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CHAPTER 4

DUS TRANSFORMATION OF LOMAX

DISTRIBUTION: AN UPSIDE-DOWN BATHTUB

SHAPED FAILURE RATE MODEL

4.1 Introduction

1 A little research works have been discussed on the upside-down bathtub (UBT)

shaped failure rate distributions. Efron (1988) discussed head and neck cancer

data having UBT shape for failure rate because of a therapy. Inverse Lindley (IL)

distribution is used to model UBT data, Sharma et al. (2014 & 2015). In reliability

literature, the stress-strength model describes the life of a component that has a

random strength X and is subjected to random stress Y . The system fails if and

1Some contents of this chapter are based on Deepthi and Chacko (2020).
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only if the stress is greater than strength. The estimation of a stress-strength

model when X and Y are having a specified distribution, has been discussed by

many researchers, Al-Mutairi et al. (2013).

Use of heavy tailed distribution required for many of the lifetime data anal-

ysis. Pareto distribution is one of the heavy tailed distributions which usually

models nonnegative data. It was introduced by Pareto (1897) as a model for the

distribution of incomes. Several different forms of Pareto distribution have been

studied by many authors including Lomax (1954), Davis and Feldstein (1979),

Grimshaw (1993) and Nadarajah and Gupta (2008). One of the popular hier-

archy of Pareto distribution is Pareto Type II which has been named as Lomax

distribution. Lomax distribution has been applied in a variety of fields such as

engineering, reliability and life testing. In statistical literature, there are several

methods to propose new distribution by the use of some baseline distribution.

Dinesh et al. (2015) proposed a method, DUS transformation, to get new distri-

bution by the use of Exponential baseline distribution and studied its properties

with application to survival data analysis. If f(x) and F (x) be the pdf and cdf of

some baseline distribution, then the pdf g(x) of the corresponding DUS Transfor-

mation distribution is given by

g(x) =
1

e− 1
f(x)eF (x). (4.1.1)

The cdf and failure rate function corresponding to the pdf g(x) is given by

G(x) =
1

e− 1
[eF (x) − 1] (4.1.2)
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and

h(x) =
1

e− eF (x)
f(x)eF (x) (4.1.3)

respectively. It is a transformation, not a generalization, hence it produces a

parsimonious distribution in terms of computation and interpretation as it never

contains any new parameter other than the parameter(s) involved in the baseline

distribution.

The aim of this chapter to derive DUS Transformation of Lomax distribu-

tion which possesses the upside-down bathtub-shaped failure rate function. The

proposed distribution is thus capable of modeling the real problems.

The following sections are organized as follows. The pdf, distribution function,

failure rate function and its characteristics are given in section 4.2. In section

4.3, shapes of the pdf and failure rate function are given. Moments, moment

generating function, characteristic function, quantile function, entropy, skewness

and kurtosis are discussed in section 4.4. In section 4.5, distribution of maximum

and minimum order statistics are discussed. The maximum likelihood estimation

is discussed in section 4.6. In section 4.7, stress-strength reliability and its MLE

are derived. In section 4.8, a simulation study is given. Three real data sets are

analyzed in section 4.9. Conclusions are given in section 4.10.

4.2 DUS Transformation of Lomax Distribution

In this section, we consider DUS transformation of Lomax distribution with two

parameters.
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Consider Lomax distribution with pdf,

f(x) = αβ(1 + βx)−(α+1), x > 0, α > 0, β > 0 (4.2.1)

and the corresponding cdf is given by,

F (x) = 1− (1 + βx)−α, x > 0, α > 0, β > 0. (4.2.2)

Using (4.2.1) in (4.1.1), the pdf of DUS transformation of Lomax distribution is

obtained by,

g(x) =
1

e− 1
αβ(1 + βx)−(α+1)e1−(1+βx)−α , x > 0, α > 0, β > 0. (4.2.3)

The distribution having pdf (4.2.3) is named as DUS-Lomax distribution and is

denoted by DUS-Lomax(α, β). Here α and β are the shape and scale parameters

respectively. The cdf and failure rate function of DUS-Lomax(α, β) are, respec-

tively, given by

G(x) =
1

e− 1

[
e1−(1+βx)−α − 1

]
, x > 0, α > 0, β > 0 (4.2.4)

and

r(x) = αβ(1 + βx)−(α+1)
[
e(1+βx)−α − 1

]−1

, x > 0, α > 0, β > 0. (4.2.5)
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4.3 Shapes

Here, we discuss the shapes of the pdf and failure rate function of DUS-Lomax(α, β)

distribution.

4.3.1 Shape of Probability Density Function

We can see from (4.2.3) that

lim
x→0

g(x) =



αβ
(e−1)

, α < 1

β
(e−1)

, α = 1

αβ
(e−1)

, α > 1

and

1

(1 + βx)
tends to zero, as x→∞.

So limx→∞ g(x) = 0. The first derivatives of g(x) is

g′(x) =
e

e− 1
αβe−(1+βx)−α

[
−(α + 1)α(1 + βx)−α−2 + αβ(1 + βx)−2α−2

]
.

