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CHAPTER 5

STRESS-STRENGTH RELIABILITY

5.1 Introduction

1 The estimation of stress-strength reliability is a very common problem in

statistical literature. This model is used in many applications of physics and
engineering such as strength failure and the system collapse. In many practi-
cal situations, the components of a system are of different structure so that the

assumption of identical strength distributions may not be quite realistic.

The term stress is defined as a failure inducing variable. It is defined as stress
(load) which tends to produce a failure of a component or of a device of a material.
The term load may be defined as mechanical load, environment, temperature and

electric current etc.

!Some contents of this chapter are based on Deepthi and Chacko (2020).
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The term strength is defined as it is failure resisting variable. The ability
of component, device or a material to accomplish its required function (mission)
satisfactorily without failure when subjected to the external loading and environ-

ment.

In reliability and survival analysis, the stress-strength model describes the
probabilistic behavior of life of a component that has a random strength X and is
subjected to random stress Y. The system fails if and only if the stress is greater
than strength at any time. The reliability parameter, for a single component

stress-strength (SSS) model, is

R:P(Y<X):/_Z/_;f(q:,y) dy dz,

where f(x,y) is the joint pdf of X and Y. If the r.v’s X and Y are independent,
then f(z,y) = f(x) g(y), where f(x) and g(y) are the marginal pdfs of X and Y,

so that

R= [ [ 1@ o) dy e
Let Gy(z) = [ g(y) dy, then R becomes

R= /Oo G, (2)f(x) d.

o0

The survival probability of a SSS model has been considered by several authors
for different distributions. Birnbaum (1956) introduced the stress-strength model
and proposed a non-parametric estimator of R. Guttman et al. (1988) and Weer-

ahandi and Johnson (1992) considered the estimation of R, and also obtained the
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associated confidence interval of R, when both stress and strength depend on some
known covariates. Sun et al. (1998) obtained a Bayesian approach for estimating

stress-strength reliability.

Ragab and Kundu (2005) studied the estimation of stress-strength reliability,
when Y and X two independent scaled Burr type X distribution. Kundu and
Gupta (2005) studied stress-strength reliability based on independent generalized
exponential distributions with different shape parameters but having the same
scale parameters. Kundu and Gupta (2006) studied the estimation of R based od
Weibull distribution. Baklizi and Eidous (2006) proposed an estimator of stress-
strength reliability based on kernel estimators. Raqab et al. (2008) discussed
estimation of R based on three-parameter generalized Exponential distribution.
Zhou (2008) illustrated estimation of stress-strength reliability using bootstrap
method. Jing et al. (2009) estimated stress-strength reliability using empirical
likelihood method. Kundu and Raqab (2009) proposed estimation of R based on
three-parameter Weibull distribution. Rezaei et al. (2010) studied the estimation
of stress-strength reliability based on two independent generalized Pareto random
variables. Baklizi (2012) studied inference on stress-strength reliability in the

two-parameter Weibull model.

Recently Jose et al. (2019) and Xavier and Jose (2020) studied the stress-
strength reliability estimation of single and multi-component systems using var-
ious generalizations of half logistic distribution. Joby et al. (2020) studied esti-
mation of stress-strength reliability of single and multi-component systems based
on discrete phase type distribution. Domma et al. (2019) proposed the stress-

strength reliability based on the m-generalized order statistics and the correspond-
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ing concomitant. Krishna et al. (2019) studied estimation of R using inverse
Weibull distribution based on progressive first failure censoring. Kohansal and
Nadarajah (2019) considered estimation of R using Kumaraswamy distribution
based on Type-II hybrid progressive censored samples. Musleh et al. (2019)

studied inference on R in bivariate Lomax model.

Bai et al. (2018) considered reliability inference of stress-strength model under
progressively Type-II censored samples when stress and strength have truncated
proportional hazard rate distributions. Asgharzadeh et al. (2017) considered
estimation of stress-strength reliability based on the generalized exponential dis-
tribution. Bi and Gui (2017) studied Bayesian estimation of R using inverse
Weibull distribution. Estimation of stress-strength parameter using record values
from proportional hazard model was considered by Basirat et al. (2016). Two-
parameter bathtub shaped life time distribution based on upper record values
was presented by Tarvirdizade and Ahmadpour (2016). Ghitany et al. (2014)
discussed inference on stress-strength reliability based on Power Lindley distribu-
tions. Sharma (2014) proposed an upside-down bathtub shape distribution and

estimate of stress-strength reliability of inverse Lindley distribution.

But, in reality, many of the system consist of two or more components. The re-
liability analysis of multi-component system having various lifetime distributions
for the strength of its components is important for the researchers and engineers.
The multi-component stress-strength (MSS) reliability modeling is quite desirable
in various real life situations. Bhattacharyya and Johnson (1974) observed the
performance of a system depends on more than one component and these compo-

nents have their own strength. For example, an aircraft generally contains more
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than one engines (k) and assume that for take off at least s(1 < s < k) engines
are needed. So, the aircraft will take off smoothly, if s out of k engines work. In
engineering, a power system powering a manufacturing unit has k fuse cut-outs
arranged in a parallel way. The power system will keep powering the manufactur-
ing unit as long as at least s(1 < s < k) fuse cut-outs are working. In suspension
bridges, the deck is supported by a series of vertical cables hung from the tow-
ers. Suppose a suspension bridge consists of kK number of vertical cable pairs. The
bridge will only survive if a minimum s number of vertical cables through the deck
are not damaged when subjected to stresses due to wind loading, heavy traffic,

corrosion etc.

To find the reliability of a & component system, let the random samples
Y, Xy, Xo, ..., X; be independent, G(y) be the continuous distribution function
of stress Y and F(z) be the common continuous distribution function of strength
X1, X5, ..., Xy of components 1,2, ... k respectively. The reliability in a MSS

model developed by Bhattacharyya and Johnson (1974) is given by

R = Plat least s of the (X1, Xo, ..., X)) exceed Y]

= Xi: (l:) /Z[l — FW)'[F)*"dG(y), s=1,2,....k

where X, Xo, ..., X}, independent and identically distributed (iid) with common
distribution function F'(z) and subjected to the common random stress Y. Sev-
eral researchers developed inferential procedures for the reliability of MSS model.
Mokhlis and Khames (2011) studied the reliability of some parallel and series MSS

model using multivariate Marshall-Olkin Exponential distribution. Rao (2012)
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developed the MSS reliability based on Generalized Exponential distribution.

Recently, Rao et al. (2015) discussed the MSS reliability with the Burr-XII
distribution. Dey et al. (2016) studied the estimation of reliability of a MSS model
based on Kumaraswamy distribution. The MSS model using Lindley distribution,
when the system consists of £ components experiencing a random stress is consid-
ered by Khalil (2017). Kohansal (2017) investigated the estimation of MSS relia-
bility by assuming the Kumaraswamy distribution based on progressively Type-II
censored samples. Abouelmagd et al. (2018) studied the estimation of reliability
of a MSS model based on both classical and Bayesian approaches assuming that
the components follow power Lindley model. Hassan and Alohal (2018) studied

estimation of MSS reliability based on generalized linear failure rate distribution.

