DECLARATION

I hereby declare that the thesis entitled, "Structural, corrosion inhibition and biological investigations of Schiff bases containing sulphur and their metal chelates", submitted to the University of Calicut in partial fulfillment of the requirements for the award of the Degree of Doctor of Philosophy in Chemistry is a bonafide research work done by me under the supervision and guidance of Dr. Joby Thomas. K, Retired Vice Principal & Head, Department of Chemistry, St. Thomas' College (Autonomous), Thrissur, Kerala.

I further declare that this thesis has not previously formed the basis of any degree, diploma or any other similar title.

REEJA JOHNSON

05-08-2021

ACKNOWLEDGEMENT

First of all I thank God Almighty, for His showers of blessing throughout my research to complete the work successfully. I would also like to express my deep and sincere gratitude to my Research Supervisor and my Mentor Dr. Joby Thomas K for giving me the opportunity to do research and providing invaluable guidance throughout this research. I would always cherish this experience in the rest of my life and it was a great privilege and honour to work and study under his guidance.

I recall at this juncture with reverence, my parents Mr. Stanley Johnson M.M (Late), Mrs Rosy Stanley and my sister Mrs. Reji Denny whose selfless sacrificial life, great efforts with pain and tears, unceasing prayers and immense concern, established me make this thesis possible.

The support rendered by the St. Thomas College Team – Rev. Dr. Martin Kolambrath, Principal, Dr. Joy K, L, Dr. Jenson P. O and Dr. Ignatius Antony, former Principals, all the faculty members of the Chemistry Department, especially Dr. Joshy C.L (HoD), Dr. C.V Jose, Dr. Joy Anto, Dr. Babu Joseph and Lab Assistants and Office Staffs has been really high. They served as a lighthouse in my journey towards the completion of this voyage.

I would like to express my sincere gratitude to the support and help rendered by my seniors Dr. Vinod P. Raphael, Dr. Shaju K,S, Dr. Nimmy Kuriakose and Dr. Aby Paul. Special thanks to Dr. Vinod P. Raphael for his constant guidance and support which helped me a lot during the entire research period.

The support and help rendered by my research colleagues Dr. Sini, Dr. Ragi, Dr. Binsi, Vidhya, Ramesh, Dr. Dinoop, Anju, Martin, Savitha, Dr. Sr. Jisha, Raji, Cinu, Memcy, Swathy, Rohini, Dr. Drishya, Aji, Siji, Nithya and Neera, helped me a lot in completing this thesis, they sincerely worked as a unit. Really it was an honour to work with them. A memorable support in the completion of this work came from the former Bursar of St. Thomas College, Thrissur, Rev. Dr. Martin Kolambrath, Right from arranging the infrastructure and in providing a well equipped laboratory were the real turning point in my work which saved a lot of time and money.

The help given by the Biotechnology lab of St. Joseph College, Irinjalakuda was really appreciable. I would like to express my sincere thanks to Naijil George and Kavya for the successful completion of the antimicrobial studies.

I hereby acknowledge the help rendered by the STIC-CUSAT, NIT Calicut and Mr. Vishnu of IISER Trivandrum in analysing the compounds, which were really worthwhile to mention. I would like express huge, warm thanks to Fredy Francis, National Tsing Hua University, Taiwan whose brotherly concern supported me in various stages of my research work.

It is my fortune to grateful express the support of some special friends who are special in my life and shaped me to the present stage

I also thank the staff of CHMK Library of Calicut University for helping me frame a smooth bibliography.

Last but not the least, I sincerely thank the hard work of Mr. M. I. Pauly of Educare, Thrissur who did the DTP work for this project.

I have no valuable words to express my thanks, but my heart is still full of the favours received from every person.

Reeja johnson

Dedicated to

My Parents

I am forever grateful and indebted to them for their parental guidance, patience, caring, and prayers which is the reason for what I have become today.

PREFACE

Schiff bases are a class of compounds which have profound use as ligands as well as in the form of complexes. The versatile use of Schiff bases is due to its ability to coordinate to the metal ions via the azomethine nitrogen. Multidentate Schiff base ligands and their coordination with metals attract much attention because of their biological relevance. Heterocyclic Schiff bases have wide application in therapeutic fields either as potential drug or diagnostic probes and also in analytical tools. Since the polarizability of lone pairs on the sulphur atom is high one can expect an escalated chance for the chelation and other related properties. Heterocyclic ligands especially 'S' containing Schiff bases have wide application in therapeutic fields either as potential drug or diagnostic probes and also in analytical tools. Checking the chelating ability of the newly synthesized sulphur compounds may lead to open a new series of novel metal complexes which may have some pharmacological activity. To ensure the drug ability of the newly synthesized organic molecules and their metal chelates, it is decided to conduct the molecular docking studies and antimicrobial studies.

The presence of heteroatoms in such ligands gives them excellent characteristics like corrosion inhibition property. Till now, several review articles have been published depicting elaborately the application of P, N and O atoms; but, a thorough literature survey revealed that corrosion inhibition studies of organic molecules bearing sulphur atoms are scarce. Sulphur containing compounds are greatly preferred for preventing metallic dissolution due to the high polarisability of the sulphur atom. So the present investigation is intended to realize novel potential sulphur containing Schiff base ligands.

During the present course of study seven novel 'S' containing Schiff base ligands and their transition metal complexes were prepared and characterized. Molecular docking studies of these potential 'S' containing heterocyclic Schiff bases were conducted. Antimicrobial studies on the metal chelates and corrosion inhibition capacity of the newly synthesized Schiff bases have been carried out in different acid media. For convenience and better understanding, the entire work has been presented in this thesis as three parts.

In the first part of the thesis, seven novel heterocyclic Schiff bases namely (E)-(N-anthracene-9-ylmethylene)-5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine

(A9CNPTDA), N-(anthracen-9(10H)-ylidene)-5-(4-nitrophenyl)-1,3,4-thiadiazol-2amine (ANNPTDA), (E)-5-(4-nitrophenyl)-N-((pyridine-2-yl)methylene)-1,3,4-thiadia zol-2-amine (P2CNPTDA), (E)-5-(4-nitrophenyl)-N-(1(pyridine-3-yl)ethylidene)-1,3,4thiadiazol-2-amine (3APNPTDA), (E)-5-(4-nitrophenyl)-N-(1(pyridin-2-yl) ethylidene)-1,3,4-thiadiazol-2-amine (2APNPTDA), N-((1H-indol-3-yl)methylene) thiazol-2-amine (I3A2AT) and (13E)-N1,N2-bis((thiophene-2-yl)methylene)cyclohexane-1,2-diamine (T2CDACH) were synthesized and characterized by different techniques like CHNS analysis and spectral studies such as FTIR, UV-visible, Mass, NMR etc. The chelating abilities of these Schiff bases were investigated by synthesizing a number of transition metal complexes. Elemental analysis shows that majority of the metal complexes obey 1:1 stoichiometry between the metal and ligand. Then these complexes were also subjected to characterization studies by elemental analysis, magnetic moment measurements, molar conductance studies and spectral analysis.

