LIST OF TABLES

Table No.	Title	Page No.
	PART I SYNTHESIS AND CHARACTERIZATION	
1.1	Micro analytical, magnetic and conductance data of transition metal complexes of 3-(anthracen-9(10H)- ylideneamino) propanoic acid [A9Y3APA]	40
1.2	Characteristic infrared absorption frequencies of A9Y3APA and its transition metal complexes	41
1.3	Micro analytical, magnetic and conductance data of transition metal complexes of (S)-2-(anthracen-9(10H)- ylidene amino)-5- guanidino pentanoic acid [A9Y5GPA]	50
1.4	Characteristic infrared absorption frequencies of A9Y5GPA and its transition metal complexes	51
1.5	Micro analytical, magnetic and conductance data of transition metal complexes of (S)-2-(anthracen-9(10H)- ylideneamino)-3-(1H-imidazole-4-yl) propanoic acid (A9Y3IMPA)	60
1.6	Characteristic infrared absorption frequencies of A9Y3IMPA and its transition metal complexes	61
1.7	Micro analytical, magnetic and conductance data of transition metal complexes of (S)-2-(anthracen-9(10H)- ylideneamino)-3-(1H-indole-3-yl) propanoic acid (A9Y3INPA)	71
1.8	Characteristic infrared absorption frequencies of A9Y3INPA and its transition metal complexes	72
1.9	Micro analytical, magnetic and conductance data of transition metal complexes of (S)-2-(anthracen-9(10H)- ylideneamino)-3-phenyl propanoic acid [A9Y3PPA]	80
1.10	Characteristic infrared absorption frequencies of A9Y3PPA and its transition metal complexes	81
1.11	Micro analytical, magnetic and conductance data of transition metal complexes of (R)-2-(anthracen-9(10H)- ylideneamino)-3-mercapto propanoic acid (A9Y3MPA)	90
1.12	Characteristic infrared absorption frequencies of A9Y3MPA and its transition metal complexes	91
	PART II CORROSION INHIBITION STUDIES	
2.1	Corrosion rates of CS at different concentrations of amino acids for 24 h in 1M HCl medium at 30^{0} C	148
2.2	Corrosion inhibition efficiencies at different concentrations	149

	of amino acids on CS for 24 h in 1M HCl medium at 30 ^o C	
2.3	Surface coverage at different concentrations of amino acids on CS for 24 h in 1M HCl medium at 30^{0} C	150
2.4	Thermodynamic parameters for the adsorption of amino acids on CS in 1M HCl	152
2.5	Corrosion rates of CS at different concentrations of amino acids for 24 h in $0.5M H_2SO_4$ medium at 30^0C	153
2.6	Corrosion inhibition efficiencies at different concentrations of amino acids on CS for 24 h in $0.5M$ H ₂ SO ₄ medium at $30^{0}C$	154
2.7	Surface coverage obtained at different concentrations of amino acids on CS for 24 h in $0.5M H_2SO_4$ medium at 30^0C	156
2.8	Thermodynamic parameters for the adsorption of amino acids on CS in $0.5M$ H ₂ SO ₄	157
2.9	Corrosion rates of CS at different concentrations of Schiff bases for for 24 h in 1M HCl medium at 30^{0} C	164
2.10	Corrosion inhibition efficiencies at different concentrations of Schiff bases on CS for 24 h in 1M HCl medium at 30^{0} C	166
2.11	Electrochemical impedance parameters of CS specimens in 1M HCl at 30 ^o C in the absence and presence of Schiff bases	171
2.12	Potentiodynamic and linear polarization parameters of CS specimens in 1M HCl at 30° C in the absence and presence of Schiff bases	175
2.13	Corrosion rates of CS in 1M HCl at different temperatures in the presence and absence of Schiff bases for 24 h	178
2.14	Corrosion inhibition efficiencies of Schiff bases on CS in 1M HCl at various concentrations in the temperature range 40-60 ⁰ C for 24 h	179
2.15	Thermodynamic parameters of corrosion of CS in 1M HCl	183
2.16	Thermodynamic parameters for the adsorption of Schiff bases on CS in 1M HCl	186
2.17	Corrosion rates of CS at different concentrations of Schiff bases for 24 h in $0.5M H_2SO_4$ medium at 30^0C	192
2.18	Corrosion inhibition efficiencies at different concentrations of Schiff bases on CS for 24 h in 0.5M H_2SO_4 medium at 30^0C	194
2.19	Corrosion rates of CS at different concentrations of Schiff bases with 0.2mM KI for 24 h in 0.5M H_2SO_4 medium at 30^0C	195
2.20	Corrosion inhibition efficiency at different concentrations of Schiff bases with 0.2mM KI on CS for 24 h in 0.5M H_2SO_4 medium at $30^{0}C$	195
2.21	Synergism parameter (S $_{\theta}$) for different concentrations of	197

