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CHAPTER 7

BURN-IN PROCESS USING BFR

DISTRIBUTIONS

7.1 Introduction

Burn-in testing (BIT) is a widely accepted method for many years to detect and

eliminate early failures. BIT is mandatory in high-reliability storage contracts

such as military and aerospace applications, and is also essential for automotive,

medical, long-distance telecommunications, and other electronic materials, pack-

ages and systems. BIT is usually performed at the component level because the

cost involved in inspecting and replacing parts is small.

Testing plays an important role in controlling and ensuring the required qual-

ity and reliability of built-in integrated circuits (IC). The IC fabrication process
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involves several tests at different stages: pre-burn-in, burn-in and final test (see

Kececioglu and Sun (1997)). The four main types of burn-in tests used in the

industry are static, dynamic, monitored and test-in burn-in (TIBI) (Ooi et al.

(2007)). In static burn-in (also known as traditional burn-in) equipment under

test (EUT) is subjected to high temperatures. Dynamic burn-in is similar to static

one which involves exercising EUTs by applying test vectors or stimulus sets to

toggle the device’s internal nodes. Static or dynamic burn-in types provide no

monitoring of EUT responses. Consequently faulty ICs are not detected until a

subsequent final test stage.

The burn-in procedure stops when we get pre-determined reliability. In Mi

(1994a) it was shown that the optimal burn-in time, say b∗, for maximizing the

mean residual life function µ(b) = E(X−b|X > b) satisfies b∗ ≤ t1, where t1 is the

first change point, if F is BFR. Since burn-in is usually expensive, an important

issue is deciding how long the procedure should continue. The time to stop the

burn-in process to optimize a given criterion is known as optimal burn-in time

(see, Jensen and Petersen (1982)).

For burn-in to be effective, it must have a high failure rate early in life. Items

that survive the burn-in have burn-in effect that eliminates the part of the lifetime

with a high initial risk of failure. A class of life time distributions with bathtub-

shaped failure rates has this property. Some other mechanical and electronic

lifetimes can also be analyzed by BFR distributions.

An engineer thinking about burn-in use needs to answer a number of questions

related to the purpose of the burn-in test, the type of lifetime supply, the avail-
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ability of data, and the logistics of running the procedure. Lawrence (1966) and

Chandrasekaran (1977) investigated the burn-in problems. Park (1985) learned

about the mean residual life of the product. Plaser and Fied (1977), and Nguyen

and Murthy (1982) studied the Economic design of burn-in procedures. Li and

Cheng (2010) studied the best designs of accelerated life tests for lives that are

distributed as exponential under advanced censoring.

In this chapter we discussed optimal burn-in process and expression of long

run average cost function per unit time for obtaining optimal burn-in time and

optimal age using WL and GXE distribution.

7.2 Optimal Burn-in

Traditionally, burn-in has been used to increase the mean residual life of items that

survive the burn period. There are situations where increasing the mean residual

life expectancy is not an appropriate criterion. For example, when considering

an item going on a space mission, the goal is to minimize the chances of failing

on a mission over a period of time. The optimal burn-in time may be different

from the optimal burn-in time with the maximum mean residual life. Another

goal of burn-in is to achieve a certain degree of reliability. Costs often need to be

considered in the goal of a burn-in procedure. The cost of a component failure is

higher for a satellite than for a vehicle battery (see, Myung and Young (2002)).

In this section some basic criteria for determining the optimal burn-in time for

a lifetime is discussed. In Section 7.3.1 performance based criteria is discussed.
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The maintenance policy in burn-in is considered in Section 7.3.2.

7.2.1 Performance-Based Criteria

Consider the performance-based criteria by maximizing the average remaining life,

in which there is no more general understanding of the cost structure. We now

list several criteria for determining burn-in (see, Block and Savits (1997)).

C1: Let T be a fixed mission time and let F̄ be the survival function of the

lifetime random variable. Find b which maximizes F̄ (b + T )/F̄ (b), that is,

find b such that, given survival to time b, the probability of completing the

mission is as large as possible.

C2: Let X be a lifetime random variable. Find the burn-in time b which maxi-

mizes E(X− b|X > b), that is, find the burn-in time which gives the largest

mean residual life.

C3: Let {Nb(t), t ≥ 0} be a renewal process of lifetimes which are burned in

for b units of time (i.e., if F is the original lifetime distribution and the

inter-arrival distribution has survival function F̄b(t) = F̄ (b+ Tt)/F̄ (b). For

fixed mission time T , find b which minimizes E [Nb(t)], which is the mean

number of burn-in components which fail during the mission time T.