So the mode of DUS-Lomax(α, β) is 1
β

[(
1 + 1

α

)− 1
α − 1

]
. Clearly, g(x) is uni-

modal. Figure 4.1 shows the pdf of DUS-Lomax(α, β) for various choices of the

parameters.
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Figure 4.1: PDF of DUS-Lomax(α, β) for values of parameters α = 0.5 and
β = 4.5, 3.5, 2.5, 1.5 with color shapes red, blue, purple, black (left) and α =
5.5, 3.5, 2.5, 1.5, 0.5 and β = 1 with color shapes red, blue, purple, black, dark
cyan, respectively (right).

4.3.2 Shape of Failure Rate Function

For discussing the shape property of failure rate function, we apply Glaser’s tech-

nique, see Glaser (1980). Let η(x) = −g′(x)
g(x)

where g(x) is the density function and

g′(x) is the first derivative of g(x) with respect to x. Then

η(x) =
(α + 1)β(1 + βx)−α−2 − αβ(1 + βx)2α−2

(1 + βx)α+1

and its first derivative is

η′(x) = −(α + 1)β2(1 + βx)−α−2

[
(1 + βx)α − α

]
.
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If α > 1, β > 0, η′(x) > 0 for x ∈ (0, x0), η′(x0) = 0, η′(x) < 0 for x ∈ (x0,∞)

where x0 = α1/α−1
β

, the shape of failure rate function, r(x), appears UBFR shapes

if α > 1. If α ≤ 1, β > 0, η′(x) < 0, the shape of failure rate function appears

monotonically decreasing. The failure rate function of the DUS-Lomax(α, β) dis-

tribution exhibit monotonically decreasing and UBFR shapes, see Figure 4.2.

From (4.2.5),

lim
x→0

r(x) =


αβ(e− 1), α < 1

β(e− 1), α = 1

αβ(e− 1), α > 1

and

1

(1 + βx)
tends to zero, e

1
(1+βx)α tends to 1, as x→∞.

So limx→∞ r(x) = 0.

4.4 Statistical Properties

In this section, we study the statistical properties for the two parameter DUS-

Lomax(α, β) distribution, moments, moment generating function, characteristic

function, quantile function, skewness, kurtosis etc.

4.4.1 Moments

If X be a random variable having the pdf in (4.2.3), then the rth raw moment is
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Figure 4.2: Failure rate function of the DUS-Lomax(α, β) for different parameter
values α = 1, 0.75, 0.5, 0.25 and β = 1 with color shapes purple, blue, red, black
(left) and α = 7, 6, 5, 4 and β = 5.5, 5.5, 4.5, 3.5 with color shapes red, purple,
blue, green respectively (right).

µ′r =
e

e− 1
α
∞∑
j=0

(−1)j
(
α + j

j

)
βj+1

∫ ∞
0

xj+re−(1+βx)−αdx

=
e

e− 1

∞∑
j=0

(−1)j
(
α + j

j

)
βj+1 1

βj+r+1

j+r∑
k=0

(−1)k
(
j + r

r

)∫ 1

0

u−
j+r−k+1

α
−1e−udu

=
e

e− 1

∞∑
j=0

∞∑
n=0

j+r∑
k=0

(−1)j+k+n

(
α + j

j

)(
j + r

r

)
1

n!βr
α

αn− r + k − j − 1
.

The mean µ and variance σ2 of DUS-Lomax(α, β) distribution are, respectively,

µ =
e

e− 1

∞∑
j=0

∞∑
n=0

j+1∑
k=0

(−1)j+k+n

(
α + j

j

)
1

n!β

(j + 1)α

αn+ k − j − 2
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and

σ2 =
e

e− 1

∞∑
j=0

∞∑
n=0

j+2∑
k=0

(−1)j+k+n

(
α + j

j

)(
j + 2

2

)
1

n!β2

α

αn+ k − j − 3

−

(
e

e− 1

∞∑
j=0

∞∑
n=0

j+1∑
k=0

(−1)j+k+n

(
α + j

j

)
1

n!β

(j + 1)α

αn+ k − j − 2

)2

.

The skewness and kurtosis can be obtained using

Skewness =
(µ′3 − 3µµ′2 + 2µ3)

2

(µ′2 − µ2)3 and Kurtosis =
(µ′4 − 4µµ′3 + 6µ2µ′2 − 3µ4)

(µ′2 − µ2)2 .