This part is divided into five chapters. The first chapter includes details of literature survey and the scope of present investigation. Various physicochemical methods employed for the elucidation of the structures of the Schiff bases and their metal chelates are discussed in chapter 2. Details of synthesis and characterization of two novel sulphur containing polynuclear derivatives of Schiff bases, (E)-(N-anthracene-9-yl

methylene)-5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (A9CNPTDA) and N-(anthracen-9(10H)-ylidene)-5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (ANNPTDA), and their transition metal complexes are presented in the chapters 3. Synthesis and characterization of thiadiazole based pyridine derivatives of Schiff bases, (E)-5-(4-nitrophenyl)-N-((pyridine-2-yl)methylene)-1,3,4-thiadiazol-2-amine (P2CNPTDA), (E)-5-(4-nitrophenyl) -N-(1(pyridine-3-yl)ethylidene)-1,3,4-thiadiazol-2-amine (3APNPTDA), (E)-5-(4-nitro phenyl)-N-(1(pyridin-2-yl)ethylidene)-1,3,4-thiadiazol-2-amine (2APNPTDA) are explained in chapter 4. Preparation and physicochemical properties on Schiff base derived from indole-3-carbaldehyde and thiophene 2-carbaldehyde and their transition metal chelates are explained in chapter 5. This part ends with a brief summary and references.

Second part of thesis mainly focused on the biological investigations. The studies were extended to the computational evaluation of the drug ability of the newly synthesized 'S' containing Schiff bases on the target proteins like SARS-CoV-2 Main protease (PDB code: **6lu7**) causing COVID-19, HIV-1 protease (PDB code: **1mui**) causing HIV/AIDS, HER2 protease (PDB code: **3rcd**) responsible for Breast cancer, and Human acetylcholine esterase (AChE) (PDB code:**1b41**) causing Alzheimer's disease and the ligands were ranked on the binding score with these target proteins (Molecular docking studies). *In vitro* antibacterial studies of transition metal chelates of these 'S' containing Schiff bases were also conducted. The drug-likeness (Bioavailability) of these ligands were also to be checked using Lipinski rule of five.

This part is divided into four chapters. The first chapter in this part (chapter 6) includes details of literature survey and the scope of present investigation. The method employed for *in silico* molecular docking studies and *in vitro* antibacterial studies of these novel ligands and its transition metal complexes are discussed in chapter 7. In the 8th

chapter, antibacterial performances of these 'S' containing Schiff base ligands and their transition metal complexes were explored against five clinically important pathogens such as *staphylococcus aureus, Bacillus subtilis, Escherichia coli, Proteus vulgaris and Klebsiella pneumonia.* The results generated of these synthesized Schiff base ligands and their transition metal complexes were compared with the antibacterial data obtained for standard antibiotics Vancomycin, Erythromycin, Chloramphenicol, Streptomycin, Tetracycline, Ampicillin and Gentamicin.

In the ninth chapter, attention was made to focus on newly synthesized' S' containing Schiff bases docked into the active binding cavity of the main proteases accessed from RCSB Protein Data Bank (**PDB codes: 6lu7, 1mui, 3rcd, 1b41**) leading to diseases like Covid-19, HIV, Breast cancer and Alzheimer's respectively. The drug likeness (Bioavailability) of these ligands were also checked using Lipinski rule of five. All the results are briefly summarized at the end of this part followed by references.

Part III deals with the detailed investigations of the corrosion inhibition capacity of these newly synthesized 'S' containing Schiff bases on carbon steel in hydrochloric acid and sulphuric acid media. The corrosion inhibition studies were carried out with conventional gravimetric method and electrochemical methods such as electrochemical impedance spectroscopy (EIS), potentiodynamic polarization studies and electrochemical noise measurements. Surface morphological analysis and quantum chemical parameters were also studied. In the polarization analysis, Tafel extrapolation method and Linear polarization method were performed separately. Both Nyquist plot and Bode plot analysis were utilized to get much density on the inhibitory action of the novel Schiff bases by EIS method. Adsorption isotherms were plotted from the results of gravimetric weight loss studies in order to predict the mechanism of corrosion inhibition by the Schiff bases. In order to establish the nature of inhibitor adsorption on carbon steel surface, thermodynamic parameters like free energy of adsorption and adsorption equilibrium constant were determined and interpreted. Weight loss method was followed to compare the inhibition efficiencies of Schiff bases and their respective parent amines in acid medium. Corrosion studies clearly established that all the studied Schiff bases were excellent corrosion inhibitors on carbon steel in hydrochloric acid medium. Generally the corrosion inhibition efficiency was relatively less in H₂SO₄ medium which may be due to the aggressive nature of sulphuric acid towards CS corrosion. Surface morphological analysis was also conducted to establish the mechanism of corrosion inhibition of these inhibitors. Energy difference of HOMO and LUMO, number of electrons transferred, electronegativity, chemical hardness, and so forth were evaluated by quantum chemical studies.

This part is comprised of four chapters. Chapter 10 details the different aspects of corrosion and corrosion inhibitors. A report of thorough literature survey on corrosion inhibition studies and the scope of the present study are also included in this chapter. The details of different corrosion monitoring techniques such as Conventional gravimetric studies, Electrochemical studies, Quantum chemical studies, Temperature studies, Surface morphological studies are discussed in chapter 11. Results and discussion of corrosion inhibition investigations of the newly synthesized Schiff bases in different acid media, 1M HCl and $0.5M H_2SO_4$ have been reported well in chapter 12 and chapter 13 respectively. The quantum chemical studies were also included. Carbon Steel specimens were employed to investigate corrosion inhibitory power of the synthesized Schiff bases. A brief summary of the corrosion studies along with the references are followed thereafter.

LIST OF ABBREVIATIONS

NPTDA	5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine
A9CNPTDA	(E)-(N-anthracene-9-ylmethylene)-5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine
ANNPTDA	N-(anthracen-9(10H)-ylidene)-5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine
P2CNPTDA	(E)-5-(4-nitrophenyl)-N-((pyridine-2-yl)methylene)-1,3,4-thiadiazol-2-amine
3APNPTDA	(E)-5-(4-nitrophenyl)-N-(1(pyridine-3-yl)ethylidene)-1,3,4-thiadiazol-2-amine
2APNPTDA	(E)-5-(4-nitrophenyl)-N-(1(pyridin-2-yl)ethylidene)-1,3,4-thiadiazol-2-amine
I3A2AT	N-((1H-indol-3-yl)methylene)thiazol-2amine
T2CDACH	(13E)-N1,N2-bis((thiophene-2-yl)methylene)cyclohexane-1,2-diamine
A9C	Anthracene 9-carbaldehyde
AN	Anthrone
P2C	Pyridine-2-carbaldehyde
3ACP	3-acetylpyridine
2ACP	2-acetylpyridine
I3A	Indole-3-carbaldehyde
2AT	2-Aminothiazole
T2C	Thiophene-2-carbaldehyde
DMSO	Dimethyl sulphoxide
L	Ligand moiety in the complex
Μ	Central metal ion in the complex
BM	Bohr magneton
EDTA	Ethylenediaminetetraacetic acid
Ac	Acetate part in the complex
BM	Bohr magneton
UV-Vis	Ultraviolet-visible
FTIR	Fourier-transform infrared
NMR	Nuclear magnetic resonance
PDB	Protein data bank
MHA	Mueller-Hinton agar
CS	Carbon steel
EIS	Electrochemical impedance spectroscopy
PDP	Potentiodynamic polarization
SCE	Saturated calomel electrode
OCP	Open circuit potential
CPE	Constant phase element

ECN	Electrochemical noise
PSD	Power spectral density
FFT	Fast Fourier transform
MEM	Maximum entropy method
DFT	Density functional theory
SEM	Scanning electron microscopy
HOMO	Highest occupied molecular orbital
LUMO	Lowest unoccupied molecular orbital
HSAB	Hard and soft acid and base

ABSTRACT

Schiff bases containing heteroatoms and their metal complexes have found multidimensional applications in various fields. Researchers had investigated the biological importance of heterocyclic derivatives of the Schiff bases and their impressive biological activities attributed to the presence of aromatic ring containing heteroatoms such as nitrogen, sulphur and oxygen. Since the polarizability of lone pairs on the sulphur atom is high one can expect an escalated chance for the chelation and other related properties. Here novel potential 'S' containing Schiff bases were synthesized and characterized. Checking the chelating ability of the newly synthesized sulphur compounds lead to open a new series of novel metal complexes which have some pharmacological activity. Here evaluated the biological activities of Schiff bases and their metal chelates and computational studies ensure the druggability of these newly synthesized compounds using Lipinski's rule. The antimicrobial activity analysis, *in silico* molecular docking studies and evaluation of corrosion inhibition efficiency of these potential compounds were explored in this thesis. The entire work is presented in this thesis as three parts.

