 -0.000957 9.1617×10−5 0.000349 1.2245×10−5 8.322×10−5 6.9256×10−7 -0.000947 8.9755×10−5

Table 3.2: Survival data for psychiatric inpatients

1 1 2 22 30 28 32 11 14 36 31 33 33

37 35 25 31 22 26 24 35 34 30 35 40 39
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value and BIC value, the largest p-value based on the K-S statistic. Hence, the

GXE distribution provides the better fit. The variance covariance matrix I−1 of

Table 3.3: MLEs of parameters, SE and Log-likelihood

Model ML estimates Standard error Log L

GXE
α̂ = 0.6967 0.03313

-99.360
λ̂ = 0.00184 7.852×105

GL
α̂ = 1.0691 0.05637

-107.657
λ̂ = 0.07547 0.00274

Table 3.4: AIC, BIC, K-S Statistic and p-value of the model

Model AIC BIC K-S Statistic p value

GXE 202.721 205.237 0.2113 0.1962

GL 219.315 221.831 0.3011 0.0179

the MLEs of GXE distribution for the data set 1 is computed as

=

 2.8532× 10−2 3.9810× 10−5

3.9810× 10−5 1.6031× 10−7

 .

Thus, the variances of the MLE of α and λ are Var(α̂) = 2.853 × 10−2 and

Var(λ̂) = 1.603 × 10−7, respectively. Therefore, 95% confidence intervals for α

and λ are [0.6417, 0.7507] and [0.0017, 0.00197], respectively. The data set 2

consist of the lifetimes of 50 devices (Aarset (1987)) and it is provided in Table

3.5. The parameter estimates, standard errors of the estimators and the various
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Figure 3.4: Probability plots of data set 1.

Table 3.5: Lifetimes of 50 devices

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18

18 18 18 21 32 36 40 45 46 47 50 55 60 63 63

67 67 67 67 72 75 79 82 82 83 84 84 84 85 85

85 85 85 86 86

measures are given in Table 3.6. The corresponding histogram and probability

plots are shown in Figure 3.6 and 3.7.

We can see again that the GXE distribution gives the smallest AIC value,

the smallest BIC value, and largest p-value based on the K-S statistic, see Table

3.7. Hence, the GXE distribution again provides the better fit. The variance

covariance matrix I−1 of the MLEs under the GXE distribution for the data set
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Figure 3.5: Histogram with fitted Pdfs for the data set 1.

Table 3.6: MLEs of parameters, SE and Log-likelihood

Model ML estimates Standard error Log L

GXE
α̂ = 0.3181 0.00715

-231.609
λ̂ = 0.000302 1.0452×105

GLD
α̂ = 0.4547 0.01123

-238.9909
λ̂ = 0.0278 0.000691

2 is computed as

=

 2.5596× 10−3 1.7080× 10−6

1.7080× 10−6 5.4625× 10−9

 .
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Table 3.7: AIC, BIC, K-S Statistic and p-value of the model

Model AIC BIC K-S Statistic p value

GXE 467.218 471.042 0.1555 0.1783

GLD 481.982 485.806 0.1936 0.0472

Thus, the variances of the MLEs of α and λ are Var(α̂) = 2.56 × 10−3 and

Var(λ̂) = 5.463 × 10−9, respectively. Therefore, 95% confidence intervals for α

and λ are [0.3064, 0.3299] and [0.00029, 0.00032], respectively.
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Figure 3.6: Probability plots of data set 2.
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Figure 3.7: Histogram with fitted Pdfs for the data set 2.

3.3 Weibull-Lindley Distribution

Let X be a random variable with the cdf,

F (x;α, β) = 1− e−α
(

(1+x)e(x)
β−1

)
, x > 0, α, β > 0. (3.3.1)

The r.v X is said to have Weibull-Lindly (WL) distribution if its distribution

function is in the form (3.3.1). It will be denoted by WL(α, β). Then, the pdf
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corresponding to (3.3.1) is given by

f(x;α, β) = α

(
βxβ−1(1 + x)ex

β

+ ex
β

)
e
−α
(

(1+x)ex
β−1

)
,

x > 0, α > 0, β > 0. (3.3.2)

Here β is shape parameter. The pdf of WL distribution can be rewritten as

f(x;α, β) = αβxβ−1(1 + x)ex
β

e
−α
(

(1+x)ex
β−1

)
+ αex

β

e
−α
(

(1+x)ex
β−1

)
,

x > 0, α > 0, β > 0. (3.3.3)

By using the power series expansion for the exponential function, we obtain

e
−α
(

(1+x)ex
β−1

)
=
∞∑
i=0

(−1)iαi

i!

