GREEN SYNTHESIS OF 1,2,3-TRIAZOLES AND APPLICATION OF THEIR PALLADIUM *N*-HETEROCYCLIC CARBENE COMPLEXES AS CATALYST AND ANTICANCER AGENTS

Thesis submitted to University of Calicut in partial fulfillment of the requirements for the award of the Degree of

Doctor of Philosophy in

Chemistry

By

DRISHYA SASIDHARAN

Under the guidance of

Dr. PAULSON MATHEW

RESEARCH AND POSTGRADUATE DEPARTMENT OF CHEMISTRY

ST.THOMAS' COLLEGE (AUTONOMOUS)

(UNIVERSITY OF CALICUT)

THRISSUR, KERALA-680001

Phone: 0487 2338883

(Affiliated to University of Calicut and Nationally accredited at 'A' level by NAAC)

Dr. Paulson Mathew, M.Phil, MBA, Ph.D Associate Professor

25-10-2019

CERTIFICATE

I hereby certify that, this is the revised version of the thesis entitled "Green synthesis of 1,2,3-triazoles and application of their Palladium N-heterocyclic carbene complexes as catalyst and anticancer agents" submitted by Ms. Drishya Sasidharan guidance after incorporating under my the necessary corrections/suggestions made by the adjudicators.

> **Dr. Paulson Mathew** (Supervising Teacher)

.....

Phone: 0487 2338883

(Affiliated to University of Calicut and Nationally accredited at 'A' level by NAAC)

Dr. Paulson Mathew, M.Phil, MBA, Ph.D Associate Professor

18-02-2019

CERTIFICATE

This is to certify that the thesis entitled "Green synthesis of 1,2,3-triazoles and application of their Palladium N-heterocyclic carbene complexes as catalyst and anticancer agents" is an authentic record of research work carried out by Ms. Drishya Sasidharan under my supervision in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry of University of Calicut and further that no part thereof has been presented before for any other degree

Dr. Paulson Mathew (Supervising Teacher)

ACKNOWLEDGEMENT

First and foremost, I thank Almighty God who is with me throughout my life.

I am extremely happy to acknowledge my sincere gratitude to my supervising guide *Dr. Paulson Mathew*, Associate Professor, Dept. of Chemistry, St. Thomas' College for teaching, training and inspiring me to excel. His expertise, skilled guidance, patience and whole-hearted support have helped me tremendously throughout my research. I express my heartfelt thanks for his enlightened discussions on both theoretical and experimental aspects of the research work. I would not have reached to this point without his generous assistance. I have been the fortunate beneficiary of extensive supervision by such as experienced and talented person his innovative ideas, inevitable suggestions and timely advice have made this work worth its luster. I take this opportunity to extend my overwhelming thanks to my guide for his creative and constructive feedback.

I am highly obliged to *Dr. Ignatius Antony*, Principal, St.Thomas' College, former Principal *Dr. P.O. Jenson* and the management for permitting me to carry out my research work in this esteemed institution.

I am grateful to *Dr. Joby Thomas. K*, Head of the department of Chemistry, St.Thomas' College for his scholarly comments and constant encouragement which have been of immense help to me in maintaining the excellence of my work. I express my genuine gratitude for his care and support.

I convey my sincere thanks to Dr. K.L Joy, Dr. C.L. Joshy, Dr. Sunil Jose. T, Dr. Jency Thomas, Dr. Jinish Antony. M, Ms. Reeja Johnson, Dr. Joseph Joly V. L, Mr. Aji. C. V and Sr. Jisha Joseph, professors of Dept of Chemistry for the help and support extended to me during my work.

A special word of thanks to all my friends especially *Research scholars* who were always willing to help and give their best suggestions throughout the study.

I also express my sincere gratitude to *STIC-CUSAT*, *IIRBS-M.G UNIVERSITY*, *SAIF-IIT BOMBAY*, *XRD UNIT-ST.THOMAS' COLLEGE*, *THRISSUR* for providing analytical data. I express my sincere gratitude to *Dr. Ramadasan Kuttan, Research Director, Amala Cancer Research Centre* for providing facilities to conduct cytotoxicity studies and *Dr. C.R Meera, Assistant professor* and *Head, Department of Microbiology, St. Marys' College, Thrissur* for conducting antibacterial and antifungal studies.

I sincerely acknowledge the help rendered by all the *Non-teaching staffs* of Department of Chemistry, St. Thomas' College

Finally, I am forever indebted to my *Family* for their understanding, support and encouragement when it was most required.

I consider it my privilege to acknowledge and shall remain indebted to each and every one by their rich and varied contribution has enabled my study in every little way, however small or big contribution may be.

With heartfelt gratitude

Drishya Sasidharan

DECLARATION

I hereby declare that the thesis entitled "Green synthesis of 1,2,3-triazoles and application of their palladium *N*- heterocyclic carbene complexes as catalyst and anticancer agents" is the outcome of original research work undertaken and carried out by me at St. Thomas College, Thrissur, Kerala, under the guidance of

Dr. Paulson Mathew, Associate Professor, St. Thomas' College. I also declare that the material presented in this thesis is original and does not form the basis for the award of any other degree, diploma or other similar titles of any other university.

