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CHAPTER 6

TOTAL TIME ON TEST TRANSFORM AND

ORDERING OF LIFE DISTRIBUTIONS

6.1 Introduction

1 The concept of total time on test (TTT) transform was studied in the early

1970s (see Barlow and Campo (1975)). When several units are tested for study-

ing their life lengths, some of the units would fail while others may survive the

test duration. The sum of all observed and incomplete life lengths is generally

visualized as the TTT statistic. When the number of items placed on test tends

to infinity, the limit of this statistic is called the TTT transform. The plots pro-

vided information about the identification of failure rate model of the lifetime r.v.

Incomplete censored data can be analyzed using TTT transform.

1Some contents of this chapter are based on Deepthi and Chacko (2021).
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Many research papers on TTT concentrate on its engineering applications.

Aarset (1985) derived the exact distribution of TTT transform under the null

hypothesis of exponentiality. Gupta and Michalek (1985) developed an explicit

method to determine the reliability function by using the TTT transform. Abouam-

moh and Khalique (1997) investigated the properties of scaled TTT for some test

statistics for testing exponentially against all these mean residual life criteria.

Bergman (1977) studied the exact and asymptotic distributions of the number of

crossings are given under the hypothesis of exponentiality.

Recently, Vera and Lynch (2005) introduced higher-order TTT transforms by

applying definition of TTT recursively to the transformed distributions. Nair et

al. (2008) studied the properties of TTT transform of order n and examined

their applications in reliability analysis. Nair and Sankaran (2013) listed some

known characterizations of common aging notions in terms of the TTT transform

function. Franco-Pereira and Shaked (2013) derived two characterizations of the

decreasing percentile residual life (DPRL(α)) of order and aging notion in terms

of the TTT function.

TTT transform provide the central value of censored data. In order to get

the dispersion values in the censored situation, we need the distributions of the

increasing convex (concave) functions of lifetime random variables. The problem

of fitting an appropriate distribution for the function of r.v can be addressed

through the identification of failure rate model. The problem of identification

of failure rate behavior of increasing convex (concave) function of r.v based on

distributional properties of the lifetime variable is also an unexplored one. So, we

consider TTT transform of increasing convex (concave) function of r.v and study
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its properties. The behavior of TTT transform of increasing convex (concave)

function with the behavior of failure rate function of the lifetime r.v need to be

undergo more investigation.

In this chapter, we considered increasing convex (concave) total time on test

(ICXTTT (ICVTTT)) transform of a lifetime r.v and its properties. In section

6.2, ordering of life distribution is discussed. In section 6.3, the concept of the

TTT processes is discussed. In section 6.4, we defined increasing convex (concave)

TTT (ICXTTT (ICVTTT)) transform of the random variable. Some results about

the ageing patterns are given in section 6.5. In section 6.6, we defined ICXTTT

(ICVTTT) transform order and obtained its relationship with stochastic ordering.

Illustrative examples are given in section 6.7.

6.2 Ordering of life distributions

By the ageing of a mathematical unit, component or some other physical or bio-

logical system, we mean the phenomenon by which an older system has a shorter

remaining lifetime, in some stochastic sense, than a newer or younger one. Many

criteria of ageing have been developed in the literature. The stochastic compari-

son of distributions has been an important area of research in many diverse areas

of statistics and probability. We are comparing two lifetime variables X and Y

in terms of their failure rates rF (t) and rG(t), density functions f(t) and g(t),

survival functions F̄ (t) and Ḡ(t), mean residual lives µF (t) and µG(t) or other

ageing characteristics. Ageing classes can often be characterized by some partial

ordering. For example, in Barlow and Proschan (1975), IFR and IFRA classes
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are characterized by convex ordering and star-shaped ordering respectively. Many

different types of stochastic orders have been studied in the literature; for example

Deshpande et al. (1986) and a comprehensive discussion of ordering is available in

Shaked and Shanthikumar (2007). It is often easy to make value judgements when

such ordering exist. Stochastic ordering between two probability distributions, if

it holds, is more informative than simply comparing their means or medians only.