Pandit and Joshi (2018) studied estimation of MSS reliability based on gen-
eralized Pareto distribution. Fatma (2019) studied estimation of MSS reliability
using Topp-Leone distribution. Jamal et al. (2019) studied estimation of MSS
reliability using Pareto distribution based on upper record values. Pak et al.
(2019) investigated Bayesian estimation of the reliability of an MSS system for
the bathtub-shaped distribution when the available data are reported in terms
of record values. Jha et al. (2020) investigated the Bayesian estimation of MSS
reliability under progressive Type II censoring when stress and strength variables
follow unit Gompertz distributions. Hassan et al. (2020) studied Bayesian es-
timation of the reliability of a MSS system with Weibull distribution based on

upper record values.

In this chapter, we consider the two different cases for stress-strength reliability
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e Case 1: If X ~ TPGL(a, 1, A1) and Y ~ TPGL(«, B2, A\2).

e Case 2: If X ~ TPGL(a, 5, A1) and Y ~ PL(«, Ap).

The procedure of estimating reliability of SSS model is considered in section 5.2.
In section 5.3, estimating reliability of MSS model is considered. In section 5.4, a
simulation study to investigate the merits of the proposed methods is given. Real

data sets are analyzed in section 5.5. Conclusions are given in section in 5.6.

The aim of this chapter is to develop the inferential procedure for estimating
the stress-strength reliability R = P[X > Y], where X represents the strength
and Y denotes the stress. It is further assumed that X and Y are independent
Three Parameter Generalized Lindley (TPGL) and Power Lindley (PL) random
variables, having bathtub shaped failure rate function. Stress-strength reliability
plays a very important role in the reliability analysis, and has nice probabilistic
interpretation. The reliability R = P[X > Y] is the probability that failure
will occur a high stress. Many authors developed the estimation procedures for
estimating the stress-strength reliability from various lifetime models. In this
chapter we discuss stress-strength reliability analysis of bathtub shaped failure

rate models.

5.2 Estimation of SSS Reliability

In this section, the procedure of estimating reliability of SSS model using two
different cases. That is, when X ~ TPGL(«, 81, A1), Y ~ TPGL(«, 52, A9) and
X ~ TPGL(a, B, A1), Y ~ PL(c, \y). The system fails if and only if the applied
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stress is greater than its strength. In section 5.2.1 and 5.2.2 obtain the MLE of R
in both cases and obtain its asymptotic distribution in both cases in section 5.2.3.
The asymptotic distribution has been used to construct an asymptotic confidence
interval.

Case 1: Suppose X and Y are random variables independently distributed as
X ~ TPGL(«v, 81, A1) and Y ~ TPGL(«, 52, Ag).

Nosakhare and Opone (2018) introduced a TPGL distribution, which exhibits
bathtub shape for its failure rate function. These distributions are generated us-
ing the exponentiation and power transformations to the Lindley distribution.
Reliability estimation of SSS and MSS model using TPGL distribution is an un-
explored problem.

The pdf of TPGL distribution is

2
A a—1_—Ax®

f(:v;a,ﬁ,)\):1+)\ﬁ(ﬁ+m)x e , >0, a>0,6>0\>0.

Here § and )\ are scale parameters, and « is the shape parameter. The cdf is given

by

14 BA+ Ax®

F($;a,ﬁ,)\):1—( T r o

)e‘”a, >0, a>0,>0\1>0

and the reliability function is given by

14 B+ Ax®

Rlaia. 0.0 = (5

)e‘”a, >0, a>08>0\>0.
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The failure rate function of TPGL distribution is

al*(B + z)z!

x>0, a>0,8>0X>0.

Then, SSS reliability is

R=P(Y < X) = /Ooo F@)F,(x) da

aX = —1,-A\a® 2a—1, A1z Agz® Aoz
— fel 1T o 1T 1—1(1 2T d
1+51)\1/0 (Bra e + g2 le ) +1+52)\2 e T
5 00 (45w + e
= 146 (1+ + .
(14 BrA) (1 + Bada) (AL + A2) (1+5) AL+ Ay (A1 + A2)?

(5.2.1)

Case 2: Suppose X follows TPGL distribution with parameters (a, $, A1) and Y’
follows PL distribution with parameters («, A2) and they are independent random
variables. The PL distribution proposed by Ghitany et al. (2013) an extension of
the Lindley distribution. The pdf of PL distribution is

al?

1+ A

flz;a,N) = (1422 e™ >0 a>0 A>0. (5.2.2)

Here A and « are scale and shape parameters. The corresponding cdf is given by

Ax®

14+ A

F(z;o,\) =1— (1 + > e M >0, a>0 A>0. (5.2.3)



Stress-Strength Reliability 133

Suppose that X represent the strength of a component exposed to Y stress, then

the single component stress-strength reliability is obtained as follows,

R=P(X>Y)= [ PX =YYV =lfy(0) dy

> a)\g ‘ —1 Aoy® } 04)‘% L,
— 1+ (03 (0% 2Y d + (6% o— 1I‘ d
/O 1+A2{/0( Yy )y e y1+m1(5 x)x 2

a3 a\? O ((emA2x®  pap=Aa®  p—Aga® 1 anze
g . a— x d
1+>\21+B/\1/0 o oz g ((B+amaTe™™) da

21212 00 )
04 )\1)\2 { B / I ()\1+>\2 dl"i‘ L x?a—le—()q—i-)\z)cca dff]

B (1 T 6)\1)(1 ) | e W

oo
2a 1 7)\14»)\2 dx+ ]' x30¢71€7(/\1+)\2)$a dx
Oé)\z Oé>\2

_ 1 o1 o
_ 5 :L,Ot 1 ()\1+/\2 d.T _ 5 x?o& 16 (/\1+)\2)x dx
04)\2 0 aN;

A2, 1 1 2
T+ BT+ M)+ AQ){ (2 o A_Q) (1 DY +)\2> My +A2)2}'
(5.2.4)

Remark 5.2.1. e The stress-strength reliability parameter R in (5.2) and

(5.2.4) does not depend on the common shape parameter a.

e [f R = 0.5 which means there is an equal chance that strength X is greater

than stress Y.
e [f R > 0.5 which means there is a small chance that X is greater than Y.

e [f R < 0.5 which means there is a high chance that X is greater than Y.
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5.2.1 Maximum Likelihood Estimation of R (Case 1:)

Let X be the strength r.v following TPGL («, 81, A1) distribution and Y be
the stress r.v. following TPGL(«, s, \2) distribution. Let X, X,,..., X, and
Y1,Ys, ..., Y, be two ordered random samples of size n, m respectively, taken
from TPGL distribution. Then the likelihood function based on the combined

random sample is given by

m

L= 1228y aarteer [ =22 (g4 g2y,
piell S SIS o L+ BaAs 7

The log-likelihood function is

[ =log L= (n+m)loga+ 2nlogA\; —nlog(l+ Bi1A1) + Zlog(ﬁl + )

=1

+ (a—1) Zlogmi -\ fo‘ + 2mlog Ay — mlog(1 + (o))

i=1 i=1

+Zlogﬁz+yj (a—1) ZlogyJ—AzZy]