(
(1 + x)ex

β − 1
)i
. (3.3.4)

Substituting (3.3.4) in (3.3.3), we get

f(x;α, β) = αβxβ−1(1 + x)ex
β
∞∑
i=0

(−1)iαi

i!

(
(1 + x)ex

β − 1
)i

+ αex
β
∞∑
i=0

(−1)iαi

i!

(
(1 + x)ex

β − 1
)i
, x > 0, α > 0, β > 0. (3.3.5)

Using the generalized binomial theorem, we have

(
(1 + x)ex

β − 1
)i

=
i∑

j=o

i!

j!(i− j)!

(
(1 + x)ex

β
)i−j

(−1)j. (3.3.6)



New Bathtub Shaped Failure Rate Distributions 75

Inserting (3.3.6) in (3.3.5), we get

f(x;α, β) = αβxβ−1(1 + x)ex
β
∞∑
i=0

i∑
j=0

(−1)iαi

j!(i− j)!

(
(1 + x)ex

β
)i−j

+ αex
β
∞∑
i=0

i∑
j=0

(−1)iαi

j!(i− j)!

(
(1 + x)ex

β
)i−j

, x > 0, α > 0, β > 0.

(3.3.7)

The pdf can be further simplified as

f(x;α, β) =
∞∑
i=0

i∑
j=0

i+1−j∑
k=0

(−1)i+jαi+1β(i− j + 1)

j!k!(i− j − k + 1)!
ex

β(i−j+1)xβ+k−1

+
∞∑
i=0

∞∑
j=0

i−j∑
m=0

(−1)i+jαi+1

j!m!(i− j −m)!
ex

β(i−j+1)xm, x > 0, α > 0, β > 0.

(3.3.8)

Figure 3.8 provide the pdfs of WL(α, β) for different parameter values. From the

below figures it is immediate that the pdfs are unimodal. The survival function

S(x), failure rate function r(x), reversed failure rate function h(x) and cumulative

failure rate function H(x) of X are

S(x;α, β) = e
−α
(

(1+x)ex
β−1

)
, x > 0, α > 0, β > 0. (3.3.9)

r(x;α, β) = α

(
βxβ−1(1 + x)ex

β

+ ex
β

)
, x > 0, α > 0, β > 0. (3.3.10)

h(x;α, β) =

α

(
βxβ−1(1 + x)ex

β
+ ex

β

)
e
−α
(

(1+x)ex
β−1

)

1− e−α((1+x)ex
β−1)

, x > 0, α > 0, β > 0.

(3.3.11)
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Figure 3.8: PDF of the WL(α, β).

and

H(x;α, β) =

∫ x

0

r(t;α, β) dt = α(1 + x)ex
β

, x > 0, α > 0, β > 0. (3.3.12)

The failure rate function of the WL(α, β) exhibit increasing, decreasing and bath-

tub shapes. We can see from that

lim
x→0

r(x) =


∞, β < 1

2α, β = 1

α, β > 1.
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Figure 3.9 provide the failure rate functions of WL(α, β) for different parameter

values. From the below figures it is immediate that the failure rate function can

be increasing, decreasing or bathtub shaped. It is clear that the pdf and the
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Figure 3.9: Failure rate function of the WL(α, β).

failure rate function have many different shapes, which allows this distribution

to fit different types of lifetime data. For fixed α, the failure rate function is

non-decreasing function if β > 1 (left) and non-increasing and bathtub function

if β < 1 (right).

3.3.1 Statistical Properties

In this section, we study the statistical properties for the WL(α, β), specially

Quantile function, Median, Mode, Moments etc.
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Quantile and Median

We obtain the 100pth percentile,

(1 + x)ex
β

= − 1

α
log(1− p) + 1. (3.3.13)

Setting in (3.3.13), we get the median of WL(α, β) from

(1 + x)ex
β

=
1

α
log

(
1

1− 0.5

)
+ 1.

xp is the solution of above monotone increasing function. Software can be used

to obtain the Quantiles/Percentiles.