Similarly, if one wishes to compare the dispersion or spread between two distribu-

tions, the simplest way would to be to compare their standard deviations or some

such other measures of dispersion.

6.2.1 Stochastic order

The r.v X is stochastically larger than the random variable Y , written X ≥st Y ,

if

P (X > a) ≥ P (Y > a), ∀ a. (6.2.1)

If X and Y have distributions F and G respectively, then (6.2.1) is equivalent to

F̄ (a) ≥ F̄ (a), ∀ a

denoted by X ≤st Y .

6.2.2 Hazard rate order

Let X and Y be two nonnegative r.v’s with absolutely continuous distribution

functions and with failure rate functions r and q, respectively, such that
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r(t) ≥ q(t), t ∈ R. (6.2.2)

Then X is said to be smaller than Y in the hazard rate order (denoted as

X ≤hr Y ).

The hazard rate order can be trivially (but beneficially) used to characterize

IFR random variables.

6.2.3 Convex (Concave) order

If two variables have the same mean, they can still be compared by how spread out

the distributions are. This is captured to limit extend by the variance, but more

fully by a range of stochastic orders. Convex order is a special kind of variability

order.

Definition 6.2.1. Let X and Y be two random variables such that

E[φ(X)] ≤ E[φ(Y )] for all increasing convex [concave] functions φ : R→ R,

(6.2.3)

provided the expectations exist. Then X is said to be smaller than Y in the in-

creasing convex [concave] order (denoted by X ≤icx Y [X ≤icv Y ]).

Roughly speaking, if X ≤icx Y then X is both smaller and less variable than

Y in some stochastic sense. Similarly, X ≤icv Y then X is both smaller and more

variable than Y in some stochastic sense. Decreasing convex (concave) order by

requiring (6.2.1) to hold for all decreasing convex (concave) functions φ (denoted



166 Total Time on Test Transform and Ordering of life distributions

as X ≤dcx Y [X ≤dcv Y ]). The term decreasing convex and decreasing concave are

counter intuitive in the sense that if X is smaller than Y in the sense of either of

these two orders then X is larger than Y in some stochastic sense.

6.3 Total Time on Test Transform

The concept of the TTT transform processes was first defined by Barlow and

Campo (1975). Given a sample of size n from the non-negative r.v X having

distribution F , let X(1) ≤ X(2) ≤ . . . ≤ X(k) ≤ . . . ≤ X(n) be the order statistics

corresponding to the sample. Total time test to the rth failure is,

T (X(r)) = nX(1) + (n− 1)(X(2) −X(1)) + . . .+ (n− r + 1)(X(r) −X(r−1))

=
r∑
i=1

X(i) + (n− r)X(r).

Let H−1
n ( r

n
) = 1

n
T (X(r))

i.e., H−1
n (

r

n
) =

∫ F−1
n ( r

n
)

0

(1− Fn(u))du.

The empirical distribution function defined in terms of the order statistics is

Fn(u) =


0, u < X(i)

i
n
, X(i) ≤ u < X(i+1)

1, X(n) > u.
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If there exist an inverse function F−1
n (x) = inf{x : Fn(x) ≥ u}, the fact that

Fn(u)
a.s.−−→ F (u) implies, by Glivenko Candelli theorem,

lim
r
n
→t

n→∞

∫ F−1
n ( r

n
)

0

(1− Fn(u)) du =

∫ F−1(t)

0

(1− F (u)) du (6.3.1)

uniformly in t ∈ [0, 1]. Barlow and Campo (1975) defined TTT transform of F as

H−1
F (t) =

∫ F−1(t)

0

(1− F (u)) du t ∈ [0, 1]. (6.3.2)

There is a one to one correspondence between distribution F and their transform

H−1
F . Suppose F has density f , then

d

dt
H−1
F (t) =

d

dt

∫ F−1(t)

0

(1− F (u)) du

= (1− t) d
dt
F−1(t).

