LIST OF FIGURES

Figure	Title	Page
No.		No.
	PART I SYNTHESIS AND CHARACTERIZATION	
1.1	Structure of Schiff base A9Y3APA	33
1.2	Structures of metal complexes of Schiff base A9Y3APA	38
1.3	¹ H NMR spectrum of Schiff base A9Y3APA	39
1.4	¹³ C NMR spectrum of Schiff base A9Y3APA	39
1.5	Mass spectrum of Schiff base A9Y3APA	39
1.6	Structure of Schiff base A9Y5GPA	44
1.7	Structures of the metal complexes of Schiff base A9Y5GPA	48
1.8	¹ H NMR spectrum of Schiff base A9Y5GPA	49
1.9	¹³ C NMR spectrum of Schiff base A9Y5GPA	49
1.10	Mass spectrum of Schiff base A9Y5GPA	49
1.11	Structure of Schiff base A9Y3IMPA	55
1.12	Structures of metal complexes of Schiff base A9Y3IMPA	58
1.13	¹ H NMR spectrum of Schiff base A9Y3IMPA	59
1.14	¹³ C NMR spectrum of Schiff base A9Y3IMPA	59
1.15	Mass spectrum of Schiff base A9Y3IMPA	59
1.16	Structure of Schiff base A9Y3INPA	64
1.17	Structures of metal complexes of Schiff base A9Y3INPA	69
1.18	¹ H NMR spectrum of Schiff base A9Y3INPA	70
1.19	¹³ C NMR spectrum of Schiff base A9Y3INPA	70
1.20	Mass spectrum of Schiff base A9Y3INPA	70
1.21	Structure of Schiff base A9Y3PPA	75
1.22	Structures of metal complexes of Schiff base A9Y3PPA	78
1.23	¹ H NMR spectrum of Schiff base A9Y3PPA	79
1.24	¹³ C NMR spectrum of Schiff base A9Y3PPA	79
1.25	Mass spectrum of Schiff base A9Y3PPA	79
1.26	Structure of Schiff base A9Y3MPA	84
1.27	Structures of metal complexes of Schiff base A9Y3MPA	88
1.28	¹ H NMR spectrum of Schiff base A9Y3MPA	89
1.29	¹³ C NMR spectrum of Schiff base A9Y3MPA	89

1.30	Mass spectrum of Schiff base A9Y3MPA	89
	PART II CORROSION INHIBITION STUDIES	
2.1	Nyquist plot with impedance vector	134
2.2	Simple equivalent circuits with one time constant	135
2.3	Randles cell schematic Diagram	138
2.4	Nyquist plot for a Randles cell	138
2.5	Bode plot for a Randles cell	139
2.6	Tafel plot	142
2.7	Linear Polarization plot	144
2.8	Representation of instrumental set up for electrochemical studies	145
2.9	Corrosion rates of CS in 1M HCl with and without the amino acids	148
2.10	Percentage inhibition efficiencies of amino acids in 1M HCl medium	150
2.11	Langmuir adsorption isotherm for adsorption of ALA on CS surface in 1M HCl	151
2.12	Langmuir adsorption isotherm for adsorption of ARG on CS surface in 1M HCl	151
2.13	Langmuir adsorption isotherm for adsorption of HIS on CS surface in 1M HCl	151
2.14	Langmuir adsorption isotherm for adsorption of TRP on CS surface in 1M HCl	151
2.15	Langmuir adsorption isotherm for adsorption of PHE on CS surface in 1M HCl	151
2.16	Langmuir adsorption isotherm for adsorption of CYS on CS surface in 1M HCl	151
2.17	Corrosion rates of CS in $0.5M$ H ₂ SO ₄ with and without the amino acids	154
2.18	Percentage inhibition efficiencies of amino acids in $0.5M$ H ₂ SO ₄ medium	155
2.19	Freundlich adsorption isotherm for adsorption of ALA on CS surface in $0.5M H_2SO_4$	156
2.20	Langmuir adsorption isotherm for adsorption of ARG on CS surface in 0.5M H ₂ SO ₄	156
2.21	Langmuir adsorption isotherm for adsorption of HIS on CS surface in $0.5M$ H ₂ SO ₄	156
2.22	Langmuir adsorption isotherm for adsorption of TRP on CS	156
2.23	Freundlich adsorption isotherm for adsorption of PHE on CS	157
2,20	surface in 0.5M H ₂ SO ₄	207
2.24	surface in $0.5M H_2SO_4$	157
2.25	Molecular structures of amino acids	160