Mode

Mode can be obtained as solution of

[h′(x;α, β)− (h(x;α, β))2].S(x;α, β) = 0. (3.3.14)

It is not possible to get an analytic solution in x for (3.3.14). It can be obtained

numerically by using methods such as fixed-point or bisection method.
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Moments

We obtain the rth moment of WL(α, β) in the form

µ′r =

∫ ∞
0

xrf(x;α, β) dx

=
∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+jαi+1

j!k!(i− j − k + 1)!

∫ ∞
0

xr+β+k−1ex
β(i−j+1) dx

+
∞∑
i=0

∞∑
j=0

∞∑
m=0

(−1)i+jαi+1

j!m!(i− j −m)!

∫ ∞
0

xr+mex
β(i−j+1) dx.

By using the definition of Gamma function, we get

µ′r =
∞∑
i=0

i∑
j=0

i+1−j∑
k=0

(−1)i+j+
β+r+k
β αi+1

j!k!(i− j − k + 1)!

Γ(β+r+k
β

)

β(i− j + 1)
β+r+k
β

+
∞∑
i=0

i∑
j=0

i−j∑
m=0

(−1)i+j+
m+r+1

β αi+1

j!m!(i− j −m)!

Γ(m+r+1
β

)

β(i− j + 1)
m+r+1

β

. (3.3.15)

If (3.3.15) is a convergent series for any r ≥ 0, therefore all the moments exist and

for integer values of α and β, it can be represented as a finite series representation.

Therefore putting r = 1, we obtain the mean as

E(X) =
∞∑
i=0

i∑
j=0

i+1−j∑
k=0

(−1)i+j+
β+k+1
β αi+1

j!k!(i− j − k + 1)!

Γ(β+k+1
β

)

β(i− j + 1)
β+k+1
β

+
∞∑
i=0

i∑
j=0

i−j∑
m=0

(−1)i+j+
m+2
β αi+1

j!m!(i− j −m)!

Γ(m+2
β

)

β(i− j + 1)
m+2
β
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and putting r = 2, we obtain the second moment as

E(X2) =
∞∑
i=0

i∑
j=0

i+1−j∑
k=0

(−1)i+j+
β+k+2
β αi+1

j!k!(i− j − k + 1)!

Γ(β+k+2
β

)

β(i− j + 1)
β+k+2
β

+
∞∑
i=0

i∑
j=0

i−j∑
m=0

(−1)i+j+
m+3
β αi+1

j!m!(i− j −m)!

Γ(m+3
β

)

β(i− j + 1)
m+3
β

.

It can be used to obtain the higher central moments and variance.

Moment Generating Function and Characteristic Function

The moment generating function, MX(t), of WL(α, β) is obtained as

MX(t) =
∞∑
r=0

tr

r!
µ′

=
∞∑
i=0

i∑
j=0

i+1−j∑
k=0

tr(−1)i+j+
β+r+k
β αi+1

r!j!k!(i− j − k + 1)!

Γ(β+r+k
β

)

β(i− j + 1)
β+r+k
β

+
∞∑
i=0

i∑
j=0

i−j∑
m=0

tr(−1)i+j+
m+r+1

β αi+1

r!j!m!(i− j −m)!

Γ(m+r+1
β

)

β(i− j + 1)
m+r+1

β

.

The characteristic function, φX(t), of WL(α, β) is obtained as

φX(t) =
∞∑
i=0

i∑
j=0

i+1−j∑
k=0

(it)r(−1)i+j+
β+r+k
β αi+1

r!j!k!(i− j − k + 1)!

Γ(β+r+k
β

)

β(i− j + 1)
β+r+k
β

+
∞∑
i=0

i∑
j=0

i−j∑
m=0

(it)r(−1)i+j+
m+r+1

β αi+1

r!j!m!(i− j −m)!