So that

d

dt
F−1(t) =

d
dt
H−1
F (t)

(1− t)
.

Note that HF is a distribution with support on [0, µ], where µ is the mean of

F, since

H−1
F (1) =

∫ F−1(1)

0

(1− F (u)) du

= µ, when F̄ (0) = 0.
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It is easy to verify that the scaled TTT transform is

φ(t) =
H−1
F (t)

H−1
F (1)

=
H−1
F (t)

µ

is continuous increasing function on [0, 1] which is 0 at t = 0 and 1 at t = 1.

The curve φ(t) versus 0 ≤ t ≤ 1 is called the scaled TTT transform curve.

Using the scaled TTT transform curve, the shape of the failure rate function of

the distribution can be classified as one of the following.

• If the scaled TTT transform curve is concave above the 45o line, the failure

rate is increasing.

• If the scaled TTT transform curve is convex below the 45o line, then the

failure rate is decreasing.

• If the scaled TTT transform curve is first convex below the 45o line then

concave above the line the shape of the failure rate is a bathtub shaped.

• The shape of the failure rate will be unimodal shaped if the scaled TTT

transform curve is first concave above the 45o line followed by convex below

the 45o line.

Figure 6.1 summarizes the different shapes of the scaled TTT transform curve

for distributions with increasing, decreasing, bathtub and unimodal failure rate

functions. For an ordered sample x0:n, x1:n, x2:n, . . . , xn:n, the total time one test
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Figure 6.1: Theoretical aspects of TTT plots.

statistics is given by

TTTr =
r∑
i=1

(n− i+ 1)(xi:n − xi−1:n), r = 1, 2, . . . , n.

The empirical scaled TTT transform is

TTT ∗r =
TTTr
TTTn

,

where 0 ≤ TTTn ≤ 1. The TTT-plot can be drawn by plotting ( r
n
) against TTT ∗r .
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6.4 Increasing Convex (Concave) TTT transform

Let g(x) be an increasing convex (concave) function of X. Let G(x) be the dis-

tribution function of g(X). Total observed values of transformed variables g(X)

under type 2 censored scheme is

Tg(X(r)) = n g(X(1)) + . . .+ (n− r + 1)
(
g(X(r))− g(X(r−1))

)
=

r∑
i=1

g(X(i)) + (n− r)g(X(r)).

For g(x), define

(H−1
n )g

(
r

n

)
=

∫ (H−1
n ( r

n
))

0

(
1−Hn(w)

)
dw =

∫ g(F−1
n ( r

n
))

0

(
1− Fn(u)

)
du

where

Hn(u) =


0, g(u) < g(X(i))

i
n
, g(X(i)) ≤ g(u) < g(X(i+1))

1, g(X(n)) > g(u).

H−1
n (x) = inf{x : Hn(x) ≥ g(u)} and the fact that Fn(u)

a.s.−−→ F (u) implies,

g(F−1
n (u))

a.s.−−→ g(F−1(u)), then by Glivenko Candelli theorem,

lim
r
n
→t

n→∞

∫ g(F−1
n ( r

n
))

0

(1− Fn(u)) du =

∫ g(F−1(t))

0

(1− F (u)) du.
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We define TTT transform of increasing convex (concave) function g(X) as

(H−1
F )g(t) =

∫ g(F−1(t))

0

(1− F (u)) du t ∈ [0, 1]. (6.4.1)

But,
d
dt
H−1
F (t)

1−t = d
dt
F−1(t) and d

dt
H−1
F (t)|t=F (x) = 1

r(x)
. Then

d

dt
(H−1

F )g(t) =
d

dt

∫ g(F−1(t))

0

(1− F (u)) du

=

[
1−

∫ g(F−1(t))

0

f(u) du

]
g′(F−1(t))

d

dt
F−1(t)

=

[
1−

∫ g(F−1(t))

0

f(u) du

]
g′(F−1(t))

d
dt
H−1
F (t)

1− t
d

dt
(H−1

F )g(t)|t=F (x) =

[
1−

∫ g(x)

0

f(u) du

]
g′(x)

F̄ (x)r(x)
.