2.26	Schematic presentation of the mode of adsorption of amino acids over the metal surface	161
2.27	Comparative study on corrosion inhibition efficiency of amino acids in 1M HCl and 0.5M H ₂ SO ₄	161
2.28	Corrosion rate of CS in 1M HCl with and without Schiff base at 30° C for 24 h	165
2.29	Comparison of inhibition efficiency of Schiff bases in 1M HCl medium	167
2.30	Nyquist plots for CS in A9Y3APA-1M HCl solutions	168
2.31	Bode plots for CS in A9Y3APA-1M HCl solutions	168
2.32	Nyquist plots for CS in A9Y5GPA-1M HCl solutions	168
2.33	Bode plots for CS in A9Y5GPA-1M HCl solutions	168
2.34	Nyquist plots for CS in A9Y3IMPA-1M HCl solutions	168
2.35	Bode plots for CS in A9Y3IMPA-1M HCl solutions	168
2.36	Nyquist plots for CS in A9Y3INPA-1M HCl solutions	169
2.37	Bode plots for CS in A9Y3INPA-1M HCl solutions	169
2.38	Nyquist plots for CS in A9Y3PPA-1M HCl solutions	169
2.39	Bode plots for CS in A9Y3PPA-1M HCl solutions	169
2.40	Nyquist plots for CS in A9Y3MPA-1M HCl solutions	169
2.41	Bode plots for CS in A9Y3MPA-1M HCl solutions	169
2.42	Tafel plots for CS in A9Y3APA-1M HCl solutions	173
2.43	Linear polarization plots for CS in A9Y3APA-1M HCl solutions	173
2.44	Tafel plots for CS in A9Y5GPA-1M HCl solutions	173
2.45	Linear polarization plots for CS in A9Y5GPA-1M HCl solutions	173
2.46	Tafel plots for CS in A9Y3IMPA-1M HCl solutions	173
2.47	Linear polarization plots for CS in A9Y3IMPA- 1M HCl solutions	173
2.48	Tafel plots for CS in A9Y3INPA-1M HCl solutions	174
2.49	Linear polarization plots for CS in A9Y3INPA-1M HCl solutions	174
2.50	Tafel plots for CS in A9Y3PPA-1M HCl solutions	174
2.51	Linear polarization plots for CS in A9Y3PPA-1M HCl solutions	174
2.52	Tafel plots for CS in A9Y3MPA-1M HCl solutions	174
2.53	Linear polarization plots for CS in A9Y3MPA-1M HCl solutions	174

2.54	Comparison of inhibition efficiency of Schiff bases (1mM)	177
2.55	Arrhenius plots for A9Y3APA	181
2.56	Arrhenius plots for A9Y5GPA	181
2.57	Arrhenius plots for A9Y3IMPA	181
2.58	Arrhenius plots for A9Y3INPA	181
2.59	Arrhenius plots for A9Y3PPA	181
2.60	Arrhenius plots for A9Y3MPA	181
2.61	Plots of log (K/T) Vs 1000/T for A9Y3APA	182
2.62	Plots of log (K/T) Vs 1000/T for A9Y5GPA	182
2.63	Plots of log (K/T) Vs 1000/T for A9Y3IMPA	182
2.64	Plots of log (K/T) Vs 1000/T for A9Y3INPA	182
2.65	Plots of log (K/T) Vs 1000/T for A9Y3PPA	182
2.66	Plots of log (K/T) Vs 1000/T for A9Y3MPA	182
2.67	Freundlich adsorption isotherm for A9Y3APA in 1M HCl	185
2.68	Langmuir adsorption isotherm for A9Y5GPA in 1M HCl	185
2.69	Langmuir adsorption isotherm for A9Y3IMPA in 1M HCl	185
2.70	Langmuir adsorption isotherm for A9Y3INPA in 1M HCl	185
2.71	Langmuir adsorption isotherm for A9Y3PPA in 1M HCl	186
2.72	Langmuir adsorption isotherm for A9Y3MPA in 1M HCl	186
2.73	Scanning Electron Micrographs of carbon steel samples: A) polished fresh specimens B) immersed in 1M HCl solution for 24 h C) immersed in 1M HCl solution with 1mM A9YMPA for 24 h	187
2.74	Comparison of inhibition efficiency of ALA, A9O and A9Y3APA in 1M HCl	188
2.75	Comparison of inhibition efficiency of ARG, A9O and A9Y5GPA in 1M HCl	188
2.76	Comparison of inhibition efficiency of HIS, A9O and A9Y3IMPA in 1M HCl	188
2.77	Comparison of inhibition efficiency of TRY, A9O and A9Y3INPA in 1M HCl	188
2.78	Comparison of inhibition efficiency of PAL, A9O and A9Y3PPA in 1M HCl	189
2.79	Comparison of inhibition efficiency of CYS, A9O and A9Y3MPA in 1M HCl	189
2.80	Schematic representation of mechanism of inhibition	190