In the first part, seven novel 'S' containing Schiff bases were synthesized and characterized using elemental analysis and spectral studies such as FTIR, UV-Vis, NMR (¹H and ¹³C) and Mass spectroscopy. The chelating ability of these Schiff bases were proved by synthesizing various transition metal complexes. Elemental (CHNS) analysis, FTIR and UV-Vis spectroscopy, magnetic moment measurements, estimation of metal content and molar conductance studies were employed for the characterization of the complexes. 1:1 stoichiometry exists between metal and ligand in almost all complexes except few.

In the second part antibacterial activity of these novel heterocyclic ligands and their transition metal complexes were analysed against bacterial strains such as *Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Proteus vulgaris* and *Klebsiella pneumonia*. Disc diffusion method is employed for the antibacterial screening. All the compounds have appreciable growth inhibitory power on comparing with the activity of the standard drugs. As a preliminary test Lipinski rule of five was evaluated to check the drug ability of the molecule. The studies were extended to the computational evaluation of the drug ability of the newly synthesized 'S' containing Schiff bases on the target proteins like SARS CoV-2 main protease (PDB code: **6lu7**) causing COVID-19, HIV-1 protease (PDB code: **1mui**) causing HIV/AIDS, HER2 protease (PDB code: **3rcd**) responsible for Breast cancer and Human acetylcholinesterase (AChE) (PDB code: **1b41**) causing Alzheimer's disease.

The corrosion inhibition efficiency of these novel sulphur containing Schiff bases on carbon steel in 1M HCl and 0.5M H_2SO_4 was also evaluated. The corrosion monitoring techniques employed for the analysis include weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization studies and electrochemical noise measurements. Adsorption and surface morphological studies were also carried out to determine the mechanism of adsorption. Thermodynamic parameters of corrosion on carbon steel were determined based on temperature studies at varied temperatures 301, 313, 323 and 333K. Quantum chemical studies followed evaluation and optimization of geometries of these inhibitors were carried out using DFT method.

LIST OF CONTENTS

CHAPTER	TITLE	PAGE NO.
	PART I	
	SYNTHESIS AND CHARACTERIZATION	
CHAPTER 1	INTRODUCTION AND REVIEW	1
	Sulphur Compounds - An Outlook	1
	Sulphur Heterocycles	2
	Schiff Base Ligands	3
	Transition Metal Complexes	5
	Schiff base Complexes	6
	Transition Metal Complexes of Schiff Bases - A Review	11
	Sulphur Containing Schiff Bases and Their Transition Metal Complexes: A Review	16
	Schiff Bases Derived From Polynuclear Carbonyl Compounds and its Transition Metal Complexes: A Review	20
	Schiff Bases Derived From Pyridine Derivatives and its Transition Metal Complexes: A Review	21
	Schiff Bases Derived From Indole and its Transition Metal Complexes: A Review	23
	Scope and Objectives of Present Investigations	25
CHAPTER 2	MATERIALS AND METHODS	23
CHAPTER 3	TRANSITION METAL COMPLEXES OF SCHIFF	
	BASES DERIVED FROM 5-(4-NITROPHENYL)-1,3,4 -THIADIAZOL-2-AMINE (NPTDA) AND POLY NUCLEAR CARBONYL COMPOUNDS	32
	Synthesis of 5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (NPTDA)	33
	Characterization of Parent Amine (NPTDA)	33
SECTION I	STUDIES ON SCHIFF BASE, (E)-N-(ANTHRACEN-9- YLMETHYLENE)-5-(4-NITROPHENYL)-1,3,4-THIA DIAZOL-2-AMINE (A9CNPTDA) AND ITS TRANSITION METAL COMPLEXES	36
	Synthesis of A9CNPTDA	36
	Characterization of A9CNPTDA	37
	Synthesis of Complexes	41
	Characterization of Complexes	41
SECTION II	STUDIES ON SCHIFF BASE, N-(ANTHRACEN-10(9H)-YLIDENE)-5-(4-NITROPHENYL)-1,3,4-THIADIAZOL-2-AMINE (ANNPTDA) AND ITSTRANSITION METAL COMPLEXES	48
	Synthesis of ANNPTDA	48
	Characterization of ANNPTDA	48
	Synthesis of Complexes	52