That is,

d

dt
(H−1

F )g(t)|t=F (x) =
F̄ (g(x))

F̄ (x)
.
g′(x)

r(x)
. (6.4.2)

Note that HFg(.) (the inverse of H−1
F g(.)) is a distribution with support on [0, µ],

(H−1
F )g(1) =

∫ g(F−1(1))

0

(1− F (u)) du = µ.

It is easy to verify that the scaled transform
(H−1

F )g(t)

(H−1
F )g(1)

is continuous increasing

function on [0, 1].
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Example 6.4.1. Let g(x) = x2, then

(H−1
F )2(t) =

∫ (F−1(t))2

0

(1− F (u)) du t ∈ [0, 1]. (6.4.3)

Then,
d

dt
(H−1

F )2(t) =
d

dt

∫ (F−1(t))2

0

(1− F (u)) du

=

[
1−

∫ (F−1(t))2

0

f(u) du

]
2 F−1(t)

d
dt
H−1
F (t)

1− t
d

dt
(H−1

F )2(t)|t=F (x) =

[
1−

∫ x2

0

f(u) du

]
2x

F̄ (x)r(x)
.

That is,

d

dt
(H−1

F )2(t)|t=F (x) =
F̄ (x2)

F̄ (x)
.

2x

r(x)
.

Note that (H2
F ) (the inverse of (H−1

F )2) is a distribution with support on [0, µ].

(H−1
F )2(1) =

∫ (F−1(1))2

0

(1− F (u)) du = µ.

It is easy to verify that the scaled TTT transform is
(H−1

F )2(t)

(H−1
F )2(1)

is continuous in-

creasing function on [0, 1].

Example 6.4.2. Let F (x) = 1− e−x/θ, x > 0, θ > 0 be the distribution function

of Exponential distribution with mean θ. Then

(H−1
F )2(t) =

∫ (F−1(t))2

0

(1− F (x)) dx
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=

∫ (F−1(t))2

0

e−x/θ dx

=

∫ (F−1(t))2

0

θ dF (x)

(H−1
F )2(t)|t=F (x) = θF ((F−1(t))2)

∴
(H−1

F )2(t)

(H−1
F )2(1)

= F ((F−1(t))2).

Now, we consider simulated data and plot TTT transform of Exponential dis-

tribution and its convex transform g(x) = x2. From Figure 6.2, the TTT trans-

form plot of Exponential data set indicates constant failure rate, but ICXTTT

transform plot indicates that the transformed data follows the decreasing failure

rate pattern.

So that, square of Exponential r.v follows some decreasing failure rate model.

Thus we can choose any DFR model to square of Exponential data.

6.5 Ageing Properties

We prove some general results about the ageing patterns of function g(X) using

(H−1
F )g(t)/(H−1

F )g(1), which is based on the failure rate function r(x) of X having

distribution F .

Proposition 6.5.1. G is IFR if rate of increase of g′(x) F̄ (g(x))

F̄ (x)
is smaller than the

rate of increase of r(x). G is DFR if r(x) is decreasing in x ≥ 0.

Proof. Clearly d
dt

(H−1
F )g(t) is decreasing in t ∈ [0, 1], if rate of increase of g′(x) F̄ (g(x))

F̄ (x)
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Figure 6.2: TTT plot (top) and ICXTTT plot (bottom) for the Exponential
Simulated data with parameter θ=2.

is smaller than the rate of increase of r(x) ⇒ (H−1
F )g(t)

(H−1
F )g(1)

is concave in t ∈ [0, 1], if

rate of increase of g′(x) F̄ (g(x))

F̄ (x)
is smaller than the rate of increase of r(x). Hence

G is IFR, if rate of increase of g′(x) F̄ (g(x))

F̄ (x)
is smaller than the rate of increase of

r(x).

