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PREFACE 

Schiff bases are a class of compounds which have profound use as ligands as well 

as in the form of complexes. The versatile use of Schiff bases is due to its ability to 

coordinate to the metal ions via the azomethine nitrogen. Multidentate Schiff base 

ligands and their coordination with metals attract much attention because of their 

biological relevance. Heterocyclic Schiff bases have wide application in therapeutic 

fields either as potential drug or diagnostic probes and also in analytical tools. Since the 

polarizability of lone pairs on the sulphur atom is high one can expect an escalated 

chance for the chelation and other related properties. Heterocyclic ligands especially ‘S’ 

containing Schiff bases have wide application in therapeutic fields either as potential 

drug or diagnostic probes and also in analytical tools. Checking the chelating ability of 

the newly synthesized sulphur compounds may lead to open a new series of novel metal 

complexes which may have some pharmacological activity. To ensure the drug ability of 

the newly synthesized organic molecules and their metal chelates, it is decided to 

conduct the molecular docking studies and antimicrobial studies.  

 The presence of heteroatoms in such ligands gives them excellent characteristics 

like corrosion inhibition property. Till now, several review articles have been published 

depicting elaborately the application of P, N and O atoms; but, a thorough literature 

survey revealed that corrosion inhibition studies of organic molecules bearing sulphur 

atoms are scarce. Sulphur containing compounds are greatly preferred for preventing 

metallic dissolution due to the high polarisability of the sulphur atom. So the present 

investigation is intended to realize novel potential sulphur containing Schiff base ligands. 

 During the present course of study seven novel ‘S’ containing Schiff base ligands 

and their transition metal complexes were prepared and characterized. Molecular 



docking studies of these potential ‘S’ containing heterocyclic Schiff bases were 

conducted. Antimicrobial studies on the metal chelates and corrosion inhibition capacity 

of the newly synthesized Schiff bases have been carried out in different acid media. For 

convenience and better understanding, the entire work has been presented in this thesis as 

three parts. 

 In the first part of the thesis, seven novel heterocyclic Schiff bases namely      

(E)-(N-anthracene-9-ylmethylene)-5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine 

(A9CNPTDA), N-(anthracen-9(10H)-ylidene)-5-(4-nitrophenyl)-1,3,4-thiadiazol-2-

amine (ANNPTDA), (E)-5-(4-nitrophenyl)-N-((pyridine-2-yl)methylene)-1,3,4-thiadia 

zol-2-amine (P2CNPTDA), (E)-5-(4-nitrophenyl)-N-(1(pyridine-3-yl)ethylidene)-1,3,4-

thiadiazol-2-amine (3APNPTDA), (E)-5-(4-nitrophenyl)-N-(1(pyridin-2-yl) ethylidene)-

1,3,4-thiadiazol-2-amine (2APNPTDA), N-((1H-indol-3-yl)methylene) thiazol-2-amine 

(I3A2AT) and (13E)-N1,N2-bis((thiophene-2-yl)methylene)cyclohexane-1,2-diamine  

(T2CDACH) were synthesized and characterized by different techniques like CHNS 

analysis and spectral studies such as FTIR, UV-visible, Mass, NMR etc. The chelating 

abilities of these Schiff bases were investigated by synthesizing a number of transition 

metal complexes. Elemental analysis shows that majority of the metal complexes obey 

1:1 stoichiometry between the metal and ligand. Then these complexes were also 

subjected to characterization studies by elemental analysis, magnetic moment 

measurements, molar conductance studies and spectral analysis. 

 This part is divided into five chapters. The first chapter includes details of 

literature survey and the scope of present investigation. Various physicochemical 

methods employed for the elucidation of the structures of the Schiff bases and their metal 

chelates are discussed in chapter 2. Details of synthesis and characterization of two novel 

sulphur containing polynuclear derivatives of  Schiff bases, (E)-(N-anthracene-9-yl 



methylene)-5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (A9CNPTDA) and  N-(anthracen-

9(10H)-ylidene)-5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (ANNPTDA), and their 

transition metal complexes are presented in the chapters 3. Synthesis and characterization 

of thiadiazole based pyridine derivatives of Schiff bases, (E)-5-(4-nitrophenyl)-N-

((pyridine-2-yl)methylene)-1,3,4-thiadiazol-2-amine (P2CNPTDA), (E)-5-(4-nitrophenyl) 

-N-(1(pyridine-3-yl)ethylidene)-1,3,4-thiadiazol-2-amine (3APNPTDA), (E)-5-(4-nitro 

phenyl)-N-(1(pyridin-2-yl)ethylidene)-1,3,4-thiadiazol-2-amine (2APNPTDA) are 

explained in chapter 4. Preparation and physicochemical properties on Schiff base 

derived from indole-3-carbaldehyde and thiophene 2-carbaldehyde and their transition 

metal chelates are explained in chapter 5.  This part ends with a brief summary and 

references. 