Γ(m+r+1
β

)

β(i− j + 1)
m+r+1

β

.
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3.3.2 Distribution of Maximum and Minimum

Let X1, X2, . . . , Xn be a random sample from WL(α, β) with cdf and pdf as in

(3.3.1) and (3.3.2), respectively. Let X(1), X(2), . . . , X(n) denote the order statistics

obtained from this sample. The pdf of X(r) is given by,

f(r:n)(x) =
1

B(r, n− r + 1)

[
1− e−α

(
(1+x)ex

β−1
)]r−1 [

e
−α
(

(1+x)ex
β−1

)]n−r
α

(
βxβ−1(1 + x)ex

β

+ ex
β

)
e
−α
(

(1+x)ex
β−1

)
, x > 0, α > 0, β > 0. (3.3.16)

The cdf of X(r) is given by,

Fr:n(x) =
n∑
j=r

(
n

j

)[
1− e−α

(
(1+x)ex

β−1
)]j [

e
−α
(

(1+x)ex
β−1

)]n−j
,

x > 0, α > 0, β > 0. (3.3.17)

The cdf of X(1) is

FX(1)
(x;α, β) = P (X(1) ≤ x) = 1−

[
1− e−α

(
(1+x)ex

β−1
)]n

, x > 0, α > 0, β >

0.

The cdf of X(n) is

FX(n)
(x;α, β) = P (X(n) ≤ x) =

[
e
−α
(

(1+x)ex
β−1

)]n
, x > 0, α > 0, β > 0.

Reliability of a series system having n components with WL(α, β) is

R(x) =

[
1− e−α

(
(1+x)ex

β−1
)]n

.
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Reliability of a parallel system having n components with WL(α, β) is

R(x) = 1−

[
e
−α
(

(1+x)ex
β−1

)]n
.

3.3.3 Parameter Estimation

In this section, point estimation of the unknown parameters of the WL(α, β) are

conducted using MLE. First partial derivatives of the log-likelihood function with

respect to the two-parameters are

∂L

∂α
=
n

α
−

n∑
i=1

(1 + xi)e
xβi (3.3.18)

and

∂L

∂β
=

n∑
i=1

xβi log xi−α
n∑
i=1

(
(1 + xi)e

xβi xβi log xi

)
+

n∑
i=1

(1 + xi)
[
xβ−1
i + βxβ−1

i log xi

]
βxβ−1

i (1 + xi) + 1
.

(3.3.19)

Setting the left side of the above two equations to zero, we get the likelihood

equations as a system of two non-linear equations in α and β. Solving this system

in α and β gives the MLE of α and β. It is very easy to obtain estimates using R

software by numerical methods.

3.3.4 Asymptotic Confidence bounds

In this section, we derive the asymptotic confidence intervals of the parameters α

and β, since the MLEs of the unknown parameters α and β cannot be obtained



New Bathtub Shaped Failure Rate Distributions 83

in closed forms. Let the variance covariance matrix be denoted by I−1, where I−1

is the inverse of the observed information matrix which defined as follows

I−1 =

 E(− ∂2l
∂α2 ) E(− ∂2l

∂αβ
)

E(− ∂2l
∂βα

) E(− ∂2l
∂β2 )



=

 Var(α̂) Cov(α̂, β̂)

Cov(β̂, α̂) Var(β̂)


where the second partial derivatives of log-likelihood function are

∂2l

∂α2
= −n

α
,

∂2l

∂αβ
=

n∑
i=1

(1 + xi)e
xβi xβi log xi

and

∂2l

∂β2
=

n∑
i=1

xβi (log xi)
2 − α

n∑
i=1

(1 + xi)
[
ex

β
i (xβi log xi)

2 + ex
β
i xβi (log xi)

2
]

+
n∑
i=1

(
βxβ−1

i (1 + xi) + 1
)(

βxβ−1
i (1 + xi)(log xi)

2 + 2(1 + xi)x
β−1
i

)
(
βxβ−1

i (1 + xi) + 1
)2

−
n∑
i=1

(
(1 + xi)

[
xβ−1
i + βxβ−1

i log xi

])2

(
βxβ−1

i (1 + xi) + 1
)2 .

We can derive the (1− ξ)100% confidence intervals of the parameters α and β as

α̂± Z ξ
2

√
Var(α̂), β̂ ± Z ξ

2

√
Var(β̂)

where Z ξ
2

is the upper ( ξ
2
)th percentile of the standard Normal distribution.
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3.3.5 Three parameter Weibull-Lindley Distribution

A random variable X is said to have three parameter Weibull-Lindley (3WL)

distribution if its cdf is of the form,

F (x;α, β, λ) = 1− e−α
(

(1+λx)e(λx)
β−1
)
, x > 0, α > 0, β > 0, λ > 0. (3.3.20)