2.81	Corrosion rate of CS in 0.5M H_2SO_4 with and without Schiff	193
• • •	Comparison of inhibition efficiency of Schiff bases in 0.5M	104
2.82	H_2SO_4 medium	194
2.83	Comparison of corrosion rate of CS in the presence of Schiff	196
	base (1.0mM) in 0.5M H_2SO_4 and 0.5M H_2SO_4 +KI Comparison of inhibition efficiency of Schiff base (1.0mM)	
2.84	in $0.5M H_2SO_4$ and $0.5M H_2SO_4$ +KI	196
2.85	Variation of synergism parameters with concentration of	198
2.86	Schiff base Nyquist plots for A9V3APA-0 5M H ₂ SO ₄ solutions	100
2.00	Rode plate for A0V3ADA 0.5M H SO solutions	199
2.07	Bode plots for A913APA-0.3M H_2SO_4 solutions	199
2.88	Nyquist plots (Synergistic) for A9Y 3APA	199
2.89	Bode plots (Synergistic) for A9Y3APA	199
2.90	Nyquist plots for A9Y5GPA-0.5M H ₂ SO ₄ solutions	199
2.91	Bode plots for A9Y5GPA-0.5M H ₂ SO ₄ solutions	199
2.92	Nyquist plot (synergistic) for A9Y5GPA	200
2.93	Bode plot (synergistic) for A9Y5GPA	200
2.94	Nyquist plots for A9Y3INPA-0.5M H ₂ SO ₄ solutions	200
2.95	Bode plots for A9Y3INPA-0.5M H ₂ SO ₄ solutions	200
2.96	Nyquist plots (synergistic) for A9Y3INPA	200
2.97	Bode plot (synergistic) for A9Y3INPA	200
2.98	Nyquist plots for A9Y3PPA-0.5M H ₂ SO ₄ solutions	200
2.99	Bode plots for A9Y3PPA-0.5M H ₂ SO ₄ solutions	200
2.100	Nyquist plots (synergistic) for A9Y3PPA	201
2.101	Bode plots (synergistic) for A9Y3PPA	201
2.102	Nyquist plots for A9Y3IMPA-0.5M H ₂ SO ₄ solutions	201
2.103	Bode plots for A9Y3IMPA-0.5M H ₂ SO ₄ solutions	201
2.104	Nyquist plots for A9Y3MPA-0.5M H ₂ SO ₄ solutions	201
2.105	Bode plots for A9Y3MPA-0.5M H ₂ SO ₄ solutions	201
2.106	Tafel plots for A9Y3APA-0.5M H ₂ SO ₄ solutions	205
2.107	Linear polarization plots for A9Y3APA-0.5M H_2SO_4 solutions	205
2.108	Tafel plots (Synergistic Effect) for A9Y3APA	205
2.109	Linear polarization plots (Synergistic Effect) for A9Y3APA	205
2.110	Tafel plots for A9Y5GPA-0.5M H ₂ SO ₄ solutions	205