4.4.2 Moment Generating Function

The mgf of DUS-Lomax(α, β) distribution is

MX(t) =
e

e− 1
α
∞∑
k=0

(−1)k
(
α + k

k

)
βk+1

∫ ∞
0

xketxe−(1+βx)−αdx

=
e

e− 1

∞∑
k=0

(−1)k
(
α + k

k

)
1

βm

k+m∑
j=0

(−1)j
(
k +m

j

) ∞∑
m=0

tm

m!∫ 1

0

u−
k+m−j+1

α
−1e−udu

=
e

e− 1

∞∑
k=0

∞∑
n=0

k+m∑
j=0

∞∑
m=0

tm

m!
(−1)k+j+n

(
α + k

k

)(
k +m

j

)
1

n!βm
α

αn+ j − k −m− 1
.
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4.4.3 Characetristic Function

The characteristic function of DUS-Lomax(α, β) distribution is

φX(t) =
e

e− 1
α
∞∑
k=0

(−1)k
(
α + k

k

)
βk+1

∫ ∞
0

xkeitxe−(1+βx)−αdx, i =
√
−1

=
e

e− 1

∞∑
k=0

(−1)k
(
α + k

k

)
1

βm

k+m∑
j=0

(−1)j
(
k +m

j

) ∞∑
m=0

(it)m

m!∫ 1

0

u−
k+m−j+1

α
−1e−udu

=
e

e− 1

∞∑
k=0

∞∑
n=0

k+m∑
j=0

∞∑
m=0

(it)m

m!
(−1)k+j+n

(
α + k

k

)(
k +m

j

)
1

n!βm
α

αn+ j − k −m− 1
.

4.4.4 Quantile Function

For any p ∈ (0, 1), the pth quantile Q(p) of DUS-Lomax(α, β) is

Q(p) =
1

β

[(
1− log(1 + p(e− 1))

)− 1
α − 1

]
. (4.4.1)

Setting p = 0.5 in (4.4.1), we get the median of DUS-Lomax(α, β) as follows

Median =
1

β

[(
1− log(1 + 0.5(e− 1))

)− 1
α − 1

]
. (4.4.2)

Setting p = 1
4

in (4.4.1), we get the 1st quartile of DUS-Lomax(α, β) as follows

Q1 =
1

β

[(
1− log(1 +

1

4
(e− 1))

)− 1
α − 1

]
.
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Setting p = 3
4

in (4.4.1), we get the 3rd quartile of DUS-Lomax(α, β) as follows

Q3 =
1

β

[(
1− log(1 +

3

4
(e− 1))

)− 1
α − 1

]
.

A random sample X with DUS-Lomax(α, β) distribution can be simulated using

X =
1

β

[(
1− log(1 + u(e− 1))

)− 1
α − 1

]
,whereu ∼ U(0, 1). (4.4.3)

4.4.5 Entropy

Suppose X is the DUS-Lomax(α, β), first we consider

∫
fγ(x)dx =

(
e

e− 1

)γ
αγβγ+i

∞∑
i=0

(−1)i
(
γα + γ + i− 1

i

)∫ ∞
0

xie−γ(1+βx)−αdx

=

(
e

e− 1

)γ
αγ−1βγ−1

∞∑
i=0

i∑
k=0

∞∑
m=0

(−1)i+k+m

(
γα + γ + i− 1

i

)(
i

k

)
γm

m!

α

αm+ k + i− 1

where γ > 0 and γ 6= 1. Then the Renyi entropy is

τR(γ) =
1

1− γ
log

{∫
fγ(x)dx

}
=

1

1− γ
log

{(
e

e− 1

)γ
αγ−1βγ−1

∞∑
i=0

i∑
k=0

∞∑
m=0

(−1)i+k+m

(
γα + γ + i− 1

i

)(
i

k

)
γm

m!

α

αm+ k + i− 1

}
.
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4.5 Distribution of Maximum and Minimum

In order to conduct reliability analysis in series structure, parallel structure, series-

parallel structure, parallel-series structure and complex structures, the theory of

order statistics is used as tool for analyzing life time data. Let X1, X2, . . . , Xn be a

random sample of size n from DUS-Lomax(α, β) with cdf and pdf as in (4.2.4) and

(4.2.3), respectively and let X(1), X(2), . . . , X(n) denote the corresponding order

statistics. The pdf of the rth order statistic is

fX(r)
(x;α, β) =

n!

(r − 1)!(n− r)!
f(x;α, β)F r−1(x;α, β)F̄ n−r(x;α, β)

=
n!

(r − 1)!(n− r)!
αβ(1 + βx)−(α+1)

e− 1
e1−(1+βx)−α

[
1

e− 1

(
e1−(1+βx)−α − 1

)]r−1[
1− 1

e− 1

(
e1−(1+βx)−α − 1

)]n−r
,

x > 0, α > 0, β > 0.

The cdf of rth order statistic is

F(r)(x;α, β) =
n∑
j=r

(
n

j

)
F j(x;α, β)[1− F (x;α, β)]n−j

=
n∑
j=r

(
n

j

)[
1

e− 1

(
e1−(1+βx)−α − 1

)]j
[

1− 1

e− 1

(
e1−(1+βx)−α − 1

)]n−j
, x > 0, α > 0, β > 0.
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The pdf of the 1st order statistics X(1), is

fX(1)
(x;α, β) =

nαβ(1 + βx)−(α+1)

e− 1
e1−(1+βx)−α[

1− 1

e− 1

(
e1−(1+βx)−α − 1

)]n−1

, x > 0, α > 0, β > 0.