The pdf corresponding to Eq.(3.3.20) is given by

f(x;α, β, λ) = α

(
βλ(λx)β−1(1 + λx)e(λx)β + λe(λx)β

)
e−α
(

(1+λx)e(λx)
β−1
)
,

x > 0, α, β, λ > 0. (3.3.21)

Here β is shape parameter and λ is scale parameter. The distribution of this form

with parameters α, β, and λ will be denoted by 3WL(α, β, λ). The survival func-

tion S(x;α, β, λ), failure rate function r(x;α, β, λ), reversed failure rate function

h(x;α, β, λ) and cumulative failure rate function H(x;α, β, λ) of X are

S(x;α, β, λ) = 1− F (x;α, β, λ) = e−α
(

(1+λx)e(λx)
β−1
)
, x > 0, α, β, λ > 0,

(3.3.22)

r(x;α, β, λ) = α

(
βλ(λx)β−1(1 + λx)e(λx)β + λe(λx)β

)
, x > 0, α, β, λ > 0,

(3.3.23)

h(x;α, β, λ) =

α

(
βλ(λx)β−1(1 + λx)e(λx)β + λe(λx)β

)
e−α
(

(1+λx)e(λx)
β−1
)

1− e−α
(

(1+λx)e(λx)
β−1
) ,

x > 0, α, β, λ > 0 (3.3.24)
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and

H(x;α, β, λ) =

∫ x

0

r(t;α, β, λ)dt = α(1+λx)e(λx)β , x > 0, α, β, λ > 0 (3.3.25)

respectively. Figure 3.10 and Figure 3.11 provide the pdfs and the failure rate

functions of 3WL(α, β, λ) for different parameter values. From the below figures

it is immediate that the pdfs can be unimodal and the failure rate function can

be increasing, decreasing or bathtub shaped. It is clear that the pdf and the
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Figure 3.10: PDF of the 3WL(α, β, λ).

failure rate function have many different shapes, which allows this distribution to

fit different types of lifetime data. For fixed α, F is IFR if β > 1 and λ > 1, (left)
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Figure 3.11: Failure rate function of the 3WLD(α, β, λ).

and DFR and BFR if β < 1 and λ < 1 (right).

Parameter Estimation

In this section, point estimation of the unknown parameters of the 3WL(α, β, λ)

are done by method of maximum likelihood. The first partial derivatives of the

log-likelihood function with respect to the three-parameters are

∂L

∂α
=
n

α
−

n∑
i=0

(
1 + λxi

)
e(λxi)

β

+ n, (3.3.26)

∂L

∂β
=

n∑
i=1

(λxi)
β log(λxi)− α

n∑
i=1

(
(1 + λxi)e

(λxi)
β

(λxi)
β log(λxi)

)
+

n∑
i=1

(1 + λxi)
(
(λxi)

β−1 + β(λxi)
β−1 log(λxi)

)
β(λxi)β−1(1 + λxi) + 1

(3.3.27)
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and

∂L

∂λ
=
n

λ
+

n∑
i=1

xβi βλ
β−1 − α

n∑
i=1

(
(1 + λxi)e

(λxi)
β

xiβ(λxi)
β + xie

(λxi)
β

)
+

n∑
i=1

βxβi

(
(β − 1)λ(β−2) + xiβλ

β−1

)
(
β(λxi)β−1(1 + λxi) + 1

) . (3.3.28)

Setting the left side of the above three equations to zero, we get the likelihood

equations as a system of three non-linear equations in α, β and λ. Solving this

system in α, β and λ gives the MLEs of α, β and λ. It is very easy to obtain

estimates using R software by numerical methods.

3.3.6 Application

In this section, we present the analysis of a real data set using the WL(α, β) and

3WL(α, β, λ) model and compare it with the other bathtub models such as Gen-

eralized Lindley distribution (GL), Nadarajah et al. (2011) and Exponentiated

Weibull distribution (EW), Pal et al. (2006), using K-S statistic. We considered

two sets of data, which are strengths of 1.5 cm glass fibers data, Smith and Naylor

(1987) and infection for AIDS data, Klein and Moesch Berger (1997).

Data Set 1: The data are the strengths of 1.5 cm glass fibers, Smith and Naylor

(1987), measured at the National Physical Laboratory, England. The data set 1

is given in Table 3.8. Table 3.9 gives MLEs of parameters of the WL(α, β), GL,

EW and 3WL(α, β, λ) and goodness of fit statistics.