	Characterization of Complexes	53
CHAPTER 4	TRANSITION METAL COMPLEXES OF SCHIFF	
	BASES DERIVED FROM 5-(4-NITROPHENYL)-	
	1,3,4-THIADIAZOL-2-AMINE (NPTDA) AND	59
	CARBONYL COMPOUNDS WITH PYRIDINE RING	57
~~~~~~		
SECTION I	STUDIES ON SCHIFF BASE,(E)-5-(4-NITRO	
	PHENYL)-N-((PYRIDINE-2-YL)METHYLENE)-1,3,4-	60
	THIADIAZOL-2AMINE (P2CNPTDA) AND ITS	00
	TRANSITION METAL COMPLEXES	
	Synthesis of P2CNPTDA	60
	Characterisation of P2CNPTDA	61
	Synthesis of Complexes	64
	Characterisation of Complexes	64
SECTION II	STUDIES ON SCHIFF BASE (E)-5-(4-NITRO	
	PHENYL)-N-(1(PYRIDINE-3-YL)ETHYLIDENE)-1,3,4-	70
	THIADIAZOL-2-AMINE (3APNPTDA) AND ITS	70
	TRANSITION METAL COMPLEXES	
	Synthesis of 3APNPTDA	70
	Characterisation of 3APNPTDA	71
	Synthesis of Complexes	74
	Characterisation of Complexes	74
SECTION III	STUDIES ON SCHIFF BASE (E)-5-(4-NITRO	
	PHENYL)-N-(1(PYRIDIN-2-YL)ETHYLIDENE)-1,3,4-	80
	THIADIAZOL-2-AMINE (2APNPTDA) AND ITS	
	TRANSITION METAL COMPLEXES	
	Synthesis of 2APNPTDA	80
	Characterisation of 2APNPTDA	80
	Synthesis of Complexes	84
CHAPTER 5	Characterisation of Complexes TRANSITION METAL COMPLEXES OF SCHIFF	84
CHAPTER 5	BASES DERIVED FROM INDOLE-3-	90
	CARBALDEHYDE AND THIOPHENE-2-	70
	CARBALDEHYDE	
SECTION I	STUDIES ON SCHIFF BASE, N-((1H-INDOL-3-YL)	
	METHYLENE)THIAZOL-2-AMINE (I3A2AT) AND ITS	91
	TRANSITION METAL COMPLEXES	~1
	Synthesis of I3A2AT	91
	Characterization of I3A2AT	92
	Synthesis of Complexes	95
	Characterization of Complexes	96
SECTION II	STUDIES ON SCHIFF BASE, (13E)-N1,N2-BIS((THIO	
	PHENE-2-YL)METHYLENE)CYCLOHEXANE-1,2-	103
	DIAMINE (T2CDACH) AND ITS TRANSITION	102
	METAL COMPLEXES	

	Characterization of T2CDACH	103
	Synthesis of Complexes	106
	Characterization of Complexes	107
	SUMMARY	113
	REFERENCES	118
	PART II	
	<b>BIOLOGICAL STUDIES</b>	
CHAPTER 6	INTRODUCTION AND REVIEW	127
	Pharmacological Properties of Schiff Bases	127
	Antibacterial Studies	129
	Important Pathogens	129
	Metal Complexes in Pharmacology	136
	Metal Chelates Containing Schiff Bases as Antibacterial	120
	Agents - A Review	136
	Sulphur Containing Schiff Base Complexes as	140
	Antibacterial agent - A Review	
	Mechanism of Action of Antibiotics in Microbial Cell	143
	Molecular Docking Aided Drug Discovery (In Silico	144
	Studies)	
	Molecular Docking – A Review	147
	Scope and Objectives of Present Investigation	149
CHAPTER 7	MATERIALS AND METHODS	151
CHAPTER 8	<i>IN VITRO</i> ANTIBACTERIAL STUDIES ON SULPHUR CONTAINING SCHIFF BASES AND	162
	THEIR METAL COMPLEXES	102
	In vitro Antibacterial Studies of A9CNPTDA and its	162
	<i>In vitro</i> Antibacterial Studies of A9CNPTDA and its Transition Metal Chelates	
	In vitro Antibacterial Studies of A9CNPTDA and its	162 164
	<i>In vitro</i> Antibacterial Studies of A9CNPTDA and its Transition Metal Chelates <i>In vitro</i> Antibacterial Studies of P2CNPTDA and its	164
	<i>In vitro</i> Antibacterial Studies of A9CNPTDA and its Transition Metal Chelates <i>In vitro</i> Antibacterial Studies of P2CNPTDA and its Transition Metal Chelates	
	<i>In vitro</i> Antibacterial Studies of A9CNPTDA and its Transition Metal Chelates <i>In vitro</i> Antibacterial Studies of P2CNPTDA and its Transition Metal Chelates <i>In vitro</i> Antibacterial Studies of 3APNPTDA and its	164 165
	<i>In vitro</i> Antibacterial Studies of A9CNPTDA and its Transition Metal Chelates <i>In vitro</i> Antibacterial Studies of P2CNPTDA and its Transition Metal Chelates <i>In vitro</i> Antibacterial Studies of 3APNPTDA and its Transition Metal Chelates <i>In vitro</i> Antibacterial Studies of 2APNPTDA and its Transition Metal Chelates	164
	<i>In vitro</i> Antibacterial Studies of A9CNPTDA and its Transition Metal Chelates <i>In vitro</i> Antibacterial Studies of P2CNPTDA and its Transition Metal Chelates <i>In vitro</i> Antibacterial Studies of 3APNPTDA and its Transition Metal Chelates <i>In vitro</i> Antibacterial Studies of 2APNPTDA and its Transition Metal Chelates <i>In vitro</i> Antibacterial Studies of ANNPTDA and its Transition Metal Chelates	164 165 165
	In vitroAntibacterialStudiesofA9CNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesofP2CNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesof3APNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesof2APNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesofANNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesofANNPTDAanditsTransitionMetalComplexesVitroNNPTDAanditsTransitionMetalComplexes	164 165
	In vitroAntibacterialStudiesofA9CNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesofP2CNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesof3APNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesof2APNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesofANNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesofANNPTDAanditsTransitionMetalComplexesInvitroAntibacterialStudiesofI3A2ATanditsTransition	164 165 165 166
	In vitroAntibacterialStudiesofA9CNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesofP2CNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesof3APNPTDAanditsInvitroAntibacterialStudiesof3APNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesofANNPTDAanditsInvitroAntibacterialStudiesofANNPTDAanditsTransitionMetalComplexesInvitroAntibacterialStudiesofI3A2ATanditsTransitionMetalChelatesInvitroAntibacterialStudiesofI3A2ATandits	164 165 165
	In vitroAntibacterialStudiesofA9CNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesofP2CNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesof3APNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesof2APNPTDAanditsInvitroAntibacterialStudiesofANNPTDAanditsTransitionMetalChelatesInvitroAntibacterialStudiesofANNPTDAanditsInvitroAntibacterialStudiesofI3A2ATanditsTransitionMetalChelatesInvitroAntibacterialStudiesofT2CDACHanditsInvitroAntibacterialStudiesofT2CDACHandits	164 165 165 166
	In vitro Antibacterial Studies of A9CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of P2CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 3APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 2APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Complexes In vitro Antibacterial Studies of I3A2AT and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates	164 165 165 166 166
CHAPTER 9	In vitro Antibacterial Studies of A9CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of P2CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 3APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 2APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Complexes In vitro Antibacterial Studies of I3A2AT and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates IN SILICO MOLECULAR DOCKING STUDIES ON	164 165 165 166 166
CHAPTER 9	In vitro Antibacterial Studies of A9CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of P2CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 3APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 2APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Complexes In vitro Antibacterial Studies of I3A2AT and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates IN SILICO MOLECULAR DOCKING STUDIES ON SULPHUR CONTAINING SCHIFF BASES	164         165         165         166         166         167         180