 Second part of thesis mainly focused on the biological investigations. The studies 

were extended to the computational evaluation of the drug ability of the newly 

synthesized ‘S’ containing Schiff bases on the target proteins like SARS-CoV-2 Main 

protease (PDB code: 6lu7) causing COVID-19, HIV-1 protease (PDB code: 1mui) 

causing HIV/AIDS, HER2 protease (PDB code: 3rcd)  responsible for Breast cancer, and 

Human acetylcholine esterase (AChE) (PDB code:1b41) causing Alzheimer’s disease 

and the ligands were ranked on the binding score with these target proteins (Molecular 

docking studies). In vitro antibacterial studies of transition metal chelates of these ‘S’ 

containing Schiff bases were also conducted. The drug-likeness (Bioavailability) of these 

ligands were also to be checked using Lipinski rule of five.  

This part is divided into four chapters. The first chapter in this part (chapter 6) 

includes details of literature survey and the scope of present investigation. The method 

employed for in silico molecular docking studies and in vitro antibacterial studies of these 

novel ligands and its transition metal complexes are discussed in chapter 7. In the 8
th

 



chapter, antibacterial performances of these ‘S’ containing Schiff base ligands and their 

transition metal complexes were explored against five clinically important pathogens 

such as staphylococcus aureus, Bacillus subtilis, Escherichia coli, Proteus vulgaris and 

Klebsiella pneumonia. The results generated of these synthesized Schiff base ligands and 

their transition metal complexes were compared with the antibacterial data obtained for 

standard antibiotics Vancomycin, Erythromycin, Chloramphenicol, Streptomycin, 

Tetracycline, Ampicillin and Gentamicin. 

In the ninth chapter, attention was made to focus on newly synthesized’ S’ 

containing Schiff bases docked into the active binding cavity of the main proteases 

accessed from RCSB Protein Data Bank (PDB codes: 6lu7, 1mui, 3rcd, 1b41) leading to 

diseases like Covid-19, HIV, Breast cancer and Alzheimer’s respectively. The drug 

likeness (Bioavailability) of these ligands were also checked using Lipinski rule of five. 

All the results are briefly summarized at the end of this part followed by references. 

Part III deals with the detailed investigations of the corrosion inhibition capacity 

of these newly synthesized ‘S’ containing Schiff bases on carbon steel in hydrochloric 

acid and sulphuric acid media. The corrosion inhibition studies were carried out with 

conventional gravimetric method and electrochemical methods such as electrochemical 

impedance spectroscopy (EIS), potentiodynamic polarization studies and electrochemical 

noise measurements. Surface morphological analysis and quantum chemical parameters 

were also studied. In the polarization analysis, Tafel extrapolation method and Linear 

polarization method were performed separately. Both Nyquist plot and Bode plot analysis 

were utilized to get much density on the inhibitory action of the novel Schiff bases by 

EIS method. Adsorption isotherms were plotted from the results of gravimetric weight 

loss studies in order to predict the mechanism of corrosion inhibition by the Schiff bases. 

In order to establish the nature of inhibitor adsorption on carbon steel surface, 



thermodynamic parameters like free energy of adsorption and adsorption equilibrium 

constant were determined and interpreted. Weight loss method was followed to compare 

the inhibition efficiencies of Schiff bases and their respective parent amines in acid 

medium. Corrosion studies clearly established that all the studied Schiff bases were 

excellent corrosion inhibitors on carbon steel in hydrochloric acid medium. Generally the 

corrosion inhibition efficiency was relatively less in H2SO4 medium which may be due to 

the aggressive nature of sulphuric acid towards CS corrosion. Surface morphological 

analysis was also conducted to establish the mechanism of corrosion inhibition of these 

inhibitors. Energy difference of HOMO and LUMO, number of electrons transferred, 

electronegativity, chemical hardness, and so forth were evaluated by quantum chemical 

studies.  