C4: For a fixed α, 0 < α < 1, find the burn-in time b which maximizes T = qα(b),

where qα(b) = F−1
b (α) = inf{x ≥ 0 : F̄b(x) ≤ 1− α} is α-percentile residual

life (see Joe and Proschan(1984)), i.e., find the burn-in time which gives the

maximal warranty period T for which at most α% of items will fail.
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Criteria C1, C2, and C4 deal with only one component. Criterion C3 deal with re-

placement components with other similar components when they fail. Mi (1994b)

achieved similar results to the C1 and C3 criteria. Launer (1993) showed that

optimal burn-in time occurs before t1.

7.2.2 Burn-in and Maintenance Policy

The most common replacement policy would be age replacement policy, in which

component is replaced at time T or at the time of failure which occurs first.

Once a cost structure has been established, to model the total cost related to the

maintenance policy adopted, an optimal T is determined (denoted by T ∗ and is

called optimal maintenance policy) such that costs will be minimized. Assuming

that the failure rate increases, Barlow and Proschan (1975) have shown that an

optimal age replacement policy exists, but it may be infinite. The optimal main-

tenance policy, however, depends on the distribution of the component used in

the operation.

Mi (1994a) consider the following procedure. Consider burn-in a new compo-

nent. If the component fails before burn-in time b, repair it, and then re-burn the

component. If this element survives the time b, it can be used for operation. Cha

(2000) adopted a block replacement policy with fewer failures.

For new component having burn-in time b, if failure occurs before the b, then

minimal repair will carry out with cost cs > 0, and the burn-in procedure will

continue for the repaired component. Let co be the cost to burn which is calculated

in proportion to the total burn-in time, the total expected cost incurred by burn-
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in is the sum of the cost for burn-in cob, and the expected cost of minimal repairs

cs
∫ b

0
r(t) dt.

i.e., C1(b) = cob+ cs

∫ b

0

r(t) dt (7.2.1)

where
∫ b

0
r(t) dt is the expected no.of minimal repairs during the burn-in period.

Let cf indicates the cost incurred by the replacement at age T and cr be

the cost incurred by failure replacement before T ∗, 0 < cr < cf . Then the total

expected replacement cost is the sum of the expected cost incurred by replacement

at age T and the expected cost incurred by failure replacement before T ∗,

C2(T ) = cfFb(T ) + crF̄b(T ) (7.2.2)

where F̄b(T ) is the conditional survival function F̄ (b+T )

F̄ (b)
, then Fb(T ) = 1− F̄b(T ).

The mean residual life function for a general repairable product is µ(b) =∫∞
b F̄ (t) dt

F̄ (b)
. The total expected cycle length is the sum of the expected length of a

replacement for non-failed item and the expected length of failure cycle;

T F̄b(t) +

∫ T

0

tfb(t) dt =

∫ T

0

F̄b(t) dt. (7.2.3)

Hence, from (7.2.1), (7.2.2) and (7.2.3) the long-run average cost per unit time

C(b, T ) is

C(b, T ) =
co + cs

∫ b
0
r(t) dt+ cfFb(T ) + crF̄b(T )∫ T

0
F̄b(t) dt

=

(
co + cs

∫ b
0
r(t) dt

)
F̄ (b) + cf

(
F̄ (b)− F̄ (b+ T )

)
+ crF̄ (b+ T )∫ T

0
F̄ (b+ t) dt

.
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The optimal burn-in time b∗ and the optimal age T ∗ which satisfy C(b∗, T ∗) =

minb≥0,T>0C(b, T ).

7.3 Optimal Burn-in Procedure for WL and GXE

distributions

WL Distribution:- Let X be a lifetime r.v. following WL distribution with

failure rate function

r(x) = α

(
βxβ−1(1 + x)ex

β

+ ex
β

)
, x > 0, α > 0, β > 0

and cdf

F (x;α, β) = 1− e−α
(

(1+x)ex
β−1

)
, x > 0, α > 0, β > 0.

The total expected cost incurred by burn-in is

C1(b) = cob+ cs

∫ b

0

α

(
βtβ−1(1 + t)et

β

+ et
β

)
dt

= cob+ cs{α(1 + b)eb
β} (7.3.1)

F̄b(T ) =
e
−α
(

(1+(b+T ))e(b+T )β−1
)

e−α((1+b)eb
β−1)

(7.3.2)

Fb(T ) = 1−

e
−α
(

(1+(b+T ))e(b+T )β−1
)

e−α((1+b)eb
β−1)

 . (7.3.3)

Substituting (7.3.2) and (7.3.3) in (7.2.2), we get total expected replacement
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cost as

C2(T ) = cf

1−

e
−α
(

(1+(b+T ))e(b+T )β−1
)

e−α((1+b)eb
β−1)


+ cr

e
−α
(

(1+(b+T ))e(b+T )β−1
)

e−α((1+b)eb
β−1)

 .