CHAPTER 9	In vitro Antibacterial Studies of A9CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of P2CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 3APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 2APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Complexes In vitro Antibacterial Studies of I3A2AT and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates IN SILICO MOLECULAR DOCKING STUDIES ON SULPHUR CONTAINING SCHIFF BASES Druglikeness and Toxicity of Schiff Bases	164 165 165 166 166 167
	In vitro Antibacterial Studies of A9CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of P2CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 3APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 2APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Complexes In vitro Antibacterial Studies of I3A2AT and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates IN SILICO MOLECULAR DOCKING STUDIES ON SULPHUR CONTAINING SCHIFF BASES Druglikeness and Toxicity of Schiff Bases MOLECULAR DOCKING STUDIES OF SARS-CoV-2	164         165         165         166         166         167         180
CHAPTER 9 SECTION I	In vitro Antibacterial Studies of A9CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of P2CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 3APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 2APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Complexes In vitro Antibacterial Studies of I3A2AT and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates IN SILICO MOLECULAR DOCKING STUDIES ON SULPHUR CONTAINING SCHIFF BASES Druglikeness and Toxicity of Schiff Bases MOLECULAR DOCKING STUDIES OF SARS-CoV-2 MAIN PROTEASE (COVID-19) WITH SULPHUR	164         165         165         166         166         167         180
	In vitro Antibacterial Studies of A9CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of P2CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 3APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 2APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Complexes In vitro Antibacterial Studies of I3A2AT and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates IN SILICO MOLECULAR DOCKING STUDIES ON SULPHUR CONTAINING SCHIFF BASES Druglikeness and Toxicity of Schiff Bases MOLECULAR DOCKING STUDIES OF SARS-CoV-2 MAIN PROTEASE (COVID-19) WITH SULPHUR CONTAINING SCHIFF BASES	164         165         165         166         166         167         180         180         182
	In vitro Antibacterial Studies of A9CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of P2CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 3APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 2APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Complexes In vitro Antibacterial Studies of I3A2AT and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates IN SILICO MOLECULAR DOCKING STUDIES ON SULPHUR CONTAINING SCHIFF BASES Druglikeness and Toxicity of Schiff Bases MOLECULAR DOCKING STUDIES OF SARS-CoV-2 MAIN PROTEASE (COVID-19) WITH SULPHUR CONTAINING SCHIFF BASES A9CNPTDA-6lu7 Complex	164         165         165         166         166         167         180         182         182
	In vitro Antibacterial Studies of A9CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of P2CNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 3APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of 2APNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Chelates In vitro Antibacterial Studies of ANNPTDA and its Transition Metal Complexes In vitro Antibacterial Studies of I3A2AT and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates In vitro Antibacterial Studies of T2CDACH and its Transition Metal Chelates IN SILICO MOLECULAR DOCKING STUDIES ON SULPHUR CONTAINING SCHIFF BASES Druglikeness and Toxicity of Schiff Bases MOLECULAR DOCKING STUDIES OF SARS-CoV-2 MAIN PROTEASE (COVID-19) WITH SULPHUR CONTAINING SCHIFF BASES	164         165         165         166         166         167         180         180         182

	2APNPTDA- <b>6lu7</b> Complex	184
	ANNPTDA- <b>6lu7</b> Complex	185
	I3A2AT- <b>6lu7</b> Complex	186
	T2CDACH- <b>6lu7</b> Complex	187
	MOLECULAR DOCKING STUDIES OF HIV-1	107
SECTION II	PROTEASE (HIV/AIDS) WITH SULPHUR	190
	CONTAINING SCHIFF BASES	170
	A9CNPTDA- <b>1mui</b> Complex	191
	P2CNPTDA- <b>1mui</b> Complex	192
	3APNPTDA- <b>1mui</b> Complex	193
	2APNPTDA- <b>1mui</b> Complex	193
	ANNPTDA- <b>1mui</b> Complex	194
	I3A2AT- <b>1mui</b> Complex	195
	T2CDACH- <b>1mui</b> Complex	196
SECTION III	MOLECULAR DOCKING STUDIES OF HER2	
SECTION	PROTEASE (BREAST CANCER) WITH SULPHUR	198
	CONTAINING SCHIFF BASES	
	A9CNPTDA- <b>3rcd</b> Complex	198
	P2CNPTDA- <b>3rcd</b> Complex	199
	3APNPTDA-3rcd Complex	200
	2APNPTDA- <b>3rcd</b> Complex	200
	ANNPTDA-3rcd Complex	201
	I3A2AT- <b>3rcd</b> Complex	202
	T2CDACH- <b>3rcd</b> Complex	202
CECTION IV	MOLECULAR DOCKING CEUDICS OF ACCENT	
SECTION IV	MOLECULAR DOCKING STUDIES OF ACETYL	
SECTIONIV	CHOLINESTERASE (ALZHEIMER'S DISEASE)	205
SECTION IV	CHOLINESTERASE (ALZHEIMER'S DISEASE) WITH SULPHUR CONTAINING SCHIFF BASES	
SECTION IV	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 Complex	205
SECTIONIV	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 ComplexP2CNPTDA-1b41 Complex	205 206
SECTIONIV	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 ComplexP2CNPTDA-1b41 Complex3APNPTDA-1b41 Complex	205 206 207
SECTIONIV	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 ComplexP2CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 Complex	205 206 207 207
SECTIONIV	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 ComplexP2CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 ComplexANNPTDA-1b41 Complex	205 206 207 207 208
SECTIONIV	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 ComplexP2CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 ComplexANNPTDA-1b41 ComplexI3A2AT-1b41 Complex	205 206 207 207 208 209
SECTIONIV	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 ComplexP2CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 ComplexI3A2AT-1b41 ComplexT2CDACH-1b41 Complex	205 206 207 207 208 209 210
	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 ComplexP2CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 ComplexI3A2AT-1b41 ComplexI3A2AT-1b41 ComplexSUMMARY	205 206 207 207 208 209 210 <b>212</b>
SECTIONIV	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 ComplexP2CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 ComplexANNPTDA-1b41 ComplexI3A2AT-1b41 ComplexT2CDACH-1b41 ComplexSUMMARYREFERENCES	205 206 207 207 208 209 210
	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 ComplexP2CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 ComplexI3A2AT-1b41 ComplexT2CDACH-1b41 ComplexSUMMARYREFERENCESPART III	205 206 207 207 208 209 210 <b>212</b>
	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 Complex92CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 Complex13A2AT-1b41 Complex13A2AT-1b41 Complex13A2AT-1b41 ComplexBUMMARYREFERENCESPART IIICORROSION INHIBITION STUDIES	205 206 207 207 208 209 210 212 216