The MLE of the parameters is the solution of following non-linear equations

8[ nA1 _ 1

= — + 5.2.5
0B 1+ B\ ; b1+ ¢ ( )
o _ (5.2.6)

mMA2
= — _'_ -
0ps 1+ faAs ; B2+ y§
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ol 2n nﬁl -
= = by 5.2.7
N M 14BN gw (5.2.7)
ol 2m mﬁg
— = 5.2.8
D As L+ fBohs ; v (5.2.8)
ol n+m K ziloga;
— = 1 — 1
and ER - +Z (Br + o) —1—2 og T; Alzx og x;
= logy
+ Z 5 Z logy; — Ao Z yj logy;. (5.2.9)
= (B2 + y5) o
The second partial derivatives are
L A i 1 *r i ¢ log z;
8ﬁf (1 + 51)\%)2 i—1 (51 + SL’?)T 8ﬁlaa i1 (51 + x?)Q’
*L o mA i”: 1 *r i Y5 logy;
985 (1+ B2A3)? = (B2 +y$)?"  0B20c = (B2 +y5)?
o’ ot 9l 0
0B10Bs  0B1ONa  OMON
*L . mpf 2n *r n Zx oo 2.
N (L+B8M)2 N 0BoN  (L+ B 8)\16a : &L,
*L . mpy  2m L m Z o
0N (T+502)2 A7 080k (1+B229)? aAQaa vy logys
and
0%l _n+m N i ¢ log?(x;) s log® z;
a2 a? - /31 + a7 (B +ag)?
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The MLE of SSS reliability R is obtained by

~ D A

RME = M {(1+51)<1+A A)+ 2 }
(14 BiA) (1 + BaAg) (M + Ao) AL+ Az (A1 + A2)?
(5.2.10)

5.2.2 Maximum Likelihood Estimation of R (Case 2:)

Suppose Xi, Xa,..., X, is a random sample of size n from TPGL(«, 5, A1) and
Y1,Y,, ..., Y, is a random sample of size m from PL(«, A2). Then the likelihood

function is given by

m

oz)\2 o a2 o
(B + x¥ x?’le_)‘lxi — 2 (14 Ny te MY

Then the log-likelihood function is

[l =log L= (n+m)loga+2nlog\; —nlog(l+ B\) + Zlog(ﬁ + )

=1

+ (o — 1)Zloga:i —Alzx?+2mlog)\2 —mlog(1+ A2)

=1 =1

+Zlog(1+y] (a—1) Zlogy]—)\QZyJ (5.2.11)

=1

The MLE of the parameters is the solution of non-linear equations as follows

al ’I"L)\l
— =— 5.2.12
95 1+5/\1+;ﬂ+x§‘ (5.2.12)
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ol 2n np u
_N e 5.2.13
) VI VR W ;x (5:2.13)

0l 2m m o
ot _am _ « 5.2.14
)V VR I 2 (5.2.14)

and

%_HTm+Zx logxz —|—Zlogxl Alzx log x;

= 5 log y;
2 (i+y 3 +Zlogyy — A2 E y; logy;. (5.2.15)
j=1 J =

The second partial derivatives are

0%l nA? - 1 0%l z% log x;
032 (1+BN)? Z:; (B+a0)? 0B0a Z: (B +a8)?

o1 - nﬁQ _2_7’L 021 - n Zx -
O B (14 6A\1)2 A3 0BON N (1 _|_5)\2)2’ a)\ (904 g Ti,
a2l m 2m aQZ
oA (1+X)2 A7 0B9N aAQaa Z% 08 Y;

and

9%l n+m e [x*log?(x; 20 002 1,
_ Py g () xi"log x
oo a? — B+ xg (B + x2)?
n m « 2 200 2
yilog™(y;)  y;*log” y;
-\ z%log?(z;) — A log?(y;) + ’ -
lizl 7 g( 22% g yj 1{ 1+y]a (1_’_y;é)2

J
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The MLE of single component stress-strength reliability R is obtained by

~D A

A A A 1 1 2

A — <2+B—T)(1+A A>+A .
(T4 BA) (14 X)) (A + A2) A2 A1+ A (A + A2)?
(5.2.16)

RML —

5.2.3 Asymptotic distribution and Confidence Intervals

In this section, the asymptotic distribution and confidence interval of the MLE

of R is obtained from case 1. To find an asymptotic variance of the RML i

(5.2.10), let us denote the Fisher information matrix of 8 = («, 81, 52, A1, A2) as

_ 9% _ 0% 0% _ 0% _ 0%
Oa? OadB1 Oad B OO OaONa
9% Y . . -/ B
0310c oB? 051082 9p10 1 0B10A2
[(9) = F | __98% 9% 9% 9% 0%
0820 082081 o3 0B20M1 0B20\2
0% 94 9% _ 9% 94
OA10a OA1061 01002 8)& OA10)N2
. Y - Y )
L 020 02001 02002 OX20N1 8)\% _

In order to establish the asymptotic Normality of R, we further define

OR OR OR OR OR\’ ,
d(g) - (%7 aﬁ17 852’ 8)\17 8)\2) - <d17d2ad3>d47d5)7

where

OR OR M (M =D+ M =M —Dh+ A+ )

da 0 0B (14 B1A1)?(1 + Bada) (A1 + A2)? ’
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orR DYDY {(14‘5)(1‘1‘ 1 )+ 2 }
0By (14 BiA) (14 Bada)2(M1 + Ao) ! A1+ Ao (A1 + X2)?2]’

R ((BF + B)A2 = B + D) AT+ (267 + 281)A3 + (481 + HAa — 481) 1T
o P (1+ BiA)2(1 + Bora) (A1 + M)
N ((BY + BN + (87 + 681 +5)A3 + (481 +2)h —2) \y
(14 51 A1)2(1 + Bada) (A + A2)?
(261 + 2)A5 + (281 + 2)A\2 + 4),

(14 B1A1)2(1 + Badg) (AL + Ag)?

and

OR _ Y (14 B1)B2A5 + (281 4 2)BaA1 + (261 + 2)B2) A3
O ! (14 BiA) (1 + Bada)2(Ar + Ag)?
(=281 = 2)AT + DAy — 2y
(14 BiA) (1 + Badg)? (M + Ag)*
N (14 B1)BA2 4+ (281 +2)f2 — B1 — )AL + 682 + By + 1) A3
(14 BrA) (1 + BaAg)?(Ar + Ag)?
(=f1 = DAY+ (=1 — AT
(14 B1A1) (1 + Bara)?(A + Ao)* ]

+

+
We obtain the asymptotic distribution of RME as

Vn+m(RME — R) & N(0,d(0)I71(0)d(0)).

Asymptotic variance of RML is obtained as

1

AVIRY) = o

d'(0)I~(6)d(0)
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AV(RMEY = V(Q)d2 + V(B1)d3 + V(Bo)d2 + V(A d] + V (No)d2

+ 2d1d2COU(d, Bl) + 2d1d300’U(OAé, 62) + ...+ 2d4d5COU(>:1, >\2)
(5.2.17)

Asymptotic 100(1 — )% confidence interval for R can be obtained as

RMY & Zy\[AV(RML),

where Z 1 s the upper 7 quantile of the standard Normal distribution.

Case 2: To find an asymptotic variance of RML i (5.2.16). Let us denote the

Fisher information matrix of 8 = (o, 3, A1, A2) as 1(0) = 1;;(6); 1,5 =1,2,3,4.