The pdf of the nth order statistics X(n), is

fX(n)
(x;α, β) =

nαβ(1 + βx)−(α+1)

e− 1
e1−(1+βx)−α[

1

e− 1

(
e1−(1+βx)−α − 1

)]n−1

, x > 0, α > 0, β > 0.

The cdf of X(1) is

FX(1)
(x;α, β) = P (X(1) ≤ x) = 1−

[
1− 1

e−1

(
e1−(1+βx)−α − 1

)]n
, x > 0, α >

0, β > 0.

The cdf of X(n) is

FX(n)
(x;α, β) = P (X(n) ≤ x) =

[
1
e−1

(
e1−(1+βx)−α − 1

)]n
, x > 0, α > 0, β >

0.

Reliability, R(x;α, β), of series and parallel system having n components with

DUS-Lomax (α, β), respectively, are

[
1− 1

e− 1

(
e1−(1+βx)−α − 1

)]n
and 1−

[
1

e− 1

(
e1−(1+βx)−α − 1

)]n
.
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4.6 Parameter Estimation

In this section, we discuss method of moments and method of maximum likelihood

for the estimation of parameters. Asymptotic bounds of the unknown parameter

are also discussed.

Let X1, X2, . . . , Xn be an observed random sample from DUS-Lomax(α, β)

with unknown parameters α and β. Let m1 = 1
n

∑n
i=1 xi and m2 = 1

n

∑n
i=1 x

2
i

be the first two sample moments. Equating sample moments with population

moments, we get the moment estimators of the parameters,

m1 =
e

e− 1

∞∑
j=0

∞∑
n=0

j+1∑
k=0

(−1)j+k+n

(
α + j

j

)
1

n!β

(j + 1)α

αn− r + k − j − 2

and

m2 =
e

e− 1

∞∑
j=0

∞∑
n=0

j+2∑
k=0

(−1)j+k+n

(
α + j

j

)(
j + 2

2

)
1

n!β2

α

αn− r + k − j − 3
.

We derive MLE of the parameters of the DUS-Lomax(α, β) distribution as

below.

The likelihood function is

l(x;α, β) =
∏n

i=1 f(xi;α, β) = enαnβn

(e−1)n
e−

∑n
i=1(1+βxi)

−α∏n
i=1(1 + βxi)

−(α+1),

so that the log-likelihood function becomes

log l = K + n logα+ n log β − (α+ 1)
n∑
i=1

log(1 + βxi)−
n∑
i=1

(1 + βxi)
−α, (4.6.1)
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where K = n log( e
e−1

). Then the partial derivatives of logL with respect to

unknown parameters α and β are

∂ logL

∂α
=
n

α
−

n∑
i=1

log(1 + βxi) +
n∑
i=1

log(1 + βxi)(1 + βxi)
−α (4.6.2)

∂ logL

∂β
=
n

β
− (α + 1)

n∑
i=1

xi
(1 + βxi)

+ α

n∑
i=1

xi(1 + βxi)
−(α+1). (4.6.3)

Setting the left side of the above two equations to zero, we get the likelihood

equations as a system of two non-linear equations in α and β.

n

α
−

n∑
i=1

log(1 + βxi) +
n∑
i=1

log(1 + βxi)(1 + βxi)
−α = 0 (4.6.4)

n

β
− (α + 1)

n∑
i=1

xi
(1 + βxi)

+ α
n∑
i=1

xi(1 + βxi)
−(α+1) = 0. (4.6.5)

Solving these systems, (4.6.4) and (4.6.5), in α and β gives the MLE of α and

β. These equations cannot be solved analytically and statistical software can be

used to solve them numerically, by taking initial value arbitrarily.

4.6.1 Asymptotic distribution and Confidence bounds

In this section, we derived the asymptotic distribution and confidence intervals of

the parameters α > 0 and β > 0, when the MLEs of the unknown parameters α

and β cannot be obtained in closed forms, using variance covariance matrix I−1,

where I−1 is the inverse of the observed information matrix which is defined as
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follows

I−1 =

 E(−∂2 logL
∂α2 ) E(−∂2 logL

∂α∂β
)

E(−∂2 logL
∂β∂α

) E(−∂2 logL
∂β2 )


−1

.

For a large sample, the asymptotic distribution of ĥ, ĥ = (α, β) is defined by

√
n(ĥ− h)→ N(0, I−1). The second partial derivatives are as follows

∂2 logL

∂α2
= − n

α2
−

n∑
i=1

[log(1 + βxi)]
2 (1 + βxi)

−α (4.6.6)

∂2 logL

∂α∂β
=

n∑
i=1

xi(1 + βxi)
−(α+1) − α

n∑
i=1

xi log(1 + βxi)(1 + βxi)
−(α+1) −

n∑
i=1

xi
1 + βxi

(4.6.7)

∂2 logL

∂β2
= − n

β2
+ (α + 1)

n∑
i=1

x2
i

(1 + βxi)2
− α(α + 1)

n∑
i=1

x2
i (1 + βxi)

−(α+2).