Similarly,

d
dt

(H−1
F )g(t) is increasing in t ∈ [0, 1], if r(x) is decreasing in x ≥ 0.
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That is,
(H−1

F )g(t)

(H−1
F )g(1)

is convex in t ∈ [0, 1], if r(x) is decreasing in x ≥ 0. G is

DFR, if r(x) is decreasing in x ≥ 0.

Proposition 6.5.2. Let X has distribution F and Y = g(X) has distribution

G(y). G is IFRA (DFRA) ⇒ (H−1
F )g(t)

F (g(F−1(t))) (H−1
F )g(1)

is decreasing (increasing) in

t ∈ [0, 1].

Proof. Let Y = g(X) and G(y) be the distribution function of Y . G has IFRA

⇒ 1
y

∫ y
0
r(u) du is increasing in y ≥ 0.

Let T (y) =
∫ y

0
Ḡ(u) du. T (y)

y
is decreasing in y ≥ 0, since it is an average of

the decreasing function Ḡ(y).

Then,
∫ y
0 r(u) dT (u)

T (y)
is increasing in y ≥ 0. Hence

G(y)∫ y
0
Ḡ(u) du

is increasing in y ≥ 0

and ∫ y
0
Ḡ(u) du

G(y)
is decreasing in y ≥ 0.

Then, ∫ y
0
Ḡ(u) du

G(y)
=

∫ g(x)

0
F̄ (w) dw

F (g(x))
is decreasing in x ≥ 0

since Ḡ(u) = P (g(X) > u) = P (X > w) = F̄ (w) for w = g−1(u) corresponding

to u.

Now make the change of variables t = F (x) and x = F−1(t) and finally we

have ∫ g(F−1(t))

0
F̄ (w) dw

F (g(F−1(t)))
=

(H−1
F )g(t)

F (g(F−1(t)))
is decreasing in t ∈ [0, 1].
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⇒ (H−1
F )g(t)

F (g(F−1(t))) (H−1
F )g(1)

is decreasing in t ∈ [0, 1].

Similarly, for G is DFRA,

(H−1
F )g(t)

F (g(F−1(t)))
is increasing in t ∈ [0, 1].

⇒ (H−1
F )g(t)

F (g(F−1(t))) (H−1
F )g(1)

is increasing in t ∈ [0, 1].

6.6 Increasing Convex (Concave) TTT transform

order

In this section we defined the increasing convex (concave) TTT transform order.

Let X and Y be two nonnegative random variables with distributions F and H

respectively. If

∫ F−1(t)

0

(1− F (u)) du ≤
∫ H−1(t)

0

(1−G(u)) du t ∈ [0, 1] (6.6.1)

then X is said to be smaller than Y in the TTT order (denoted by X ≤ttt Y ). A

sufficient condition for the order ≤ttt is the usual stochastic order:

X ≤st Y =⇒ X ≤ttt Y. (6.6.2)
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In order to verify (6.6.2) one may just notice that if X ≤st Y , then F−1(u) ≤

G−1(u) for all u ∈ (0, 1) (see, Shaked and Shanthikumar (2007)). By letting

u→ 1 in (6.6.2) it is seen that

X ≤ttt Y =⇒ E(X) ≤ E(Y ). (6.6.3)

Let X and Y be two random variables such that Tg(X(n)) ≤ Tg(Y(n)) for all

increasing convex (concave) functions g : R→ R and all samples of size n. Then

X is smaller than Y in some stochastic sense, since 1
n
Tg(X(n)) is average of total

observed increasing convex (concave) transformed time of a test.

Definition 6.6.1. Let X and Y be two non-negative random variables with ab-

solutely continuous distribution functions F and H respectively. If

(H−1
F )g(t) ≤ (H−1

H )g(t) ∀ t ∈ [0, 1]

where g is an increasing convex (concave) function, then X is smaller than Y

in increasing convex (concave) TTT transform order (denoted as X ≤icxttt Y

(X ≤icvttt Y )).