Drishya Sasidharan

CHAPTER NUMBER	CONTENT	PAGE NUMBER
	Acknowledgement	i-ii
	Table of content	iii-vi
	List of Tables	vii
	List of Figures	viii-ix
1	Introduction	1-4
2	Literature review	5-24
	References	25-31
3	Synthesis of 1,4-disubstituted 1,2,3- triazoles using Cu(I) stabilized on N,N'- methylene bis-acrylamide crosslinked polyvinyl pyrrolidone	
3.1	Introduction	32
3.2	Review of Literature	33-43
3.3.1	Reagents and Materials	44
3.3.2	Instruments	44
3.4	Result and Discussion	45
3.4.1	Infrared spectral studies of copolymer and CuPVPNNMBA	45-46
3.4.2	Morphological and elemental composition studies	47-48
3.4.3	Powder X-ray diffraction	49
3.4.4	X-ray photoelectron spectroscopy	50-51
3.4.5	Thermogravimetric analysis	52
3.5	Synthesis of 1,4-disubstitued 1,2,3- triazole using CuPVPNNMBA as heterogeneous catalyst	53-59

TABLE OF CONTENT

CHAPTER NUMBER	CONTENT	PAGE NUMBER
3.6	Characterization of 1,4-disubstituted 1,2,3- triazole	60-63
3.7	Spectral data of 1,4-disubstituted 1,2,3- triazole	64-67
3.8	Experimental details	68-69
3.9	Conclusion	69
	References	70-77
4	Plant extract mediated synthesis of copper oxide and silver nanoparticles : Application in catalysis and biological studies	
4.1	Introduction	78
4.2	Synthesis and application of nanoparticles: A Review	79-90
4.3.1	Reagents and Materials	91
4.3.2	Instruments	91
4.4	Results and Discussion	92
4.4.1	Preparation of plant extract	93
4.4.2	Visual inspection	93
4.4.3	UV-Visible spectroscopy analysis	94
4.4.4	Infrared Spectral analysis	94-95
4.4.5	Powder X-ray diffraction analysis	95-96
4.4.6	FEG-SEM and EDX analysis	97-98
4.4.7	HR-TEM analysis	98-99
4.4.8	Catalytic activity of the synthesized copper oxide(CuO) nanopartilce in CuAAC reaction	100-104

CHAPTER NUMBER	CONTENT	PAGE NUMBER
4.4.9	<i>Characterization of 1,4-disubstituted 1,2,3-triazole</i>	105-108
4.5	<i>Spectral data of 1,4-disubstituted 1,2,3-triazoles</i>	109-112
4.6	Sunlight induced synthesis of silver nanoparticles	
4.6.1	Visual inspection of Silver nanoparticle	113
4.6.2	UV-Visible spectral studies of silver nanoparticles	113-114
4.6.3	Infrared spectral analysis	114
4.6.4	Powder X-ray Diffraction analysis	115
4.6.5	EDS analysis	116
4.6.6	HR-TEM analysis	116-117
4.6.7	Catalytic activity of the synthesized silver nanoparticle in Azide-Alkyne cycloaddition reaction	118
4.6.8	Antibacterial studies of silver nanoparticle	119-120
4.7	Experimental details	121-122
4.8	Conclusion	122
	References	123-135
5	Synthesis of 1,2,3-triazolyildene palladium complexes: Application as catalyst for Suzuki-Miyaura coupling reaction and Cytotoxic studies	
5.1	Introduction	136-139
5.2	Review of Literature	140-154
5.3.1	Reagents and Materials	155

CHAPTER NUMBER	CONTENT	PAGE NUMBER
5.3.2	Instruments	155
5.4	Results and Discussion	
5.4.1	Synthesis of complexes	156-174
5.4.2	Catalytic study of palladium N- heterocyclic carbene complex	175-178
5.4.3	<i>Cytotoxicity studies of palladium carbene complexes</i>	179-181
5.5	Spectral data of compounds	182-185
5.6	Experimental details	186-192
5.7	Conclusion	192
	References	193-200
6	Summary & Conclusions	201-203

One child, one teacher, one pen and one book can change the world Malala Yousafzai