	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 Complex92CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 Complex13A2AT-1b41 Complex13A2AT-1b41 Complex13A2AT-1b41 ComplexSUMMARYPART IIICORROSION INHIBITION STUDIESINTRODUCTION AND REVIEW	205 206 207 207 208 209 210 212 216 212 216
	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 Complex92CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 Complex13A2AT-1b41 Complex13A2AT-1b41 Complex13A2AT-1b41 ComplexBUMMARYPART IICORROSION INHIBITION STUDIESINTRODUCTION AND REVIEWFactors Responsible for Corrosion	205 206 207 207 208 209 210 <b>212</b> <b>216</b> <b>221</b> 225
	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 Complex92CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 Complex13A2AT-1b41 Complex13A2AT-1b41 ComplexT2CDACH-1b41 ComplexBUMMARYREFERENCESPART IIICORROSION INHIBITION STUDIESINTRODUCTION AND REVIEWFactors Responsible for CorrosionTypes of Corrosion	205 206 207 208 209 210 <b>212</b> <b>216</b> <b>221</b> 225 225
	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 Complex92CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 Complex13A2AT-1b41 Complex13A2AT-1b41 ComplexT2CDACH-1b41 ComplexBUMMARYFREFERENCESINTRODUCTION AND REVIEWFactors Responsible for CorrosionTypes of CorrosionPrevention of Corrosion	205 206 207 207 208 209 210 <b>212</b> <b>216</b> <b>221</b> 225 225 225 229
	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 Complex92CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 Complex13A2AT-1b41 Complex13A2AT-1b41 Complex13A2AT-1b41 ComplexSUMMARYPART IICORROSION INHIBITION STUDIESINTRODUCTION AND REVIEWFactors Responsible for CorrosionTypes of CorrosionPrevention of CorrosionSchiff Base Corrosion Inhibitors - A Review	205 206 207 207 208 209 210 <b>212</b> <b>216</b> <b>221</b> 225 225 225 229 233
	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 Complex92CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 ComplexANNPTDA-1b41 Complex13A2AT-1b41 ComplexT2CDACH-1b41 ComplexSUMMARYPART IIICORROSION INHIBITION STUDIESINTRODUCTION AND REVIEWFactors Responsible for CorrosionTypes of CorrosionSchiff Base Corrosion Inhibitors - A ReviewHeterocyclic Schiff Base Inhibitors- A Review	205 206 207 208 209 210 <b>212</b> <b>216</b> <b>221</b> 225 225 225 229 233 237
	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 Complex92CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 ComplexMNNPTDA-1b41 Complex13A2AT-1b41 Complex13A2AT-1b41 ComplexT2CDACH-1b41 ComplexBUMMARYREFERENCESINTRODUCTION AND REVIEWFactors Responsible for CorrosionTypes of CorrosionPrevention of CorrosionSchiff Base Corrosion Inhibitors - A ReviewHeterocyclic Schiff Base Inhibitors-A ReviewSulphur Containing Schiff Base Inhibitors-A Review	205 206 207 207 208 209 210 <b>212</b> <b>216</b> <b>221</b> 225 225 225 225 229 233 237 240
	CHOLINESTERASE(ALZHEIMER'S DISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 ComplexP2CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 ComplexI3A2AT-1b41 ComplexI3A2AT-1b41 ComplexT2CDACH-1b41 ComplexSUMMARYREFERENCESINTRODUCTION AND REVIEWFactors Responsible for CorrosionTypes of CorrosionTypes of CorrosionSchiff Base Corrosion Inhibitors - A ReviewHeterocyclic Schiff Base Inhibitors-A ReviewPolynuclear Schiff Base Inhibitors - A Review	205 206 207 207 208 209 210 <b>212</b> <b>216</b> <b>221</b> 225 225 225 225 229 233 237 240 242
	CHOLINESTERASE(ALZHEIMER'SDISEASE)WITH SULPHUR CONTAINING SCHIFF BASESA9CNPTDA-1b41 Complex92CNPTDA-1b41 Complex3APNPTDA-1b41 Complex2APNPTDA-1b41 ComplexMNNPTDA-1b41 Complex13A2AT-1b41 Complex13A2AT-1b41 ComplexT2CDACH-1b41 ComplexBUMMARYREFERENCESINTRODUCTION AND REVIEWFactors Responsible for CorrosionTypes of CorrosionPrevention of CorrosionSchiff Base Corrosion Inhibitors - A ReviewHeterocyclic Schiff Base Inhibitors-A ReviewSulphur Containing Schiff Base Inhibitors-A Review	205 206 207 207 208 209 210 <b>212</b> <b>216</b> <b>221</b> 225 225 225 225 229 233 237 240

	Scope and Objective of Present Investigation	248
CHAPTER 11	MATERIALS AND METHODS	251
CHAPTER 12	CORROSION INHIBITION STUDIES OF SULPHUR	
	CONTAINING SCHIFF BASES ON CARBON STEEL	268
	IN 1M HCl	
	Gravimetric Weight Loss Investigations	268
	Comparison of Corrosion Inhibition Efficiencies of Schiff Bases with their parent compounds	276
	Adsorption Isotherms	277
	Impact of Temperature	280
	Surface Morphological Investigations	285
	Electrochemical Impedance Spectroscopic Studies (EIS)	286
	Potentiodynamic Polarization Studies	292
	Mechanism of Inhibition	297
	Electrochemical Noise Studies	299
	Quantum Chemical Studies	303
CHAPTER 13	CORROSION INHIBITION STUDIES OF SULPHUR	
	CONTAINING SCHIFF BASES ON CARBON STEEL	308
	IN 0.5M H ₂ SO ₄	
	Gravimetric Weight Loss Measurements	308
	Adsorption Isotherms	312
	Surface Morphological Investigations	314
	Electrochemical Impedance Spectroscopic Studies (EIS)	315
	Potentiodynamic Polarization Studies	321
	SUMMARY	328
	REFERENCES	332
LIST OF PUB	LICATIONS AND CONFERENCE PAPERS	343

### LIST OF TABLES

TABLE No.	TITLE	PAGE No.
PART I SYNTHESIS AND CHARACTERIZATION		
1.1	¹ H NMR and ¹³ C NMR spectral data of A9CNPTDA	39
1.2	Electronic spectral data of parent amine (NPTDA), Schiff base (A9CNPTDA) and its transition metal complexes	42
1.3	Microanalytical, magnetic and conductance data of the ligand A9CNPTDA and its transition metal complexes	45
1.4	Characteristic infrared absorption frequencies (cm ⁻¹ ) of A9CNPTDA and its transition metal complexes	46
1.5	Electronic spectral data of Schiff base, ANNPTDA and its transition metal complexes	53
1.6	Microanalytical, magnetic and conductance data of the ligand ANNPTDA and its transition metal complexes	56
1.7	Characteristic infrared absorption frequencies (cm ⁻¹ ) of ANNPTDA and its transition metal complexes	57
1.8	Electronic spectral data of Schiff base, P2CNPTDA and its transition metal complexes	65
1.9	Microanalytical, magnetic and conductance data of the ligand P2CNPTDA and its transition metal complexes	67
1.10	Characteristic infrared absorption frequencies (cm ⁻¹ ) of P2CNPTDA and its transition metal complexes	68
1.11	Electronic spectral data of Schiff base, 3APNPTDA and its transition metal complexes	74
1.12	Microanalytical, magnetic and conductance data of the ligand 3APNPTDA and its transition metal complexes	77
1.13	Characteristic infrared absorption frequencies (cm ⁻¹ ) of 3APNPTDA and its transition metal complexes	78
1.14	Electronic spectral data of Schiff base, 2APNPTDA and its transition metal complexes	85
1.15	Microanalytical, magnetic and conductance data of the ligand 2APNPTDA and its transition metal complexes	87
1.16	Characteristic infrared absorption frequencies (cm ⁻¹ ) of 2APNPTDA and its transition metal complexes	88
1.17	Electronic spectral data of Schiff base, I3A2AT and its transition metal complexes	96
1.18	Microanalytical, magnetic and conductance data of the ligand I3A2AT and its transition metal complexes	99

	Characteristic infrared absorption frequencies (cm ⁻¹ ) of I3A2AT	
1.19	and its transition metal complexes	100
1.20	¹ H NMR and ¹³ C NMR spectral data of T2CDACH	105