(4.6.8)

The approximate 100%(1− η) confidence intervals of the parameters α and β, by

using variance-covariance matrix, are α̂±Z η
2

√
var(α̂) and β̂±Z η

2

√
var(β̂) where

Z η
2

is the upper 100(η
2
)th percentile of the standard Normal distribution.

4.7 Stress-Strength Reliability Estimation

Consider two independent random variables X and Y , where Y represents the

‘stress’ and X represents the ‘strength’. The reliability of the stress-strength

model is R = P (Y < X), which is used in engineering statistics, quality control

and other fields.
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Suppose X and Y have DUS-Lomax(α, β) distribution with parameters (α, β1)

and (α, β2) respectively. The reliability of the system is

R = P [Y < X] =

∫ ∞
0

f(x)FY (x)dx

=

(
e

e− 1

)2

αβ1

∫ ∞
0

(1 + β1x)−(α+1)e−(1+β1x)−α
(
e−(1+β2x)−α − 1

)
dx

=

(
e

e− 1

)2

αβn+1
1

∞∑
n=0

(−1)n
(
α + n

n

)∫ ∞
0

xne−(1+β1x)−α
(
e−(1+β2x)−α − 1

)
dx

=

(
e

e− 1

)2 ∞∑
n=0

(−1)n
(
α + n

n

){ ∞∑
m=0

∞∑
i=0

n+i∑
j=0

∞∑
r=0

βi2
βi1

(−1)m+i+j+r

m!r!

(
αm+ i− 1

i

)
(
n+ i

j

)
α

αr − n+ j − i− 1
−

n∑
k=0

∞∑
l=0

(−1)k+l

l!

(
n

k

)
α

αl − n+ k − 1

}
. (4.7.1)

The Maximum Likelihood Estimation of R

Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Ym) be two independent random samples

from DUS-Lomax(α, β1), and DUS-Lomax(α, β2) respectively. The log-likelihood

function of α, β1 and β2 for the observed samples is

log l(x, y, α, β1, β2) = n log

(
e

e− 1

)
+ (n+m) logα + n log β1

− (α + 1)
n∑
i=1

log(1 + β1xi)−
n∑
i=1

(1 + β1xi)
−α +m log

(
e

e− 1

)
+m log β2

− (α + 1)
m∑
j=1

log(1 + β2yj)−
m∑
j=1

(1 + β2yj)
−α. (4.7.2)



DUS Transformation of Lomax Distribution: An Upside-down
Bathtub Shaped failure rate model 111

The estimators α̂, β̂1 and β̂2 of the parameters of α, β1 and β2 respectively can

then be obtained as the solution of the following non-linear equations.

∂ log l

∂α
=
n+m

α
−

n∑
i=1

log(1 + β1xi)−
m∑
j=1

log(1 + β2yj)

+
n∑
i=1

log(1 + β1xi)

(1 + β1xi
)α +

m∑
j=1

log(1 + β2yj)

(1 + β2yj)

α

∂ log l

∂β1

=
n

β1

− (α1 + 1)
n∑
i=1

xi
1 + β1xi

+ α1

n∑
i=1

xi(1 + β1xi)
−(α1+1)

∂ log l

∂β2

=
m

β2

− (α2 + 1)
m∑
j=1

yj
1 + β2yj

+ α2

m∑
j=1

yj(1 + β2yj)
−(α2+1).

MLE of R, denoted by R̂ML, can obtained by replacing α, β1 and β2 by their

MLEs.

Then R̂ML is given by

R̂ML =

(
e

e− 1

)2 ∞∑
n=0

(−1)n
(
α̂ + n

n

){ ∞∑
m=0

∞∑
i=0

n+i∑
j=0

∞∑
r=0

β̂2

i

β̂1

i

(−1)m+i+j+r

m!r!(
α̂m+ i− 1

i

)(
n+ i

j

)
α̂

α̂r − n+ j − i− 1

−
n∑
k=0

∞∑
l=0

(−1)k+l

l!

(
n

k

)
α̂

α̂l − n+ k − 1

}
. (4.7.3)

The asymptotic variance of R̂ML is given by

AV (R̂ML) =
3∑
i=1

3∑
j=1

∂R

∂θi

∂R

∂θj
I−1(θ), (4.7.4)
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where θ = (α, β1, β2) and I−1(θ) is the inverse of Fisher Information Matrix.

Therefore, an asymptotic 100(1 − ν)% confidence interval for R can obtain as

R̂ML ± Z ν
2

√
AV (R̂ML) where Z ν

2
is the upper ν

2
− quantile of standard Normal

distribution.

4.8 Simulation Study

A simulation study is performed to verify the MLEs work for different sample sizes

and different parameter values for the proposed DUS-Lomax(α, β) distribution

using inversion method. Eq. (4.4.3) is used to generate a random sample from

the DUS-Lomax with parameter α and β. The different sample sizes considered

in the simulation are n = 10, 25, 50, 100, 250, 500, 750 and 1000. We have used

‘optim’ package in R language to find the estimate. We replicated the process

5000 times and reported the average estimates and the associated mean squared

errors in Table 4.1, 4.2, 4.3 and 4.4.