I Y I -/ B

0a? Oadp OO Oada

_ 0% _ 9% 0% 0%

OB 0B2 OBOX OBON

1(9) - BOa B BOA BOA2
0% 9% 9% 94U
010« OA108 8)\% OA10)X2

. . )

B 020 OX20p3 OX20N1 a)\g

In order to establish the asymptotic normality of R, we further define

OR OR OR OR\’ )
d<0) - (%7 %7 a_)\17 8_)\2) - (d17d27d37d4) 3

where % =0,
(0%

OR =220 — DA+ (4 — M — DA+ (20 — A2y — A — D)
B (14 Xo)( A+ X2)3(1 + BAy)? ’
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OR _\ [((B2 42000+ (=F° =20+ 2)d + - DX
on ! (14 X2) (A1 + M)A (1 + BA)2

(267 +48)A3 + (26 + 8)A5 + (=48 — 4)\o) AT

(14 X2) (A1 + A2) (1 + BA)?
N (B2 +28)M + (B2 + 68 + 10)A3 + (38 — 1)AZ — 4X) Ny
(1+ X2) (A1 4 A)A(1 + BA1)?
(28 + 4)A\5 + (28 + 2)A3 + 2)\2
(1+A2) (AL + A) (1 + BA)? |

OR  L[(B+ 2+ ((28+ D1 + 28 +2)A3
Mo L BT+ )20 + At
(B+2)N+ (B —3)A\ + [+ 4)\2
(14 BA) (1 + A2)2(Ag + Ao)*
. (=28 = 8)MF =60 + 2N + (=B = 3N + (=f — YA — 4\ ]
(T4 BA)(1+ X2)2(A + Ao)?

The asymptotic variance of RML is obtained as

AV (RME) = - i md’(e)rl(e)d(e)

= V(&) + V(B)d: + V(\)da + V(No)d3

+ 2dydyCov(&, B) + . . . + 2dsdsCov( Ay, As).

Hence, an asymptotic 100(1 — )% confidence interval for R can be obtained as

RMY & Zy\[ AV(RML),

where Zg is the upper Z quantile of the standard Normal distribution.
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5.3 Estimation of Reliability in MSS Model

Suppose that Y, X7, Xs, ..., X} are independent, G(y) is the cdf of Y and F(x)
is the common cdf of X1, Xy, ..., Xi. The reliability of MSS model with TPGL

distribution is

a2 s (K [ Az® nk
Rs — 2 / 1 -\ :|
* 1+52)\22(i> 0 {( +1+51)\1>6

)\11’05 7)\ e% k_i —1 7)\ a
1— (142 ) gne 4Nz e e gy
[ ( 1+51>\1)6 ] (Ba + x%)x“ e T

Expanding the terms inside the integral, we get

-EREEEE (O ()

i=s 11=012=013=0

0 0

After the simplification, we get

a2 k1 k=i I k i k— i l2 . )\1 li+ls
Ry = Tﬁ;\z ZZ ZZ (z) (11) ( Ly ) <l3)(_1)l (1 +51)\1>

i=s 11=012=013=0

Bo(ly + 13)! (Iy + 13+ 1)!
(G -1 I\ e (it 1 NIRGER S (5.3.1)
a [AL(i + 1) + A a A+ 1l2) + o]
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By using the invariance property, MLE of MSS reliability R, s =1,2,...,k, is

obtained by

) a>\2 i ki o < )( )( )(52) z ( A >l1+l3
R 1 2 - X ~_
Svk 1"‘52)‘2;112:012230132:0 ly l3 - 1+ BiA

Iy +1 I +1
{ Pl + ) Tl hitl+1)! ll+13+2} (5.3.2)
[/\1(2 + 1) + /\2} [/\1(2 +1y) + )\2]

In order to establish the asymptotic Normality of Ry, 1 < s < k, we further

define

d(f) = (aRs’k ORsip ORuk ORup ORa

= d /
aOé ’ 8/81 ’ 6/82 ) a)\l ) a)\z ) (d17d2, 3,d47d5>’

AR,
where, aa’k =0,

B R EREE OO0 ()

sl —012 0l3 0

52(ll+l3>' (ll+l3+1>‘
a i+ L) + X T Q[N (i L) + M)

(=l +l3)){

B EESE OO ()

i=s 11=0 =0 I3=0

—X { Ba(ly +1s)! (I + 15+ 1) }
(L4 Bada) La M (i + o) 4+ M) BT a[A (64 Iy) + M) T8+
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Asymptotic variance of RMF is

AV(RME) = 373 Dk Ol o (5.3.3)

where 0 = (a, 81, B2, A1, A2) and I71(6) is the Fisher Information Matrix. There-
fore, asymptotic 100(1 — v)% confidence interval for Rs; can be obtained as
}A%%CL + Zy /AV(}A%%{L) where Zy is the upper §— quantile of standard Normal

distribution.

Case 2: Suppose that Y, X7, X, ..., X} are independent, G(y) is the cumula-
tive function of Y and F(z) is the common cumulative function of X, X, ..., X}.

Here, X ~ TPGL(a, 8, A1) and Y ~ PL(a, A2). The reliability in multi-component
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stress strength is

Al KR [ M2\ el
Rs’k_1+)\2;(i)/0 [(1+1+ﬁ/\1 ‘

Az JF .
- ()] e

Expanding the terms inside the integral, we get

et 2 ()OO (75)

i=s 11=012=013=0

/ xa(l1+l3+l)fle—xa[)\1('[+l2)+)\2] dq;—|—/oo xa(ll+13+1)71671a[’\l(iHQH’\Q] dx
0 0

S (O (75)

i=s [1=012=013=0

(I + 13)! (i 413+ 1)!
: A T ) T (- (5.3.4)
o [M (i +l2) + A9 a[A(i+ 1) + A

By using the invariance property, MLE of R, is obtained by

B Oé)\z i k—i < )( >( Z) (12) o ):1 l1+l3
s’k 14’)‘2;1120;)532:0 I3 (=1) 1+ 6

{ (ll - lS) l1+i3+1 + (ll - l?’ - 1) l1+13+2 } (535)
[/\1 (2 —+ l2> + /\2} |:>\1 (Z -+ lg) + )\2]

In order to establish the asymptotic Normality of R, j, we further define

(6) = (aRs’k OR.) OR.y OR.,

= (dy,ds,ds, dy)
806’ 8ﬁ’3)\1’8)\2) (17 2, U3, 4>a
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OR,
where, —52* =0
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The asymptotic variance of RME is

4

226551 Mk 119 (5.3.6)

=1 j=1

where 6 = (a, 3,1, \2) and I71(6) is the Fisher Information Matrix. There-
fore, an asymptotic 100(1 — ()% confidence interval for R; ) can be obtained as

RéMkL +Z AV(R%L> where Z¢ is the upper %— quantile of standard Normal
K 2 s 2
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distribution.

5.4 Simulation Study

This section consists a simulation study to compare the performances of the es-
timators proposed in the previous sections. Here, we studied the behavior of the
estimators of parameters, R and R, on the basis of simulated sample with vary-
ing sample size and various combinations of the parameters. All the results are

based on 1000 replications.

For this purpose, we need a simulation algorithm for generating a random
sample from TPGL and PL distributions. The simplest method used for this
purpose is inverse cdf method that utilizes probability integral transformation.
Since the probability integral transformation under TPGLD and PLD cannot be
applied explicitly, one can apply either Newton’s method to solve the the Lambert
W function as suggested by (Jorda (2010)). First, we perform the simulation study
when X ~ TPGL(a, f1,\1) and Y ~ TPGL(a, B2, \2) distributions (case 1) in
section 5.4.1. Second, we perform the simulation study when X ~ TPGL(a, 3, A1)

and Y ~ PL(a, \y) distributions (case 2) in section 5.4.2.