1.21	Electronic spectral data of Schiff base T2CDACH and its	107
1.21	transition metal complexes	107
1.22	Microanalytical, magnetic and conductance data of the ligand	110
	T2CDACH and its transition metal complexesCharacteristic infrared absorption frequencies (cm ⁻¹ ) of	
1.23	T2CDACH and its transition metal complexes	111
	PART II	
	BIOLOGICAL STUDIES	
2.1	Crystallographic features of proteins	161
2.2	Antibacterial activity of standard antibiotics and the solvent	172
2.2	DMSO	172
	Antibacterial activity of 'S' containing heterocyclic Schiff base,	
2.3	(E)-(N-anthracene-9-ylmethylene)-5-(4-nitrophenyl)-1,3,4-thia	173
	diazol-2-amine (A9CNPTDA) and its transition metal complexes	
	Antibacterial activity of 'S' containing heterocyclic Schiff base,	. – .
2.4	(E)-5-(4-nitrophenyl)-N-((pyridine-2-yl)methylene)-1,3,4-thia	174
	diazol-2-amine (P2CNPTDA) and its transition metal complexes	
2.5	Antibacterial activity of 'S' containing heterocyclic Schiff base, (E)-5-(4-nitrophenyl)-N-(1(pyridine-3-yl)ethylidene)-1,3,4-thia	175
2.3	diazol-2-amine (3APNPTDA) and its transition metal complexes	175
	Antibacterial activity of 'S' containing heterocyclic Schiff base,	
2.6	(E)-5-(4-nitrophenyl)-N-(1(pyridin-2-yl)ethylidene)-1,3,4-thia	176
2.0	diazol-2-amine (2APNPTDA) and its transition metal complexes	170
	Antibacterial activity of 'S' containing heterocyclic Schiff base,	
2.7	N-(anthracen-9(10H)-ylidene)-5-(4-nitrophenyl)-1,3,4-thiadiazol-	177
	2-amine (ANNPTDA) and its transition metal complexes	
	Antibacterial activity of 'S' containing heterocyclic Schiff base,	
2.8	N-((1H-indol-3-yl)methylene)thiazol-2amine (I3A2AT) and its	178
	transition metal complexes	
	Antibacterial activity of 'S' containing heterocyclic Schiff base,	
2.9	(13E)-N1,N2-bis((thiophene-2-yl)methylene)cyclohexane-1,2-	179
	diamine (T2CDACH) and its transition metal complexes	
2.10	Lipinski's parameters for analysing druglikeness of Schiff bases	181
2.11	Binding energies and interactions of seven novel 'S' containing	189
2.11	heterocyclic Schiff bases with SARS CoV-2 main protease (PDB code: <b>6lu7</b> )	107
2.12	Binding energies and interactions of seven novel 'S' containing	107
2.12	heterocyclic Schiff bases with HIV-1protease (PDB code: 1mui)	197
2.13	Binding energies and interactions of seven novel 'S' containing	204
	heterocyclic Schiff bases with HER2 protease (PDB code: <b>3rcd</b> )	

2.14	Binding energies and interactions of seven novel 'S' containing heterocyclic with Acetylcholinesterase(AChE) (PDB code: <b>1b41</b> )	211
PART III CORROSION INHIBITION STUDIES		
3.1	Corrosion rate of carbon steel in mmy ⁻¹ in the absence and presence of 'S' containing heterocyclic Schiff bases in 1M HCl at 28 ^o C for 24h	269
3.2	Corrosion inhibition efficiencies of 'S' containing heterocyclic Schiff bases in 1M HCl at 28 ⁰ C for 24h	271
3.3	Effect of time on the corrosion inhibition efficiency of 'S' containing heterocyclic corrosion inhibitors (1mM) on CS in 1M HCl	274
3.4	Corrosion inhibition efficiencies ( $\eta_w$ %) of parent compounds NPTDA, A9C, P2C, 3ACP, 2ACP, ANT, I3A, 2AT, T2C and DAC on CS in 0.5M HCl for a period 24h	277
3.5	Adsorption parameters of 'S' containing heterocyclic Schiff bases on CS corrosion in 1M HCl	279
3.6	Thermodynamic parameters of CS corrosion, in the presence and absence of 'S' containing heterocyclic Schiff bases in 1M HCl	284
3.7	Electrochemical Impedance parameters of CS corrosion in the presence and absence of 'S' containing heterocyclic Schiff base inhibitors in 1M HCl at 303K	290
3.8	Potentiodynamic polarisation parameters of CS corrosion in the presence and absence of 'S' containing heterocyclic inhibitors in 1M HCl at 303K	293
3.9	Quantum chemical parameters of 'S' containing heterocyclic inhibitors	304
3.10	Corrosion rates (mmy ⁻¹ ) of CS in the presence of 'S' containing heterocyclic Schiff bases in $0.5M H_2SO_4$ at $28^{0}C$ for 24h	309
3.11	$\begin{array}{c} Corrosion \ inhibition \ efficiencies \ (\eta_w\%) \ of \ `S' \ containing \\ heterocyclic \ Schiff \ bases \ on \ CS \ in \ 0.5M \ H_2SO_4 \ at \ 28^0C \ for \ 24h \end{array}$	310
3.12	Corrosion inhibition efficiencies $(\eta_w\%)$ of parent compounds NPTDA, A9C, P2C, 3ACP, 2ACP, ANT, I3A, 2AT, T2C and DAC on CS corrosion in 0.5M H ₂ SO ₄ for a period 24h	312
3.13	Adsorption parameters of 'S' containing heterocyclic Schiff base inhibitors on CS in $0.5M$ H ₂ SO ₄	314
3.14	Electrochemical impedance parameters of CS corrosion in the presence and absence of 'S' containing heterocyclic Schiff bases in $0.5M$ H ₂ SO ₄ at 303K	320
3.15	Potentiodynamic polarization parameters of CS corrosion in the presence and absence of 'S' containing heterocyclic Schiff bases in $0.5M H_2SO_4$ at $303K$	325

## LIST OF FIGURES

FIG. No.	TITLE	PAGE No.	
	PART I		
	SYNTHESIS AND CHARACTERIZATION		
1.1	Schematic representation of the synthesis of parent amine 5-(4-nitro	33	
	phenyl) -1,3,4-thiadiazole-2-amine (NPTDA)		
1.2	¹ H NMR spectrum of NPTDA	35	
1.3	Mass spectrum of NPTDA	35	
1.4	Synthesis of A9CNPTDA	36	
1.5	¹ H NMR spectrum of A9CNPTDA	38	
1.6	¹³ Cnmr spectrum of A9CNPTDA	39	
1.7	Mass spectrum of A9CNPTDA	40	
1.8	Structure of A9CNPTDA	40	
1.9	Structures of transition metal complexes of A9CNPTDA	47	
1.10	Synthesis of ANNPTDA	48	
1.11	¹ H NMR spectrum of ANNPTDA	50	
1.12	DEPT-135 spectrum of ANNPTDA	50	
1.13	¹³ C NMR spectrum of ANNPTDA	51	
1.14	Mass spectrum of ANNPTDA	51	
1.15	Structure of ANNPTDA	52	
1.16	Structures of transition metal complexes of ANNPTDA	58	
1.17	Synthesis of P2CNPTDA	60	
1.18	¹ H NMR spectrum of P2CNPTDA	62	
1.19	¹³ C NMR spectrum of P2CNPTDA	63	
1.20	Mass spectrum of P2CNPTDA	63	
1.21	Structure of P2CNPTDA	64	
1.22	Structures of transition metal complexes of P2CNPTDA	69	
1.23	Synthesis of 3APNPTDA	70	
1.24	¹ H NMR spectrum of 3APNPTDA	72	
1.25	¹³ C NMR spectrum of 3APNPTDA	72	
1.26	Mass spectrum of 3APNPTDA	73	
1.27	Structure of 3APNPTDA	73	
1.28	Structures of transition metal complexes of 3APNPTDA	79	
1.29	Synthesis of 2APNPTDA	80	
1.30	¹ H NMR spectrum of 2APNPTDA	82	
1.31	¹³ C NMR spectrum of 2APNPTDA	83	
1.32	Mass spectrum of 2APNPTDA	83	
1.33	Structure of 2APNPTDA	84	
1.34	Structures of transition metal complexes of 2APNPTDA	89	
1.35	Synthesis of I3A2AT	91	

1.36	¹ H NMR spectrum of I3A2AT	93
1.30	DEPT 135 spectrum of I3A2AT	94
1.37	¹³ C NMR spectrum of I3A2AT	94
1.39	Mass spectrum of I3A2AT	95
1.40	Structure of I3A2AT	95
1.41	Structures of transition metal complexes of I3A2AT	101
1.42	Synthesis of T2CDACH	102
1.43	¹ H NMR spectrum of T2CDACH	104
1.44	¹³ C NMR spectrum of T2CDACH	104
1.45	Mass spectrum of T2CDACH	106
1.46	Structure of T2CDACH	106
1.47	Structures of transition metal complexes of T2CDACH	112
	PART II	
	<b>BIOLOGICAL STUDIES</b>	
2.1	Micrograph of S. aureus	130
2.2	Micrograph of Bacillus subtilis	131
2.3	Micrograph of Escherichia coli	132
2.4	Micrograph of Proteus vulgaris	133
2.5	Micrograph of Klebsiella pneumonia	134
2.6	Structure of Penicillin	135
2.7	Structure of Cephalosporin	135
2.8	Structure of Quinolones	135
2.9	Mechanism of antibiotic (drugs) resistance	144
2.10	Pictorial representation of Disc diffusion method	154
2.11	Structures of target proteins (a) 6lu7 (b) 1mui (c) 3rcd and (d) 1b41	161