The simulation is conducted for four different cases using varying true param-

eter values. The selected true parameter values are α = 0.5 and β = 0.01; α =

1 and β = 0.5; α = 2 and β = 1.5; and α = 0.5 and β = 2 for the first, second,

third and fourth cases, respectively.

As the sample size increases, the mean square error decreases for all selected pa-

rameter values as in Tables 4.1, 4.2, 4.3 and 4.4. The bias caused by the estimates

are nearer to zero. Also, when the sample size increases, absolute bias decreases.

Thus the estimates tends to the true parameter values with the increase in sample

size.
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Table 4.1: Simulation study at α = 0.5 and β = 0.01

n MLE Bias MSE

10
α̂ = 0.4785 -4.299×10−6 9.240×10−8

β̂ = 0.0213 2.252×10−6 2.536×10−8

25
α̂ = 0.5349 6.975×10−6 2.432×10−7

β̂ = 0.0126 5.181×10−7 1.342×10−9

50
α̂ = 0.5222 4.440×10−6 9.857×10−8

β̂ = 0.0105 9.865×10−8 4.866×10−11

100
α̂ = 0.5147 2.939×10−6 4.319×10−8

β̂ = 0.0103 6.017×10−8 1.811×10−11

250
α̂ = 0.5051 1.010×10−6 5.102×10−9

β̂ = 0.0101 2.743×10−8 3.762×10−12

500
α̂ = 0.5032 6.418×10−7 2.06×10−9

β̂ = 0.0100 6.533×10−9 2.134×10−13

750
α̂ = 0.5015 2.986×10−7 4.458×10−10

β̂ = 0.0101 1.305×10−8 8.510×10−13

1000
α̂ = 0.5013 2.529×10−7 3.198×10−10

β̂ = 0.0101 1.067×10−8 5.699×10−13

4.9 Data Analysis

In this section, we illustrate the use of DUS-Lomax(α, β) distribution using three

real data sets. We fit DUS-Lomax(α, β) distribution to these data sets and

compare with Lomax distribution, Gompertz Lomax (GoL) distribution, Ku-

maraswamy Lomax (KL) distribution, DUS-Exponential distribution and Inverse

Lindley (IL) distribution. The first data-sets, considered here, represent the sur-

vival times of two groups of patients suffering from head and neck cancer disease.

The patients in one group were treated using radiotherapy ((RT), see Table 4.5),

whereas the patients belonging to other group were treated using a combined RT
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Table 4.2: Simulation study at α = 1 and β = 0.5

n MLE Bias MSE

10
α̂ = 1.3044 6.088×10−5 1.853×10−5

β̂ = 0.3013 -3.974×10−5 7.897×10−6

25
α̂ = 1.4531 9.061×10−5 4.105×10−5

β̂ = 0.5667 1.334×10−5 8.90×10−7

50
α̂ = 1.1232 2.464×10−5 3.035×10−6

β̂ = 0.5086 1.724×10−6 1.487×10−8

100
α̂ = 1.0526 1.051×10−5 5.528×10−7

β̂ = 0.5074 1.487×10−6 1.106×10−8

250
α̂ = 1.0199 3.975×10−6 7.899×10−8

β̂ = 0.502 3.997×10−7 7.987×10−10

500
α̂ = 1.009 1.798×10−6 1.616×10−8

β̂ = 0.501 2.806×10−7 3.938×10−10

750
α̂ = 1.0060 1.203×10−6 7.237×10−9

β̂ = 0.5012 2.328×10−7 2.711×10−10

1000
α̂ = 1.0033 6.501×10−7 2.113×10−9

β̂ = 0.502 3.128×10−7 4.891×10−10

and chemotherapy ((CT + RT), see Table 4.7) (Efron (1988)). Another one con-

cerns 46 observations reported on active repair times ((hours), see Table 4.9) for

an airborne communication transceiver (Chhikara and Folks (1977)).

The required numerical evaluations are carried out using the R software. Table

4.6, Table 4.8 and Table 4.10 provide the MLEs of the model parameters. The

model selection is carried out using the AIC and the BIC:

AIC = −2l + 2k,

BIC = −2l + k log n,
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Table 4.3: Simulation study at α = 2 and β = 1.5

n MLE Bias MSE

10
α̂ = 19.2540 0.00345 0.05954

β̂ = 2.0681 0.000114 6.455×10−5

25
α̂ = 5.3742 0.000675 0.00228

β̂ = 1.6073 2.147×10−5 2.305×10−5

50
α̂ = 2.9633 0.000193 0.000186

β̂ = 1.5316 6.317×10−6 1.995×10−7

100
α̂ = 2.3108 6.217×10−5 1.933×10−5

β̂ = 1.4932 -1.358×10−6 9.215×10−9

250
α̂ = 2.0899 1.798×10−5 1.616×10−6

β̂ = 1.4981 -3.833×10−7 7.345×10−10

500
α̂ = 2.0414 8.286×10−6 3.433×10−7

β̂ = 1.4984 -3.283×10−7 5.389×10−10

750
α̂ = 2.0269 5.388×10−6 1.452×10−7

β̂ = 1.5023 4.682×10−7 1.096×10−9

1000
α̂ = 2.0191 3.810×10−6 7.260×10−8

β̂ = 1.5004 8.41×10−8 3.536×10−11

where l denotes the log-likelihood function, k is the number of parameters and n

is the sample size. Moreover, perfection of competing models is also tested using

the K-S test. K-S test statistic is

KS = max

{
i

m
− zi, zi −

i− 1

m

}
, i = 1, ..., n,

where m denotes the number of classes and zi = cdf(xi), the x
′
is being the ordered

observations.
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Table 4.4: Simulation study at α = 0.5 and β = 2

n MLE Bias MSE

10
α̂ = 1.0819 0.000116 6.772×10−5

β̂ = 2.9260 0.000185 0.000172

25
α̂ = 0.5657 1.314×10−5 8.636×10−7

β̂ = 2.2879 5.757×10−5 1.657×10−5

50
α̂ = 0.5314 6.276×10−6 1.970×10−7

β̂ = 2.1124 2.248×10−5 2.528×10−6

100
α̂ = 0.5149 2.987×10−6 4.462×10−8

β̂ = 2.0359 7.178×10−6 2.576×10−7

250
α̂ = 0.5045 9.096×10−7 4.137×10−9

β̂ = 2.0277 5.548×10−6 1.539×10−7

500
α̂ = 0.5015 3.093×10−7 4.784×10−10

β̂ = 2.0223 4.457×10−6 9.931×10−8

750
α̂ = 0.5015 3.091×10−7 4.778×10−10

β̂ = 2.0065 1.296×10−6 8.396×10−9

1000
α̂ = 0.5008 1.677×10−7 1.407×10−10

β̂ = 2.0091 1.830×10−6 1.674×10−8

4.9.1 Complete Data radiotherapy (RT)

The data set is given below: The values of the AIC, BIC and K-S Statistic are

Table 4.5: Survival times of patients treated using RT:

6.53 7 10.42 14.48 16.1 22.7 34 41.55 42 45.28

49.4 53.62 63 64 83 84 91 108 112 129

133 133 139 140 140 146 149 154 157 160

160 165 146 149 154 157 160 160 165 173

176 218 225 241 248 273 277 297 405 417

420 440 523 583 594 1101 1146 1417
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listed in Table 4.6. The variance covariance matrix of the MLEs under the DUS-

Table 4.6: MLEs of the parameters, Log-likelihoods, AIC, BIC, K-S Statistics of
the fitted models in Data set 1.

Model MLEs log L AIC BIC KS-Statistic p-value

DUS-Lomax
α̂ = 4.195

-370.85 745.7 749.82 0.139 0.210
β̂ = 0.0018

Lomax
α̂ = 6.668

-371.61 747.219 751.34 0.145 0.175
β̂ = 0.00078

KL

â = 27.93

-371.01 750.03 758.27 0.154 0.126b̂ = 112.22

α̂ = 0.1851

λ̂ = 0.0085

GoL

θ̂ = 0.0042

-372.381 752.76 761.004 0.158 0.111α̂ = 0.689

β̂ = 1.812

γ̂ = 1.405

DUS-E(θ) θ̂ = 0.0056 -373.82 749.647 751.71 0.201 0.0188

ILD θ̂ = 60.094 -385.70 773.41 775.47 22.629 2.2×10−16

Lomax distribution for the Data set 1 is computed as

=

 3.2382 −0.001953

−0.001953 1.0991× 10−6

 .

Thus, the variances of the MLE of α and β is Var(α̂) = 3.2382 and Var(β̂) =

1.0991× 10−6. Therefore, 95% confidence intervals for α and β are [1.235, 7.155]

and [0.000107, 0.00356] respectively. Histogram and Empirical cdf of DUS-Lomax

(α, β) are given in Figure 4.3.
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Figure 4.3: Histogram with fitted pdfs (left) and Empirical cdf with fitted cdfs
(right) for the Data set 1.

4.9.2 Complete Data RT and chemotherapy (RT+CT)

The data set is given below: The values of the AIC, BIC and K-S Statistic are

Table 4.7: Survival times of patients treated using RT+CT:

12.2 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46

58.36 63.47 68.46 78.26 74.47 81.43 84 92 94

110 112 119 127 130 133 140 146 155

159 173 179 194 195 209 249 281 319

339 432 469 519 633 725 817 1776

listed in Table 4.8. The variance covariance matrix of the MLEs under the DUS-
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Table 4.8: MLEs of the parameters, Log-likelihoods, AIC, BIC, K-S Statistics of
the fitted models in Data set 2.