5.4.1 MLE of R and R,; (Case 1)

In this section, we perform simulation study R and R, when (s, k) = (1,3) and

(2,4) respectively, when X ~ TPGL(«, 51, 1) and Y ~ TPGL(«, B2, A2). Now to

study the behavior of RML and f?%f we use the following algorithm.
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Algorithm

1. For given values of (a, 1, B2, A1, A2) compute R, Ry 3 and Ry4 from (5.2.1)
and (5.3.1).

2. Using Newton-Raphson formula to generate 1000 random sample.
3. Compute S, B2, A1, As and & from (5.2.5) to (5.2.9).
4. Compute RML and R%f

5. Compute the average bias, average MSE and asymptotic 95% confidence in-

terval of R, Ry 3 and Ry 4. Bias; = £ 3 (RME—R), Bias, = + S (RME
Ryy), MSE, = £ 3% (RME — R)%, MSE, = L 3" (RMF — R,x)? when
(s,k) = (1,3) and (2,4). Compute asymptotic 95% confidence interval of R

and R .

We considered two sets of parameter values («, 81, A1) and (o, 52, A9): (3,5.5,1.25)
and (3,0.5,2.5), (2.5,4.5,1.75) and (2.5,3,1), (2,2.5,1.5) and (2,0.5,1.5), (1.5,6,1)
and (1.5,0.05,2), and different choice of sample sizes (n,m)= (10,10), (15,15),
(15,25), (25,25), (25,30), (30,50), (50,50). From each samples, we compute the es-
timates of (v, 81, A1, B2, A2) using ML estimation. Once we estimate («, 51, A1, B2, A2),
we obtain the estimates of R by substituting in (5.2.1). Also obtain the estimates
of Ry by substituting in (5.3.1) for (s, k)=(1,3) and (2,4) respectively. These
parameter values correspond to the R values 0.492 (moderate), 0.244 (small),
0.662 (high) and 0.827 (high), respectively. When (s, k) = (1,3), corresponding
R, ), values are 0.858 (high), 0.540 (moderate), 0.662 (high) and 0.799 (high) re-
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spectively. When (s, k) = (2,4), corresponding R, values are 0.73 (high), 0.386
(small), 0.489 (small) and 0.631 (high) respectively.

5.4.2 MLE of R and R,; (Case 2)

In this section, we perform our simulation study of R and R, when (s, k) = (1,3)
and (2,4) respectively, when X ~ TPGL(«, 5,\) and Y ~ PL(a, A2). To study
the behavior of RML and R%CL we use the following algorithm.

Algorithm

1. For given values of («, 8, A1, A2) compute R, Ry 3 and Ry 4 from (5.2.4) and
(5.3.4).

2. Using Newton-Raphson formula to generate 1000 random sample.
3. Compute 3, A\, Ay and & from (5.2.12) to (5.2.15)

4. Compute RML and f%éw,f .

5. Compute the average bias, average MSE and asymptotic 95% confidence
interval of R, Ry 3 and Ry 4. Where, Bias; 3 = % vazl(RML — R), Biasy 4 =
LSV (RME-R, 1), and MSE, 3 = £ S (RME—R)?, MSEy, = + S8 | (RME—
R 1)? when (s, k) = (1,3) and (2,4), and asymptotic 95% confidence interval

of R and Rjp.

We considered two sets of parameter values (o, 5, A1) and (o, \2): (2.5,5,1.5)
and (2.5,0.5), (3,0.5,2) and (3,1.5), (3.5,2,1.25) and (3.5,1.75), (2.75,1,2) and
(2.75,2.25), and different choice of sample sizes (n,m)= (10,10), (15,15), (15,25),
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(25,25), (25,30), (30,50), (50,50). From each samples, we compute the estimates of
(cr, B, A1, A2) using ML estimation. Using the estimate of («, 5, A1, A\2), we obtain
the estimates of R by substituting in (5.2.4). Also obtain the estimates of Ry by
substituting in (5.3.4) for (s, k) = (1,3) and (2,4) respectively. These parameter
values correspond to the R values 0.353 (small), 0.864 (high), 0.454 (moderate)
and 0.710 (high), respectively. When (s,k) = (1,3), corresponding R; values
are 0.257 (small), 0.682 (high), 0.823 (high) and 0.788 (high) respectively. When
(s,k) = (2,4), corresponding R, values are 0.153 (small), 0.530 (moderate), 0.687
(high) and 0.646 (high) respectively.

In Tables 5.1-5.16, the average biases, MSE and confidence intervals of the

estimates of R and R based on MLE method are given.

Table 5.1: MLE of RME, Bias and MSE using X ~ TPGL(3,5.5,1.25) and Y ~
TPGL(3,0.5,2.5)

(n,m) | RML Bias MSE 95% ACI

(10,10) | 0.6893 |  0.000197 | 0.0000388 | (0.6459, 0.7327)
(15,15) | 0.4669 | -0.0000255 | 0.0000065 | (0.4464, 0.4874)
(15,25) | 0.6679 | 0.000176 | 0.0000308 | (0.6371, 0.6987)
(25,25) | 0.6455 | 0.000153 | 0.0000234 | (0.6248, 0.6662)
(25,30) | 0.9421 |  0.000450 | 0.000202 | (0.9259, 0.9583)
(30,50) | 0.3931 | -0.0000993 | 0.0000099 | (0.3720, 0.4142)
(50,50) | 0.7441 | 0.0000252 | 0.0000634 | (0.7136, 0.7746)

From the simulation results, it is observed that as the sample size (n,m) in-
creases, the biases and the MSEs decreases. That means when the sample size
increases, then the estimated reliability reaches nearest to true value. Thus the

consistency properties of all the methods are verified.
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Table 5.2: MLE of R%CL, Bias and MSE using X ~ TPGL(3,5.5,1.25) and Y ~
TPGL(3,0.5,2.5)

(s,k) | (n,m) | RME Bias MSE 95% ACI

(1,3) | (10,10) | 0.7101 | -0.000148 | 0.0000219 | (0.6875, 0.7327)
(15,15) | 0.9426 | 0.0000845 | 0.00000714 | (0.9135, 0.9717)
(15,25) | 0.9447 | 0.0000866 | 0.00000749 | (0.9287, 0.9607)
(25,25) | 0.8788 | 0.0000207 | 0.00000043 | (0.8511, 0.9065)
(25,30) | 0.9563 | 0.0000982 | 0.00000964 | (0.9315, 0.9811)
(30,50) | 0.8861 | 0.000028 | 0.00000078 | (0.8499, 0.9223)
(50,50) | 0.8824 | 0.0000243 | 0.00000059 | (0.8463, 0.9185)

(2,4) | (10,10) | 0.5592 | -0.000171 | 0.0000292 | (0.5366, 0.5818)
(15,15) | 0.8707 | 0.000141 | 0.0000198 | (0.8548, 0.8866)
(15,25) | 0.8780 | 0.000148 | 0.0000219 | (0.8609, 0.8951)
(25,25) | 0.7664 | 0.0000364 | 0.00000133 | (0.7315, 0.8013)
(25,30) | 0.8914 | 0.000162 | 0.0000261 | (0.8731, 0.9097)
(30,50) | 0.7730 | 0.000043 | 0.00000185 | (0.7371, 0.8089)
(50,50) | 0.7707 | 0.0000407 | 0.00000165 | (0.7586, 0.7828)

Table 5.3: MLE of RML Bias and MSE using X ~ TPGL(2.5,4.5,1.75) and
Y ~ TPGL(2.5,3,1)