Now we prove the relationship of ICXTTT (ICVTTT) transform orders to

stochastic orders.

Theorem 6.6.1. Let X and Y be two non-negative random variables having ab-

solutely continuous distribution functions F and G respectively. Then

X ≤st Y =⇒ X ≤icxttt Y.



178 Total Time on Test Transform and Ordering of life distributions

Proof. Let g be the increasing convex (concave) function g : R → R. Since,

X ≤st Y , g(F−1(t)) ≤ g(G−1(t)) for all t ∈ [0, 1].

Hence,

∫ g(F−1(t))

0

(1− F (u)) du ≤
∫ g(G−1(t))

0

(1−G(u)) du, ∀t ∈ [0, 1]

then X ≤icxttt Y.

6.7 Examples

Usually the TTT transform plot is drawn by plotting T ( r
n
) =

∑r
i=1X(i)+(n−r)X(r)∑r

i=1X(i)

against ( r
n
), where i = 1, 2, . . . , r and r = 1, 2, . . . , n. A TTT transform curve

may be concave (convex) if corresponding distribution is IFR (DFR) distribution.

A TTT transform curve is straight line if the distribution is exponential. If the

shape of TTT transform is concave (convex) and then convex (concave), then the

distribution has a bathtub (upside down bathtub) shaped failure rate function.

Then the ICXTTT (ICVTTT) transform plot is drawn by plotting Tg( r
n
) =∑r

i=1 g(X(i))+(n−r)g(X(r))∑r
i=1 g(X(i))

against ( r
n
), where i = 1, 2, . . . , r and r = 1, 2, . . . , n,

Figure 6.3 and 6.4 shows scaled TTT transforms and scaled ICXTTT trans-

forms of bathtub shaped failure rate data (Aarset data (Aarset (1987))) and

Weibull simulated data respectively. From Figure 6.3, the failure rate pattern

of transformed data still shows bathtub shape. It means that, even after transfor-

mation, we may be able to identify the failure rate pattern. It is useful because,

selection of statistical distribution to the transformed variables is a problem for
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Figure 6.3: TTT plot (left) and ICXTTT plot (right) for the Aarset data.

many researchers. The researchers need only to search for a particular class of dis-

tribution, if they could identify the failure rate pattern using ICXTTT (ICVTTT)

transform.

Another advantage of defining ICXTTT (ICVTTT) transform is that, the

transform statistic can be used for estimating the dispersion parameters, variance

etc of censored data.

(H−1
n )g

(
r

n

)
=

∫ (H−1
n ( r

n
))

0

(
1−Hn(w)

)
dw =

∫ g(F−1
n ( r

n
))

0

(
1− Fn(u)

)
du

is actually mean of censored-transformed data from F . This can be used for the

purpose of estimation and testing the parameters of distribution of transformed

data. Figure 6.4, shows that the TTT transform plot of Weibull(α = 1.5, λ = 1)

data set indicates IFR behavior, but ICXTTT transform plot for Weibull(α =

1.5, λ = 1) indicates an upside down BFR pattern for the failure rate. The TTT
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Figure 6.4: TTT plot (top) and ICXTTT plot (bottom) for the Weibull Simulated
data with parameter α = 1.5, 0.5 and λ=1 respectively.

transform plot of Weibull(α = 0.5, λ = 1) shows F (t) has decreasing failure rate

(DFR) while ICXTTT transform plot based on a Weibull(α = 0.5, λ = 1) shows

decreasing behavior for failure rate.

6.8 Summary

We defined increasing convex (concave) TTT transform. The procedure of iden-

tification of the failure rate model of functions of random variables, using failure

rate function of random variable is discussed. IFR (DFR) and IFRA (DFRA)
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properties of distribution of increasing convex (concave) transformations of the

variable are explained. Illustrative examples are provided.