3WL(α, β, λ) gives the smallest K-S value and largest p-value. The second
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Table 3.8: Strengths of 1.5 cm glass fibres

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68

1.73 1.81 2 0.74 1.04 1.27 1.39 1.49 1.53 1.59

1.61 1.66 1.68 1.76 1.82 2.01 0.77 1.11 1.28 1.42

1.5 1.54 1.6 1.62 1.66 1.69 1.76 1.84 2.24 0.81

1.13 1.29 1.48 1.5 1.55 1.61 1.62 1.66 1.7 1.77

1.84 0.84 1.24 1.3 1.48 1.51 1.55 1.61 1.63 1.67

1.7 1.78 1.89

Table 3.9: MLEs of parameters, Log-likelihood

Model MLEs of Parameters log L K-S p-value

WL
α̂=0.0285

-16.639 0.1368 0.189
β̂=1.893

GL
α̂=26.172

-30.6199 0.2264 0.00314
λ̂=2.9901

EW
α̂=7.285

-14.676 0.146 0.135β̂=0.67122

λ̂=0.582

3WL
α̂=0.000212

-14.4228 0.1256 0.273β̂=0.8378

λ̂=5.3257

smallest K-S value and largest p-value are obtained for the WL distribution. The

second largest log-likelihood value is given by the EW distribution. Fitted pdfs

and probability plots of the three best fitting distributions for data set 1 are given

in Figure 3.12 and 3.13.

Data Set 2: Consider times to infection for AIDS for two hundred and ninety five
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Figure 3.12: Fitted Pdfs of the three best fitting distributions for data set 1.

patients, Klein and Moesch Berger (1997). Table 3.10 gives MLEs of parameters

of the WL(α, β), GL, EW and 3WL(α, β, λ) and goodness of fit statistics.

Here, the smallest K-S value and largest p-value are obtained for 3WL(α, β, λ).

EW gives the largest log-likelihood value and second largest p-value. The third

largest log-likelihood value and p-value based are obtained for WL(α, β). It is

observed that 3WL(α, β, λ) fits as the best in the first data set whereas EW fits

as the best in the second data in terms of likelihood and in terms of KS Statistic.

Therefore, it is not guaranteed the 3WL(α, β, λ) will behave always better than

WL(α, β) or EW but at least it can be said in certain circumstances 3WL(α, β, λ)

might work better than WL(α, β) or EW. Fitted pdfs and probability plots of the
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Figure 3.13: Probability plots of the three best fitting distributions for data set 1.

three best fitting distributions for data set 2 are given in Figure 3.14 and 3.15.
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Table 3.10: MLEs of parameters, Log-likelihood

Model MLEs of Parameters log L K-S p-value

WL
α̂=0.0355

-457.302 0.0776 0.0893
β̂=0.5712

GL
α̂=2.414

-453.523 0.717 2.22×10−16

λ̂=0.8929

EW
α̂=1.9566

-450.131 0.064 0.2426β̂=0.9598

λ̂=0.3213

3WL
α̂=8.752×10−04

-451.875 0.0619 0.2755β̂=0.2994

λ̂=15.0999
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Figure 3.14: Fitted Pdfs of the three best fitting distributions for data set 2.
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Figure 3.15: Probability plots of the three best fitting distributions for data set 2.

3.4 Summary

GXE is generalizes the X-Exponential distribution. Several properties of the dis-

tribution, hazard rate function, moments, moment generating function etc are
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derived. Also we presented the maximum likelihood estimation of this distribu-

tion. A simulation study is performed for validate MLE. Two real data sets are

analyzed. The first data set provided smallest AIC and BIC value, the largest

p-value for GXE distribution than GLD distribution. And also the second data

set also provided smallest AIC and BIC value, the largest p-value for GXE distri-

bution than GLD distribution. It shows that the proposed distribution is a better

alternative among BFR models.

We proposed Weibull-Lindley distribution which exhibits bathtub shaped fail-

ure rate function, with high initial failure rate, which decreases rapidly and then

slowly increases. Three parameter Weibull-Lindley distribution (3WLD) is intro-

duced for avoid scale problem. We have studied maximum likelihood estimators

and the parameters estimation is carried out in the presence of real data. We

present two real life data sets, where in one data set it is observed that 3WLD

has a better fit compare to EW or WLD but in the other the EW has a better fit

than 3WLD or WLD.