Model MLEs log L AIC BIC KS-Statistic p-value

DUS-Lomax
α̂ = 3.165

-279.91 563.81 567.38 0.093 0.806
β̂ = 0.0028

Lomax
α̂ = 4.40

-280.45 564.91 568.48 0.104 0.695
β̂ = 0.0013

KL

â = 23.902

-281.91 571.82 578.95 0.211 0.034b̂ = 0.125

α̂ = 8.675

λ̂ = 44.97

GoL

θ̂ = 0.0185

-281.77 571.54 578.68 0.1297 0.414α̂ = 0.467

β̂ = 0.719

γ̂ = 1.99

DUS-E(θ) θ̂ = 0.0056 -283.91 569.82 571.60 0.198 0.0208

IL θ̂ = 77.68 -279.58 561.16 562.94 29.01 5.551×10−16

Lomax distribution for the Data set 2 is computed as

=

 41.1184 −0.05016

−0.05016 6.0923× 10−5

 .

Thus, the variances of the MLE of α and β is Var(α̂) = 41.118 and Var(β̂) =

6.0923×10−5. Therefore, 95% confidence intervals for α and β are [-7.382, 13.713]

and [-0.0101, 0.0156] respectively. Histogram and Empirical cdf of DUS-Lomax

(α, β) are given in Figure 4.4.
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Figure 4.4: Histogram with fitted pdf (left) and Empirical cdf with fitted cdf
(right) for the Data set 2.

4.9.3 Complete Data Repair Time

The data set is given below:

Table 4.9: Repair Time:

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6

0.7 0.7 0.7 0.8 0.8 1.0 1.0 1.0

1.0 1.1 1.3 1.5 1.5 1.5 1.5 2.0

2.0 2.2 2.5 2.7 3.0 3.0 3.3 3.3

4.0 4.0 4.5 4.7 5.0 5.4 5.4 7.0

7.5 8.8 9.0 10.3 22.0 24.5

The values of the AIC, BIC and K-S Statistic are listed in Table 4.10. The variance
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Table 4.10: MLEs of the parameters, Log-likelihoods, AIC, BIC, K-S Statistics of
the fitted models in Data set 3.

Model MLEs log L AIC BIC KS-Statistic p-value

DUS-Lomax
α̂ = 2.610

-102.70 209.40 213.06 0.118 0.548
β̂ = 0.227

Lomax
α̂ = 3.549

-102.95 209.91 213.57 0.127 0.446
β̂ = 0.108

GoL

θ̂ = 1.776

-102.95 213.96 221.27 0.129 0.432α̂ = 1.165

β̂ = 0.189

γ̂ = 0.245

DUS-E(θ) θ̂ = 0.344 -107.66 217.31 219.14 0.211 0.033

ILD θ̂ = 1.577 -101.17 204.34 206.17 0.883 2.2×10−16

covariance matrix of the MLEs under the DUS-Lomax distribution for the Data

set 3 is computed as

=

 1.3693 −0.15959

−0.15959 0.0203

 .

Thus, the variances of the MLE of α and β is Var(α̂) = 1.369 and Var(β̂) = 0.0203.

Therefore, 95% confidence intervals for α and β are [0.6855, 4.535] and [-0.00767,

0.4610] respectively. Histogram and Empirical cdf of DUS-Lomax (α, β) are given

in Figure 4.5.

Table 4.6, Table 4.8 and Table 4.10 show that, DUS-Lomax (α, β) has lowest

AIC, BIC, KS-Statistic, and largest Log-likelihood value and p-value based on

K-S Statistic. The second lowest AIC, BIC, K-S Statistic and second largest

log-likelihood value and p value are obtained by the Lomax distribution. The
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Figure 4.5: Histogram with fitted pdfs (left) and Empirical cdf with fitted cdfs
(right) for the Data set 3.

proposed distribution, DUS-Lomax (α, β) can be used when failure rate pattern

of lifetime distribution is upside-down bathtub shaped. In Data set 1, 2 and 3

seems that DUS-Lomax (α, β) is more appropriate than Lomax distribution, GoL

distribution, KL distribution, DUS-Exponential distribution and IL distribution.

So DUS-Lomax (α, β) is better alternative in the situations in which upside-down

bathtub distributions arises.

4.10 Summary

DUS-transformation is a kind of parsimonious distribution. That is, we can do

computation and interpretation very easily even without changing the parame-
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ters. Then if we apply this transformation into Lomax, its failure rate behaviour

is changing into an upside down bathtub one. A new distribution, DUS-Lomax

(α, β) distribution, is proposed and its properties are studied. The DUS-Lomax

(α, β) has UBFR function. We derived the moments, moment generating func-

tion, characteristic function, quantiles, entropy etc., of the proposed distribution.

Distributions of minimum and maximum are obtained. Estimation of parameters

of the distribution is performed via maximum likelihood method. Reliability of

stress-strength models is derived. A simulation study is performed for validate

the MLE. DUS-Lomax (α, β) distribution is applied to three real data sets and

shows that DUS-Lomax (α, β) distribution is a better fit than other well-known

distributions.