(n,m) | RME Bias MSE 95% ACI

(10,10) | 0.6649 | 0.000421 |  0.000178 | (0.6431, 0.6867)
(15,15) | 0.4039 |  0.000160 | 0.0000257 | (0.3824, 0.4254)
(15,25) | 0.2758 | 0.0000322 | 0.00000104 | (0.2613, 0.2903)
(25,25) | 0.4273 | 0.000184 | 0.0000338 | (0.4079, 0.4467)
(25,30) | 0.4380 | 0.000915 | 0.0000378 | (0.4188, 0.4572)
(30,50) | 0.7933 | 0.000550 | 0.000302 | (0.7844, 0.8022)
(50,50) | 0.2079 | -0.0000357 | 0.00000127 | (0.1919, 0.2239)
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Table 5.4: MLE of IA%%L, Bias and MSE using X ~ TPGL(2.5,4.5,1.75) and

Y ~ TPGL(2.5,3,1)

(s,k) | (n,m) ]%éw,f Bias MSE 95% ACI

(1,3) | (10,10) | 0.6012 | 0.0000608 0.0000037 | (0.5855, 0.6169)
(15,15) | 0.5200 | -0.0000204 0.00000042 | (0.5054, 0.5346)
(15,25) | 0.6060 | 0.0000657 0.00000431 | (0.5912, 0.6208)
(25,25) | 0.4636 | -0.0000768 0.00000589 | (0.4477, 0.4795)
(25,30) | 0.6754 0.000135 0.0000182 | (0.6432, 0.7076)
(30,50) | 0.5294 | -0.0000110 | 0.000000121 | (0.5066, 0.5522)
(50,50) | 0.5534 | 0.0000131 | 0.000000171 | (0.5433, 0.5635)

(2,4) | (10,10) | 0.4405 | 0.0000543 0.00000295 | (0.4200, 0.4610)
(15,15) | 0.3851 | -0.0000011 | 0.0000000011 | (0.3532, 0.4170)
(15,25) | 0.4491 | 0.0000629 0.00000396 | (0.4282, 0.4700)
(25,25) | 0.3212 | -0.0000650 0.00000422 | (0.3076, 0.3348)
(25,30) | 0.5194 0.000133 0.0000178 | (0.4947, 0.5441)
(30,50) | 0.3566 | -0.0000296 | 0.000000879 | (0.3373, 0.3759)
(50,50) | 0.4000 | 0.0000138 | 0.000000191 | (0.3839, 0.4161)

Table 5.5: MLE of RML, Bias and MSE using X ~ TPGL(2,2.5,1.5) and Y ~
TPGL(2,0.5,1.5)

(n,m) | RML Bias MSE 95% ACI

(10,10) | 0.6598 | -0.0000019 | 0.0000000036 | (0.6347, 0.6849)
(15,15) | 0.6370 | -0.0000247 |  0.00000061 | (0.6199, 0.6541)
(15,25) | 0.4395 | -0.000222 0.0000494 | (0.4109, 0.4681)
(25,25) | 0.6120 | -0.0000497 |  0.00000247 | (0.6004, 0.6236)
(25,30) | 0.7054 | 0.0000437 |  0.00000191 | (0.6893, 0.7215)
(30,50) | 0.5911 | -0.0000706 |  0.00000498 | (0.5799, 0.6023)
(50,50) | 0.7032 | 0.0000415 |  0.00000172 | (0.6871, 0.7193)

5.5 Data Analysis

In this section, we consider two real data sets of the breaking strengths of jute

fiber at two different gauge lengths (see Xia et al. (2009)). Two sets of real data
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Table 5.6: MLE of Ré‘%, Bias and MSE using X ~ TPGL(2,2.5,1.5) and Y ~
TPGL(2,0.5,1.5)

(s,k) | (n,m) | RME Bias MSE 95% ACI

(1,3) 0.4161 | -0.000246 |  0.0000603 | (0.3896, 0.4426
0.5462 | -0.000115 |  0.0000133 | (0.5202, 0.5722
0.6214 | -0.0000402 | 0.00000162 | (0.6098, 0.6330
0.4636 | -0.0000768 | 0.00000589 | (0.4358, 0.4914
0.5353 | -0.000126 |  0.0000160 | (0.5180, 0.5526
0.6482 | -0.0000135 | 0.000000182 | (0.6205, 0.6759
0.7806 | 0.000119 |  0.0000142 | (0.7754, 0.7858

(10,10) ( )
(15,15) ( )
(15,25) ( )
(25,25) ( )
(25,30) ( )
(30,50) ( )
(50,50) ( )
(2,4) | (10,10) | 0.3018 | -0.000188 |  0.0000352 | (0.2928, 0.3108)
(15,15) ( )
(15,25) ( )
(25,25) ( )
(25,30) ( )
(30,50) ( )
(50,50) ( )

0.3706 | -0.000119 0.0000141 | (0.3662, 0.3750
0.4569 | -0.0000324 | 0.00000105 | (0.4129, 0.5009
0.4839 | -0.0000054 | 0.000000029 | (0.4665, 0.5013
0.3693 | -0.000120 0.0000144 | (0.3544, 0.3842
0.5052 0.000016 | 0.00000025 | (0.4907, 0.5197
0.6299 0.000141 0.0000198 | (0.6069, 0.6529

Table 5.7: MLE of RML, Bias and MSE using X ~ TPGL(1.5,6,1) and Y ~
TPGL(1.5,0.05,2)

RML Bias MSE 95% ACI
(10,10) | 0.3659 | -0.000462 |  0.000213 | (0.3422, 0.3896)
( ) 10.4616 | -0.000366 | 0.000134 | (0.4404, 0.4828)
( ) | 0.5579 | -0.000269 | 0.0000726 | (0.5484, 0.5674)
(25,25) | 0.8876 | 0.0000603 | 0.00000363 | (0.8610, 0.9146)
( ) ( )
( ) ( )
( ) ( )

0.7866 | -0.0000407 | 0.00000166 | (0.7780, 0.7952
0.6834 | -0.000144 | 0.0000206 | (0.6726, 0.6942
0.9782 | 0.0001508 | 0.0000228 | (0.9632, 0.9932

are shown as follows:
Data set I: Breaking strength of jute fiber length 10 mm (variable
X). 693.73, 704.66, 323.83, 778.17, 123.06, 637.66, 383.43, 151.48, 108.94, 50.16,
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Table 5.8: MLE of I%’%CL, Bias and MSE using X ~ TPGL(1.5,6,1) and Y ~
TPGL(1.5,0.05,2)

(s,k) | (n,m) | RMEL Bias MSE 95% ACI

(1,3) | (10,10) | 0.6560 | -0.000143 | 0.0000206 | (0.6405, 0.6715)
(15,15) | 0.8787 | 0.0000793 | 0.0000063 | (0.8544, 0.9030)
(15,25) | 0.8064 | 0.0000070 | 0.00000079 | (0.7975, 0.8153)
(25,25) | 0.7580 | -0.0000414 | 0.00000171 | (0.7479, 0.7681)
(25,30) | 0.9255 | 0.000126 | 0.0000159 | (0.9190, 0.9320)
(30,50) | 0.8522 | 0.0000528 | 0.00000278 | (0.8387, 0.8657)
(50,50) | 0.8405 | 0.0000411 | 0.00000169 | (0.8293, 0.8517)