To My Husband

List of Figures	List	of Figures
-----------------	------	------------

Figure No	Title	Page No
	Chapter 3	
1	FTIR of PVPNNMBA and CuPVPNNMBA	46
2	Schematic representation of incorporation of metal ion in	47
2	the polymer matrix	47
3	SEM images of PVPNNMBA and CuPVPNNMBA	47
4	EDX Spectra of CuPVPNNMBA	48
5	XRD pattern of CuPVPNNMBA	49
6.1	Cu2p XPS core level spectra of CuPVPNNMBA	50
6.2	O1s XPS spectra of CuPVPNNMBA	51
6.3	C1s XPS spectra of CuPVPNNMBA	51
7	TG and DTA curve of CuPVPNNMBA	52
8	Reusability of the catalyst	58
9	SEM images of CuPVPNNMBA and reused catalyst	58-59
10	EDS spectrum of reused catalyst	59
11	FTIR spectra of 1-benzyl-4-phenyl-1H-1,2,3-triazole	60
12	¹ H NMR spectra of 1-benzyl-4-phenyl-1H-1,2,3-triazole	61
13	¹³ C NMR spectra of 1-benzyl-4-phenyl-1H-1,2,3-triazole	62
14	Mass spectra of 1-benzyl-4-phenyl-1H-1,2,3-triazole	63
	Chapter 4	
	Photographs of fruit extract, copper acetate solution and	
1	reaction mixture CuO nanoparticle obtained after	93
	microwave irradiation	
2	UV-Visible spectra of CuO nanoparticles	94
3	FTIR spectra of CuO nanoparticle	95
4	XRD pattern of synthesized CuO nanoparticle - Myristica	0(
4	fragrans fruit extract	96
5	FEG SEM images of CuO nanoparticle synthesized using	97
5	Myristica fragrans fruit extract	97
6	Particle size distribution histogram of CuO nanoparticles	97
7	EDS spectra of CuO nanoparticle - Myristica fragrans	98
o	HR-TEM images of CuO NPs at different magnification	00
8	and SAED pattern	98
9	Reusability of CuONPs in CuAAC reaction	104
10	FTIR spectra of 1-(2,4-dichlorobenzyl)-4-phenyl-1H-	105
10	1,2,3-triazole	105
11	¹ H NMR spectra of 1-(2,4-dichlorobenzyl)-4-phenyl-1H-	106
11	1,2,3-triazole	100
12	¹³ C NMR spectra of 1-(2,4-dichlorobenzyl)-4-phenyl-1H-	107
12	1,2,3-triazole	107
13	Mass spectra of 1-(2,4-dichlorobenzyl)-4-phenyl-1H-	108
13	1,2,3-triazole	100

14	Photographs of fruit extract, silver nitrate solution and	113
	reaction mixture containing Ag NPs	
15	UV-Visible spectrum of Ag NPs	114
16	FTIR spectra of AgNPs-Myristica fragrans	114
17	XRD pattern of Ag NPs	115
18	EDS spectrum of Silver nanoparticles	116
10	HR-TEM images of silver nanoparticles at different	117
19	magnification and SAED pattern	117
20	Antimicrobial activity of Ag-NPsMyristica fragrans	100
20	against various human pathogen microorganism	120
	Chapter 5	
7.1	¹ H NMR of compound 95	157
7.2	¹³ C NMR of compound 95	158
8.1	¹ H NMR of compound 96	160
8.2	¹³ C NMR of compound 96	160
9.1	¹ H NMR of compound 97	161
9.2	¹³ C NMR of compound 97	162
10.1	¹ H NMR of compound 98	164
10.2	¹³ C NMR of compound 98	165
11.1	¹ H NMR of compound 100	166
11.2	¹³ C NMR of compound 100	167
12.1	¹ H NMR of compound 99	168
12.2	¹³ C NMR of compound 99	169
13	ORTEP diagram of the palladium complex 99	170
14.1	¹ H NMR of compound 102d	173
14.2	¹³ C NMR of compound 102d	174
15	Cytotoxicity activities of complexes 99,100, 102d-f	181
16.1	¹ H NMR of compound biphenyl	182
16.2	¹³ C NMR of compound biphenyl	183

List of Tables

Table No.	Title	Page No	
	Chapter 3		
1	FTIR absorption bands of PVPNNMBA and CuPVPNNMBA	46	
2	Optimization of reaction conditions for the reaction of benzyl chloride, sodium azide and pheylacetylene	53-54	
3	Synthesis of 1,4-disubstituted 1,2,3-triazole with different halides and alkynes	55-56	
4	Reusability of CuPVPNNMBA	57	
	Chapter 4		
1	Optimization of the CuAAC reaction in terms of catalyst loading, solvent, temperature and time using benzyl chloride, sodium azide, phenyl acetylene and CuO NPs	101	
2	Synthesis of 1,4-disubstituted 1,2,3-triazole using alkyl/aryl halides and alkyne	102-103	
3	Reusability of CuO nanoparticle	104	
4	Optimization of solvent system for AgAAC reaction	118	
5	Zone of inhibition of silver nanoparticle against bacterial strains	119	
Chapter 5			
1	Crystallographic data of complex 99	170	
2	N-Pd-N complexes	172	
3	Optimization of base used for the C_{tzl} -Pd- N_{tzl} complex 99 catalyzed Suzuki coupling of bromobenzene with phenyl boronic acid	176	
4	Suzuki-Miyaura coupling of reaction of aryl halides and boronic acids at room temperature	176-177	
5	Cytotoxcity results of complexes 99, 100	180	
6	Cytotoxcity results of complexes 102 d-f	180	