	Schiff bases in combination with 0.2mM KI	
2.22	Electrochemical impedance parameters of CS specimens and in $0.5M$ H ₂ SO ₄ at 30^{0} C in the absence and presence of inhibitors	202
2.23	Electrochemical impedance parameters of CS specimens and in in 0.5M $H_2SO_4at \ 30^0C$ in the absence and presence of inhibitor + 0.2 mM KI	203
2.24	Potentiodynamic and linear polarization parameters of CS specimens in $0.5M$ H ₂ SO ₄ at 30 0 C in the absence and presence of Schiff bases	208
2.25	Potentiodynamic and linear polarization parameters of CS specimens in $0.5M$ H ₂ SO ₄ at 30^{0} C in the absence and presence of Schiff bases with 0.2mM KI	209
2.26	Thermodynamic parameters for the adsorption of Schiff bases on CS in $0.5M H_2SO_4$	211
	PART III ANTIMICROBIAL STUDIES	
3.1	Antibacterial activity of the Schiff base, 3-(anthracene- 9(10H)-ylidene amino) propanoic acid (A9Y3APA) and its transition metal complexes	268
3.2	Antibacterial activity of the Schiff base, (S)-2-(anthracen- 9(10H)-ylideneamino)-5-guanidinopentanoicacid(A9Y5GPA) and its transition metal complexes	269
3.3	Antibacterial activity of the Schiff base, (S)-2-(anthracen- 9(10H)-ylideneamino)-3-(1H-imidazole-4-yl) propanoic acid (A9Y3IMPA) and its transition metal complexes	270
3.4	Antibacterial activity of the Schiff base, (S)-2-(anthracen- 9(10H)-ylideneamino)-3-(1H-indole-3-yl) propanoic acid (A9Y3INPA) and its transition metal complexes	271
3.5	Antibacterial activity of the Schiff base, (S)-2-(anthracen- 9(10H)-ylideneamino)-3-phenyl propanoic acid (A9Y3PPA) and its transition metal complexes	272
3.6	Antibacterial activity of the Schiff base, (R)-2-(anthracen- 9(10H)-ylideneamino)-3- mercapto propanoic acid (A9Y3MPA) and its transition metal complexes	273
3.7	Antibacterial activity of the standard antibiotics and the solvent DMSO	274
	PART IV CYCLIC VOLTAMMETRIC STUDIES	
4.1	Cyclic Votammetric data for Schiff base A9Y3APA	298
4.2	Cyclic Votammetric data for Schiff base A9Y5GPA	303
4.3	Cyclic Votammetric data for Cu(II)-A9Y5GPA complex	305

4.4	Cyclic voltammetric data for Schiff base A9Y3IMPA	308
4.5	Cyclic Votammetric data for Schiff base A9Y3INPA	312
4.6	Cyclic Votammetric data for Schiff base A9Y3PPA	316
4.7	Cyclic Votammetric data for Cu(II)-A9Y3PPA complex	319
4.8	Cyclic Votammetric data for Cu(II)-A9Y3MPA complex	322