2.111	Linear polarization plots for A9Y5GPA-0.5M H ₂ SO ₄ solutions	205
2.112	Tafel plots (Synergistic Effect) for A9Y5GPA	205
2.113	Linear polarization plots (Synergistic Effect) for A9Y5GPA	205
2.114	Tafel plots for A9Y3INPA-0.5M H ₂ SO ₄ solutions	206
2.115	Linear polarization plots for A9Y3INPA-0.5M H_2SO_4 solutions	206
2.116	Tafel plots (Synergistic Effect) for A9Y3INPA	206
2.117	Linear polarization plots (Synergistic Effect) for A9Y3INPA	206
2.118	Tafel plots for A9Y3PPA-0.5M H ₂ SO ₄ solutions	206
2.119	Linear polarization plots for A9Y3PPA-0.5M H_2SO_4 solutions	206
2.120	Tafel plots (Synergistic Effect) for A9Y3PPA	206
2.121	Linear polarization plots (Synergistic Effect) for A9Y3PPA	206
2.122	Tafel plots for A9Y3IMPA-0.5M H ₂ SO ₄ solutions	207
2.123	Linear polarization plots for A9Y3IMPA-0.5M H ₂ SO ₄ solutions	207
2.124	Tafel plots for A9Y3MPA-0.5M H ₂ SO ₄ solutions	207
2.125	Linear polarization plots for A9Y3MPA-0.5M H_2SO_4 solutions	207
2.126	Freundlich adsorption isotherm for A9Y3APA in 0.5M H_2SO_4	210
2.127	Langmuir adsorption isotherm A9Y3APA + KI	210
2.128	Freundlich adsorption isotherm for A9Y5GPA in 0.5M H_2SO_4	210
2.129	Langmuir adsorption isotherm for A9Y5GPA + KI	210
2.130	Langmuir adsorption isotherm for A9Y3INPA in 0.5M H_2SO_4	210
2.131	Langmuir adsorption isotherm for A9Y3INPA+KI	210
2.132	Freundlich adsorption isotherm for A9Y3PPA in 0.5M H_2SO_4	211
2.133	Langmiur adsorption isotherm for A9Y3PPA + KI	211
2.134	Langmiur adsorption isotherm for A9Y3IMPA in 0.5M $\rm H_2SO_4$	211
2.135	Langmiur adsorption isotherm for A9Y3MPA in 0.5M H_2SO_4	211
2.136	Scanning Electron Micrographs of carbon steel samples: A) Polished fresh specimens B) Immersed in 0.5M H ₂ SO ₄ solution C) Immersed in 0.5M H ₂ SO ₄ solution with 1mM	213

	A9Y5GPA D) Immersed in 0.5M H ₂ SO ₄ solution with 1mM	
	A9Y5GPA+ 1ml KI	
2.137	Schematic representation of modes of adsorption of the inhibitor A9Y3APA on CS in $0.5 \text{ M H}_2\text{SO}_4$	214
2.138	Comparison of inhibition efficiency of 1.0mM concentration of Schiff base in 1M HCl and $0.5M H_2SO_4$ medium at $30^{0}C$ for 24 h.	215
	PART III ANTIMICROBIAL STUDIES	239
3.1	Micrographs of bacteria and fungus	254
3.2	Inoculation of MHA plate	254
3.3	Placement of paper discs	255
3.4	Measurement of zones of inhibition	267
3.5	Antibacterial activity of Cu(II)-A9Y3APA at 100µgdisc ⁻¹ against <i>S. aureus</i>	267
3.6	Antibacterial activity of Cu(II)-A9Y5GPA at 100µgdisc ⁻¹ against <i>S. aureus</i>	267
3.7	Antibacterial activity of Cu(II)-A9Y3INPA at 100µgdisc ⁻¹ against <i>S. aureus</i>	267
3.8	Antibacterial activity of Cu(II)-A9Y3MPA at 100µgdisc ⁻¹ against <i>S. aureus</i>	267
3.9	Antibacterial activity of streptomycin at 100µgdisc ⁻¹ against <i>S. aureus</i>	267
	PART IV CYCLIC VOLTAMMETRIC STUDIES	
4.1	Cyclic Voltammogram with scan initiated in negative direction	293
4.2	Schematic diagram for experimental set up for Cyclic Voltammetric studies	295
4.3	Plot of typical Cyclic Voltammogram generated by Ivium soft	296
4.4	Cyclic Voltammogram of A9Y3APA at a scan rate of 0.1 V/s	298
4.5	Cyclic Voltammogram of A9Y3APA at scan rates 0.04 - 0.1 V/s	298
4.6	Mechanism of redox process at azomethine moiety of A9Y3APA	299
4.7	Plot of peak current against square root of scan rate of A9Y3APA	300
4.8	Cyclic Voltammogram of Schiff base A9Y3APA with multiple scan cycles	300
4.9	Cyclic Voltammogram of A9Y3APA and Zn(II)-A9Y3APA complex at a scan rate of 0.1 V/s	301