(7.3.4)

The total expected cycle length is

T
e
−α
(

(1+(b+t))e(b+t)
β−1

)
e−α((1+b)eb

β−1)
+

∫ T

0

tα
[
β(b+ t)β−1(1 + (b+ t))e(b+t)β

]
× e

−α
(

(1+(b+t))e(b+t)
β−1

)
e−α((1+b)eb

β−1)
dt =

∫ T

0

F̄b(t) dt. (7.3.5)

Hence, from (7.3.1), (7.3.4) and (7.3.5), the long-run average cost per unit time is

C(b, T ) =

(
co + cs{α(1 + b)eb

β}
)
e
−α
(

(1+b)eb
β−1

)
∫ T

0
e−α((1+(b+t))e(b+t)

β−1) dt

+

cf

(
e
−α
(

(1+b)eb
β−1

)
− e−α

(
(1+(b+T ))e(b+T )β−1

))
∫ T

0
e−α((1+(b+t))e(b+t)

β−1) dt

+
cre
−α
(

(1+(b+T ))e(b+T )β−1
)

∫ T
0
e−α((1+(b+t))e(b+t)

β−1) dt
.

GXE Distribution:- Let X be a lifetime r.v. following the failure rate function

GXE distribution with x > 0, α, λ > 0,

r(x) =
αe−λ(x2+x)(λ(1 + λx2)(2x+ 1)− 2λx)

(
1− (1 + λx2)e−λ(x2+x)

)α−1

1− (1− (1 + λx2)e−λ(x2+x))
α
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and cdf

F (x) =
(

1− (1 + λx2)e−λ(x2+x)
)α
, x > 0, α > 0, λ > 0.

The total expected cost incurred by burn-in is

C1(b) = cob

+ cs

∫ b

0

αe−λ(t2+t)(λ(1 + λt2)(2t+ 1)− 2λt)
(

1− (1 + λt2)e−λ(t2+t)
)α−1

1− (1− (1 + λt2)e−λ(t2+t))
α dt

(7.3.6)

F̄b(T ) =
1−

(
1− (1 + λ(b+ T )2)e−λ((b+T )2+(b+T ))

)α
1− (1− (1 + λb2)e−λ(b2+b))

α (7.3.7)

Fb(T ) = 1−

1−
(

1− (1 + λ(b+ T )2)e−λ((b+T )2+(b+T ))
)α

1− (1− (1 + λb2)e−λ(b2+b))
α

 . (7.3.8)

Substitute these two results in Eq.(7.2.2), we get total expected replacement cost

as

C2(T ) = cf

1−

1−
(

1− (1 + λ(b+ T )2)e−λ((b+T )2+(b+T ))
)α

1− (1− (1 + λb2)e−λ(b2+b))
α




+ cr

1−
(

1− (1 + λ(b+ T )2)e−λ((b+T )2+(b+T ))
)α

1− (1− (1 + λb2)e−λ(b2+b))
α

 . (7.3.9)
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The total expected cycle length is

T
1−

(
1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t))

)α
1− (1− (1 + λb2)e−λ(b2+b))

α

+

∫ T

0

tαe−λ((b+t)2+(b+t))
(

1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t))
)α−1

[
(λ(1 + λ(b+ t)2)(2(b+ t) + 1)− 2λ(b+ t))

1− (1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t)))
α

]

×
1−

(
1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t))

)α
1− (1− (1 + λb2)e−λ(b2+b))

α dt

=

∫ T

0

F̄b(t) dt. (7.3.10)

Hence, from (7.3.6), (7.3.9) and (7.3.10) the long-run average cost per unit time

is

C(b, T ) =

(
co + cs

∫ b
0

αe−λ(t
2+t)(λ(1+λt2)(2t+1)−2λt)

(
1−(1+λt2)e−λ(t

2+t)
)α−1

1−(1−(1+λt2)e−λ(t2+t))
α dt

)
∫ T

0

(
1− (1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t)))

α

)
dt

×
(

1−
(

1− (1 + λb2)e−λ(b2+b)
)α)

+

cf

(
1−

(
1− (1 + λb2)e−λ(b2+b)

)α)
∫ T

0

(
1− (1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t)))

α

)
dt

−
cf

(
1−

(
1− (1 + λ(b+ T )2)e−λ((b+T )2+(b+T ))

)α)
∫ T

0

(
1− (1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t)))

α

)
dt
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+

cr

(
1−

(
1− (1 + λ(b+ T )2)e−λ((b+T )2+(b+T ))

)α)
∫ T

0

(
1− (1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t)))

α

)
dt

7.4 Summary

We discussed about burn-in process. Expressions for obtain optimal Burn-in time

and optimal age under age replacement policy are derived for WL and GXE

distributions.