(2,4) | (10,10) | 0.4984 | -0.000133 | 0.0000176 | (0.4844, 0.5124)
(15,15) | 0.7533 |  0.000122 | 0.0000149 | (0.7324, 0.7742)
(15,25) | 0.6674 | 0.0000363 | 0.00000132 | (0.6331, 0.7017)
(25,25) | 0.5816 | -0.0000496 | 0.00000256 | (0.5618, 0.6014)
(25,30) | 0.8290 | 0.000198 | 0.0000391 | (0.8131, 0.8449)
(30,50) | 0.7182 | 0.0000870 | 0.00000757 | (0.7005, 0.7359)
(50,50) | 0.7021 | 0.0000709 | 0.00000503 | (0.6902, 0.7140)

Table 5.9: MLE of RMZ, Bias and MSE using X ~ TPGL(2.5,5,1.5) and Y ~

PL(2.5,0.5)

(n,m) | RME Bias MSE 95% ACI

(10,10) | 0.1381 | -0.000215 0.0000462 | (0.0119, 0.2643)
(15,15) | 0.2229 |  -0.00013 0.0000169 | (0.1768, 0.2690)
(15,25) | 0.3503 | -0.0000026 | 0.0000000068 | (0.1614, 0.5392)
(25,25) | 0.3240 | -0.0000289 |  0.00000084 | (0.1139, 0.5342)
(25,30) | 0.4003 | 0.0000474 |  0.00000225 | (0.0956, 0.7050)
(30,50) | 0.3607 | 0.00000772 | 0.000000060 | (0.2117, 0.5097)
(50,50) | 0.3663 | 0.0000134 | 0.000000179 | (0.0601, 0.6726)

671.49, 183.16, 257.44, 727.23, 291.27, 101.15, 376.42, 163.40, 141.38, 700.74,
262.90, 353.24, 422.11, 43.93, 590.48, 212.13, 303.90, 506.60, 530.55, 177.25.
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Table 5.10: MLE of I%%L, Bias and MSE using X ~ TPGL(2.5,5,1.5) and Y ~
PL(2.5,0.5)

(s,k) | (n,m) | RME Bias MSE 95% ACI

(1,3) 0.1339 | -0.000123 | 0.0000151 | (0.1187, 0.1491
0.1509 | -0.000106 |  0.0000112 | (0.1268, 0.1750
0.2363 | -0.0000206 | 0.000000422 | (0.2014, 0.2712
0.2274 | -0.0000294 | 0.000000863 | (0.1860, 0.2688
0.3359 | 0.0000791 | 0.00000626 | (0.2917, 0.3801
0.3061 | 0.0000493 | 0.00000243 | (0.2445, 0.3677
0.3110 | 0.0000632 | 0.00000399 | (0.2780, 0.3440

(10,10) ( )
(15,15) ( )
(15,25) ( )
(25,25) ( )
(25,30) ( )
(30,50) ( )
(50,50) ( )
(2,4) | (10,10) | 0.0747 | -0.0000785 | 0.00000617 | (0.0015, 0.1479)
(15,15) ( )
(15,25) ( )
(25,25) ( )
(25,30) ( )
(30,50) ( )
(50,50) ( )

0.0884 | -0.0000648 0.0000042 | (0.0361, 0.1407
0.1418 | -0.0000114 | 0.00000013 | (0.0463, 0.2327
0.1367 | -0.0000165 | 0.000000272 | (0.1110, 0.1624
0.2238 | 0.0000706 | 0.00000498 | (0.2037, 0.2439
0.1949 | 0.0000417 | 0.00000174 | (0.1589, 0.2309
0.2152 | 0.0000620 | 0.00000384 | (0.1717, 0.2587

Table 5.11: MLE of RML, Bias and MSE using X ~ TPGL(3,0.5,2) and Y ~
PL(3,1.5)

RML Bias MSE 95% ACI

(10,10) | 0.7027 | -0.000162 | 0.0000261 | (0.6816, 0.7238)
(15,15) | 0.6747 | -0.000190 | 0.0000359 | (0.6259, 0.7235)
(15,25) | 0.5274 | -0.000337 | 0.000113 | (0.5078, 0.5470)
(25,25) | 0.5548 | -0.000309 | 0.0000957 | (0.5271, 0.5825)
(25,30) | 0.6049 | -0.000259 | 0.0000672 | (0.5886, 0.6212)
(30,50) ( )
(50,50) ( )

0.7467 | -0.000117 | 0.0000138 | (0.7061, 0.7873
0.9789 | 0.000115 | 0.0000132

0.9624, 0.9954

Data set II: Breaking strength of jute fiber length 20 mm (variable
Y). 71.46, 419.02, 284.64, 585.57, 456.60, 113.85, 187.85, 688.16, 662.66, 45.58,
578.62, 756.70, 594.29, 166.49, 99.72, 707.36, 765.14, 187.13, 145.96, 350.70,
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Table 5.12: MLE of R%L, Bias and MSE using X ~ TPGL(3,0.5,2) and Y ~
PL(3,1.5)

(s,k) | (n,m) | RML Bias MSE 95% ACI

(1,3) | (10,10) | 0.6085 | -0.0000733 | 0.00000538 | (0.5736, 0.6434)
(15,15) | 0.7038 | 0.0000221 | 0.000000486 | (0.6903, 0.7173)
(15,25) | 0.6388 | -0.000043 | 0.00000185 | (0.6128, 0.6648)
(25,25) | 0.7109 | 0.0000292 | 0.00000085 | (0.6849, 0.7369)
(25,30) | 0.6632 | -0.0000185 | 0.000000344 | (0.6313, 0.6951)
(30,50) | 0.6898 | 0.00000801 | 0.000000064 | (0.6505, 0.7291)
(50,50) | 0.6575 | -0.0000242 | 0.000000587 | (0.6372, 0.6778)

(2,4) | (10,10) | 0.4486 | -0.0000815 | 0.00000664 | (0.4006, 0.4966)
(15,15) | 0.5475 | 0.0000174 | 0.000000304 | (0.5134, 0.5816)
(15,25) | 0.4765 | -0.0000536 | 0.00000287 | (0.4370, 0.5160)
(25,25) | 0.5522 | 0.0000221 | 0.000000486 | (0.5340, 0.5704)
(25,30) | 0.5011 | -0.0000290 | 0.000000843 | (0.4810, 0.5212)
(30,50) | 0.5375 | 0.00000744 | 0.000000055 | (0.5077, 0.5673)
(50,50) | 0.5085 | -0.0000216 | 0.000000466 | (0.4774, 0.5396)

Table 5.13: MLE of RML, Bias and MSE using X ~ TPGL(3.5,2,1.25) and
Y ~ PL(3.5,1.75)

RML Bias MSE 95% ACI

) | 0.4557 0.0000018 | 0.0000000031 | (0.4194, 0.4920)
(15, 15) | 0.3193 -0.000135 0.0000181 | (0.0512, 0.5875)
( ) | 0.4487 | -0.00000527 | 0.000000028 | (0.4160, 0.4814)
( ) | 0.3450 -0.000109 0.0000119 | (0.3287, 0.3613)
(25,30) | 0.4061 | -0.0000478 0.00000229 | (0.3851, 0.4271)
(30,50) ( )
(50,50) ( )

0.5237 0.0000698 0.00000487 | (0.5186, 0.5288
0.4074 | -0.0000466 0.00000217

0.0337, 0.7810

547.44, 116.99, 375.81, 581.60, 119.86, 48.01, 200.16, 36.75, 244.53, 83.55.