4.10	Mechanism for the redox process of Zn(II)-A9Y3APA	301
4.11	Cyclic Voltammogram of A9Y5GPA at a scan rate of 0.1 V/s	302
4.12	Cyclic Voltammogram of A9Y5GPA at scan rates 0.04 - 0.1 V/s	302
4.13	Mechanism of redox process at azomethine moiety of A9Y5GPA	303
4.14	Plot of peak current against square root of scan rate of A9Y5GPA	304
4.15	Cyclic Voltammogram of Schiff base A9Y5GPA with multiple scan cycles	305
4.16	Cyclic Voltammogram of A9Y5GPA and Cu(II) complex at a scan rate of 0.1 V/s	306
4.17	Cyclic Voltammogram of Cu(II)-A9Y5GPA complex at scan rates 0.04 - 0.1 V/s	306
4.18	Plot of peak current against square root of scan rate of Cu(II)-A9Y5GPA complex	306
4.19	Cyclic Voltammogram of Cu(II)-A9Y5GPA complex with multiple scan cycles	307
4.20	Cyclic Voltammogram of A9Y3IMPA at a scan rate of 0.1 V/s	307
4.21	Cyclic Voltammogram of A9Y3IMPA at scan rates 0.04 - 0.1 V/s	307
4.22	Mechanism of redox process at azomethine moiety of A9Y3IMPA	309
4.23	Plot of peak current against square root of scan rate for the redox couple A/E of A9Y3IMPA	310
4.24	Plot of peak current against square root of scan rate for the redox couple B/F of A9Y3IMPA	310
4.25	Plot of peak current against square root of scan rate for the redox couple C/D of A9Y3IMPA	310
4.26	Cyclic Voltammogram of Schiff base A9Y3IMPA with multiple scan cycles	311
4.27	Cyclic Voltammogram of A9Y3INPA at a scan rate of 0.1 V/s	312
4.28	Cyclic Voltammogram of A9Y3INPA at scan rates 0.04 - 0.1 V/s	312
4.29	Plot of peak current against square root of scan rate for the peaks A and D of A9Y3INPA	313
4.30	Plot of peak current against square root of scan rate for the redox couple B/C of A9Y3INPA	314
4.31	Cyclic Voltammogram of Schiff base A9Y3INPA with	314

	multiple scan cycles	
4.32	Cyclic Voltammogram of A9Y3PPA at a scan rate of 0.04 V/s	315
4.33	Cyclic Voltammogram of A9Y3PPA at scan rates 0.04 - 0.1 V/s	315
4.34	Plot of peak current against square root of scan rate for the redox couple A/F of A9Y3PPA	317
4.35	Plot of peak current against square root of scan rate for the redox couple B/E of A9Y3PPA	317
4.36	Plot of peak current against square root of scan rate for the redox couple C/D of A9Y3PPA	317
4.37	Cyclic Voltammogram of Schiff base A9Y3PPA with multiple scan cycles	318
4.38	Cyclic Voltammogram A9Y3PPA and Cu complex at a scan rate of 0.1 V/s	319
4.39	Cyclic Voltammogram of Cu(II)-A9Y3PPA complex at scan rates 0.04 - 0.1 V/s	319
4.40	Plot of peak current against square root of scan rate for Cu(II) -A9Y3PPA complex	319
4.41	Cyclic Voltammogram of A9Y3PPA-Cu(II) complex with multiple scan cycles	320
4.42	Cyclic Voltammogram of A9Y3MPA at a scan rate of 0.1 V/s	321
4.43	Cyclic Voltammogram of A9Y3MPA at scan rates 0.02 - 0.1 V/s	321
4.44	Mechanism of oxidation process at azomethine moiety of A9Y3PPA	321
4.45	Cyclic Voltammogram of Cu(II)-A9Y3MPA complex at a scan rate of 0.02 V/s	322
4.46	Cyclic Voltammogram of Cu(II)-A9Y3MPA at scan rates 0.02-0.1 V/s	322
4.47	Plot of peak current against square root of scan rate for the redox couple A/D of Cu(II)-A9Y3MPA	323
4.48	Plot of peak current against square root of scan rate for the redox couple C/D of Cu(II)-A9Y3MPA	323
4.49	Mechanism for the redox process of Cu(II)-A9Y3MPA complex	324