This part is comprised of four chapters. Chapter 10 details the different aspects of 

corrosion and corrosion inhibitors. A report of thorough literature survey on corrosion 

inhibition studies and the scope of the present study are also included in this chapter. The 

details of different corrosion monitoring techniques such as Conventional gravimetric 

studies, Electrochemical studies, Quantum chemical studies, Temperature studies, 

Surface morphological studies are discussed in chapter 11. Results and discussion of 

corrosion inhibition investigations of the newly synthesized Schiff bases in different acid 

media, 1M HCl and 0.5M H2SO4 have been reported well in chapter 12 and chapter 13 

respectively. The quantum chemical studies were also included. Carbon Steel specimens 

were employed to investigate corrosion inhibitory power of the synthesized Schiff bases. 

A brief summary of the corrosion studies along with the references are followed 

thereafter. 
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ABSTRACT 

 

 Schiff bases containing heteroatoms and their metal complexes have found 

multidimensional applications in various fields. Researchers had investigated the 

biological importance of heterocyclic derivatives of the Schiff bases and their impressive 

biological activities attributed to the presence of aromatic ring containing heteroatoms 

such as nitrogen, sulphur and oxygen. Since the polarizability of lone pairs on the sulphur 

atom is high one can expect an escalated chance for the chelation and other related 

properties. Here novel potential ‘S’ containing Schiff bases were synthesized and 

characterized. Checking the chelating ability of the newly synthesized sulphur 

compounds lead to open a new series of novel metal complexes which have some 

pharmacological activity. Here evaluated the biological activities of Schiff bases and their 

metal chelates and computational studies ensure the druggability of these newly 

synthesized compounds using Lipinski’s rule. The antimicrobial activity analysis, in 

silico molecular docking studies and evaluation of corrosion inhibition efficiency of these 

potential compounds were explored in this thesis. The entire work is presented in this 

thesis as three parts. 

In the first part, seven novel ‘S’ containing Schiff bases were synthesized and 

characterized using elemental analysis and spectral studies such as FTIR, UV-Vis, NMR 

(
1
H and 

13
C) and Mass spectroscopy. The chelating ability of these Schiff bases were 

proved by synthesizing various transition metal complexes. Elemental (CHNS) analysis, 

FTIR and UV-Vis spectroscopy, magnetic moment measurements, estimation of metal 

content and molar conductance studies were employed for the characterization of the 

complexes. 1:1 stoichiometry exists between metal and ligand in almost all complexes 

except few. 



In the second part antibacterial activity of these novel heterocyclic ligands and 

their transition metal complexes were analysed against bacterial strains such as 

Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Proteus vulgaris and 

Klebsiella pneumonia. Disc diffusion method is employed for the antibacterial screening. 

All the compounds have appreciable growth inhibitory power on comparing with the 

activity of the standard drugs. As a preliminary test Lipinski rule of five was evaluated to 

check the drug ability of the molecule. The studies were extended to the computational 

evaluation of the drug ability of the newly synthesized 'S' containing Schiff bases on the 

target proteins like SARS CoV-2 main protease (PDB code: 6lu7) causing COVID-19, 

HIV-1 protease (PDB code: 1mui) causing HIV/AIDS, HER2 protease (PDB code: 3rcd) 

responsible for Breast cancer and Human acetylcholinesterase (AChE) (PDB code: 1b41) 

causing Alzheimer's disease. 

The corrosion inhibition efficiency of these novel sulphur containing Schiff bases 

on carbon steel in 1M HCl and 0.5M H2SO4 was also evaluated. The corrosion 

monitoring techniques employed for the analysis include weight loss, electrochemical 

impedance spectroscopy (EIS), potentiodynamic polarization studies and electrochemical 

noise measurements. Adsorption and surface morphological studies were also carried out 

to determine the mechanism of adsorption. Thermodynamic parameters of corrosion on 

carbon steel were determined based on temperature studies at varied temperatures 301, 

313, 323 and 333K. Quantum chemical studies followed evaluation and optimization of 

geometries of these inhibitors were carried out using DFT method. 
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