These data were first used by Xia et al. (2009) and later by Saracoglu et al.
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Table 5.14: MLE of ]:Ei,‘f[kL, Bias and MSE using X ~ TPGL(3.5,2,1.25) and
Y ~ PL(3.5,1.75)

(s,k) | (n,m) R%f Bias MSE 95% ACI

(1,3) | (10,10) | 0.9414 | 0.000118 | 0.0000140 | (0.9183, 0.9645)
(15, 15) | 0.8443 | 0.0000212 | 0.000000448 | (0.8050, 0.8836)
(15, 25) | 0.8390 | 0.0000159 | 0.000000252 | (0.7921, 0.8859)
(25, 25) | 0.8435 | 0.0000204 | 0.00000042 | (0.8019, 0.8851)
(25,30) | 0.9196 | 0.0000965 | 0.00000932 | (0.8867, 0.9525)
(30,50) | 0.7758 | -0.0000473 | 0.00000224 | (0.7120, 0.8396)
(50,50) | 0.7610 | -0.0000621 | 0.00000385 | (0.7289, 0.7931)

(2,4) | (10, 10) | 0.8723 0.000185 0.0000343 | (0.8376, 0.9070)
(15,15) | 0.7118 | 0.0000248 | 0.00000061 | (0.6949, 0.7287)
(15,25) | 0.7091 | 0.0000221 | 0.000000488 | (0.6899, 0.7283)
(25,25) | 0.7118 | 0.0000247 | 0.00000061 | (0.7003, 0.7233)
(25,30) | 0.8327 0.000146 0.0000212 | (0.8131, 0.8523)
(30,50) | 0.6278 | -0.0000592 | 0.00000351 | (0.5919, 0.6637)
(50,50) | 0.6059 | -0.0000811 | 0.00000659 | (0.5855, 0.6263)

Table 5.15: MLE of RML, Bias
PL(2.75,2.25)

and MSE using X ~ TPGL(2.75,1,2) and Y ~

(n,m) | RME Bias MSE 95% ACI

(10,10) | 0.4675 | -0.000242 | 0.0000587 | (0.2107, 0.7243)
(15, 15) | 0.6207 | -0.0000890 | 0.00000793 | (0.4591, 0.7823)
(15, 25) | 0.7498 | 0.0000401 | 0.00000161 | (0.7164, 0.7832)
(25, 25) | 0.7738 | 0.0000641 | 0.00000411 | (0.5773, 0.9703)
(25, 30) | 0.5643 | -0.000145 | 0.0000212 | (0.4451, 0.6835)
(30, 50) | 0.8633 | 0.000154 | 0.0000236 | (0.8399, 0.8867)
(50, 50) | 0.7907 | 0.0000810 | 0.00000655 | (0.7292, 0.8522)

(2012). Shahsanaei and Daneshkhah (2013) used the data to study the estimation
of stress-strength parameter for generalized linear failure rate (GLFR) distribution

under progressive type-II censoring and studied the validity of GLFR for both data
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Table 5.16: MLE of RM, Bias

PL(2.75,2.25)

and MSE using X ~ TPGL(2.75,1,2) and Y ~

(s,k) | (n,m) | RML Bias MSE 95% ACI

(1,3) | (10, 10) | 0.9482 | 0.000160 | 0.0000255 | (0.9136, 0.9828)
(15,15) | 0.8412 | 0.0000528 | 0.00000279 | (0.7914, 0.8910)
(15,25) | 0.8527 | 0.0000643 | 0.00000413 | (0.8170, 0.8884)
(25,25) | 0.7268 | -0.0000616 | 0.00000379 | (0.7095, 0.7441)
(25,30) | 0.7535 | -0.0000349 | 0.00000122 | (0.7165, 0.7905)
(30,50) | 0.7748 | -0.0000136 | 0.000000185 | (0.7291, 0.8205)
(50,50) | 0.7402 | -0.0000482 | 0.00000233 | (0.7008, 0.7796)

(2,4) | (10,10) | 0.8830 | 0.000237 |  0.0000560 | (0.8079, 0.9581)
(15,15) | 0.7142 | 0.0000679 | 0.00000461 | (0.6931, 0.7353)
(15,25) | 0.7349 | 0.0000886 | 0.00000785 | (0.6990, 0.7708)
(25,25) | 0.5745 | -0.0000718 | 0.00000516 | (0.5246, 0.6244)
(25,30) | 0.6007 | -0.0000456 | 0.00000208 | (0.5895,0.6119)
(30,50) | 0.6312 | -0.0000151 | 0.000000229 | (0.6018, 0.6606)
(50,50) | 0.5897 | -0.0000567 | 0.00000321 | (0.5425, 0.6369)

sets.

In Table 5.17 we provided the MLEs of the parameters of TPGL and PL, i.e.,

a, B, \ as well as the results of K-S and A-D goodness of fit tests.

The unknown parameters of case 1 are ®=0.928, 31:1.492, 32:3.495, ):1:0.0085
and ):2:().00895. The MLE of R becomes R=0.2388 and the 95% interval of R is
(0.2110, 0.2576). The MLEs and 95% confidence interval of Ry are provided in
Table 5.18.

The unknown parameters of case 2 are @=0.9232, $=2.112, \;=0.00878 and
):220.00933. The MLE of R becomes R=0.0117 and the 95% interval of R is
(0.0078, 0.0156). The MLEs and 95% confidence interval of Ry are provided in
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Table 5.18.
Table 5.17: MLEs and K-S and A-D tests
Plane | Model | MLEs | K-S |p-value | A-D | p-value |
& = 0.954
TPGL B: 0.9845 | 0.1005 | 0.8928 | 0.4573 | 0.7893
) A = 0.0073
length 10 mm (X A
PL | T 0954 0.1005 | 0.8931 | 0.4573 | 0.7893
A =0.0073
& = 0.889
TPGL B: 0.985 | 0.1523 | 0.4456 | 0.7577 | 0.5114
A =0.0115
length 20 mm (Y) ~ _
PL “ 0.839 0.1523 | 0.4457 | 0.7578 | 0.5112
A =10.011
Table 5.18: Estimates of R
Case 1 Case 2
(s,k) | RMIL 95% ACI RME 95% ACI
(1,3) | 0.7705 (0.7103, 0.8307) | 0.7712 (0.7042, 0.8382)
(2,4) | 0.6257 (0.6067, 0.6497) | 0.6253 (0.5957, 0.6549)
(3,5) | 0.5268 (0.4758, 0.5778) | 0.5253 (0.4188, 0.6318)

5.6 Summary

We estimated R = P(Y < X) in two cases. First, when Y and X both follow
TPGL distribution. Second, when Y and X follows PL distribution and TPGL

distribution, respectively. We provided MLE to estimate the unknown parameters
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and used this to estimate of Rand Rsj. Also obtained asymptotic 100(1 — v)%
CI for the reliability parameter. Also obtain asymptotic CI for the reliability
parameter. The simulation results indicate that, when increasing the sample sizes,
MSE caused by the estimates are nearer to zero. The MLE of R is 0.2388 in case
1, which means there is a small chance that strength is greater than stress. Then

the SSS reliability in case 2 is comparatively low than in case 1.

The MLE of MSS reliability is 0.771 in both cases for (1,3) component system,
which means there is a high chance that strength is greater than stress. The
MLE of MSS reliability is 0.527 in case 1 and 0.525 in case 2 for (3,5) component

system, which means there is an equal chance that strength is greater than stress.