2.12	Antibacterial activity of 'S' containing heterocyclic Schiff bases against gram-positive strains <i>Staphylococcus aureus</i> , <i>Bacillus</i> <i>subtilis</i> and gram-negative bacterial strain <i>Escherichia coli</i> at a concentration 200µgdisc ⁻¹	168
2.13	Antibacterial activity of 'S' containing heterocyclic Schiff bases against gram-negative bacterial strains <i>Proteus vulgaris, Klebsiella</i> <i>pneumonia</i> at a concentration 200µgdisc ⁻¹	169
2.14	Antibacterial activity of transition metal complexes of A9CNPTDA against <i>Escherichia coli</i> and <i>Klebsiella pneumonia</i> at a concentration 50µgdisc ⁻¹	169
2.15	Antibacterial activity of transition metal complexes of P2CNPTDA against <i>Staphylococcus aureus</i> and <i>Klebsiella pneumonia</i> at a concentration 50µgdisc ⁻¹	170
2.16	Antibacterial activity of transition metal complexes of 3APNPTDA against <i>Staphylococcus aureus</i> , <i>Escherichia coli</i> , <i>Proteus vulgaris</i> and <i>Klebsiella pneumonia</i> at a concentration 50µgdisc ⁻¹	170
2.17	Antibacterial activity of transition metal complexes of 2APNPTDA	171

	against <i>Escherichia coli</i> at a concentration 50µgdisc ⁻¹	
• • •	Antibacterial activity of transition metal complexes of ANNPTDA	
2.18	against <i>Bacillus subtilis</i> at a concentration 50µgdisc ⁻¹	171
<b>a</b> 10	Antibacterial activity of transition metal complexes of T2CDACH	1.5.1
2.19	against S. aureus at a concentration 50µgdisc ⁻¹	171
	Antibacterial activity of P2CNPTDA-Cd ²⁺ at different	171
2.20	concentrations against S. aureus	171
2.21	(a) 2D and (b) 3D interaction diagrams of A9CNPTDA with M ^{pro}	183
2.22	(a) 2D and (b) 3D interaction diagrams of P2CNPTDA with M ^{pro}	183
2.23	(a) 2D and (b) 3D interaction diagrams of 3APNPTDA with M ^{pro}	184
2.24	(a) 2D and (b) 3D interaction diagrams of 2APNPTDA with M ^{pro}	185
2.25	(a) 2D and (b) 3D interaction diagrams of ANNPTDA with the M ^{pro}	186
2.26	(a) 2D and (b) 3D interaction diagrams of I3A2AT with the M ^{pro}	187
2.27	(a) 2D and (b) 3D interaction diagrams of T2CDACH with the M ^{pro}	187
2.28	(a) 2D and (b) 3D interaction diagrams of A9CNPTDA with HIV-1	191
2.20	protease	191
2.29	(a) 2D and (b) 3D interaction diagrams of P2CNPTDA with HIV-1	192
2.2)	protease	172
2.30	(a) 2D and (b) 3D interaction diagrams of 3APNPTDA with HIV-1	193
2.30	protease	175
2.31	(a) 2D and (b) 3D interaction diagrams of 2APNPTDA with HIV-1	194
2.01	protease	171
2.32	(a) 2D and (b) 3D interaction diagrams of ANNPTDA with HIV-1	195
	protease	- / -
2.33	(a) 2D and (b) 3D interaction diagrams of I3A2AT with HIV-1	195
2.34	(a) 2D and (b) 3D interaction diagrams of T2CDACH with HIV-1	196
2.35	(a) 2D and (b) 3D interaction diagrams of A9CNPTDA with HER2	199
	(a) 2D and (b) 3D interaction diagrams of P2CNPTDA with HER2	
2.36		199
	(a) 2D and (b) 3D interaction diagrams of 3APNPTDA with HER2	
2.37	protease	200
	(a) 2D and (b) 3D interaction diagrams of 2APNPTDA with HER2	
2.38	protease	201
	(a) 2D and (b) 3D interaction diagrams of ANNPTDA with HER2	
2.39	protease	201
	(a) 2D and (b) 3D interaction diagrams of I3A2AT with HER2	
2.40	protease	202
2.41	(a) 2D and (b) 3D interaction diagrams of T2CDACH with HER2	
	protease	203
2.42	(a) 2D and (b) 3D interaction diagrams of A9CNPTDA with	206
		200

	acetylcholinesterase	
	(a) 2D and (b) 3D interaction diagrams of P2CNPTDA with	
2.43	acetylcholinesterase	207
	(a) 2D and (b) 3D interaction diagrams of 3APNPTDA with	
2.44	acetylcholinesterase	208
	(a) 2D and (b) 3D interaction diagrams of 2APNPTDA with	• • • •
2.45	acetylcholinesterase	208
2.46	(a) 2D and (b) 3D interaction diagrams of ANNPTDA with	200
2.46	acetylcholinesterase	209
2.47	(a) 2D and (b) 3D interaction diagrams I3A2AT with	210
2.47	acetylcholinesterase	210
2.48	(a) 2D and (b) 3D interaction diagrams of T2CDACH with	210
2.40	acetylcholinesterase	210
	PART III	
	CORROSION INHIBITION STUDIES	
3.1	Demonstration of components of corrosion	221
3.2	Corrosion impacts in various areas	222
3.3	Application of carbon steel/mild steel in various areas	223
3.4	Reactions occurring throughout the corrosion of steel	224
3.5	Galvanic corrosion	226
3.6	Pitting corrosion in steel	227
3.7	Mechanism of crevice corrosion	227
3.8	Microbiologically influenced corrosion (MIC) or bio-corrosion	228
3.9	Inter-granular corrosion of stainless steel	229
3.10	Schematic representation of stress corrosion cracking	229
3.11	Equivalent circuit	257
3.12	Nyquistplot	258
3.13	Bode and impedance plots	258
3.14	Linear polarization plot	260
3.15	Tafel plot	262
3.16	Noise current Vs time	264
3.17	Pitting index curve	264
3.18	PSD plot	265
3.19	Corrosion rates of CS with different concentration of 'S' containing	270
	heterocyclic Schiff base inhibitors in 1M HCl at 28 ^o C for 24h.	
	Comparison of corrosion inhibition efficiencies ( $\eta_w$ %) of 'S'	
3.20	containing heterocyclic Schiff bases on CS in 1M HCl at 28 ^o C for	272
	24h Verietien of comprise inhibition officiencies of SC containing	
3.21	Variation of corrosion inhibition efficiencies of 'S' containing	275
	Schiff base inhibitors (1mM) with time on CS in 1M HCl	
3.22	UV-Visible spectra of a) Thiophene 2-carbaldehyde (T2C) b) 1,2 Diaminocyclohexane (DAC) c) T2CDACH at 0h and (d)	275
	Diaminocyclohexane (DAC) c) T2CDACH at 0h and (d)	

in the presence and absence of A9CNPTDA in TM HCl3.26a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl2813.27a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2813.28a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2823.29a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.32SEM images of (a) bare CS (b) CS treated with TM HCl (c) CS (1mM) for 48h.2873.33a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in		T2CDACH at 48h 1M HCl	
3.23containing heterocyclic Schiff bases with their parent compounds276Langmuir adsorption isotherms of (a) A9CNPTDA (b) P2CNPT3APNPTDA (d) 2APNPTDA (e) ANNPTDA (f) I3A2AT (g)2783.243APNPTDA (d) 2APNPTDA (e) ANNPTDA (f) I3A2AT (g)27872CDACH on CS in 1M HCI281a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCI2813.26a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCI2813.27a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCI2823.28a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCI2823.28a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCI2823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCI2833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCI2833.33a) Arrhenius plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA (1mM) (d) CS treated with 1M Cl (c) CS and absence of A9CNPTDA in 1M HCI2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCI2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCI287 <tr< td=""><td></td><td>Comparison study of corrosion inhibition efficiencies $(\eta_w \%)$ of 'S'</td><td></td></tr<>		Comparison study of corrosion inhibition efficiencies $(\eta_w \%)$ of 'S'	
Langmuiradsorptionisothermsof(a)A9CNPTDA (b)P2CNPT3.243APNPTDA (d)2APNPTDA (e)ANNPTDA (f)I3A2AT (g)2783.25a)Arrhenius plots and b)log (K/T) vs1000/T plots of CS corrosion2813.26a)Arrhenius plots and b)log (K/T) vs1000/T plots of CS corrosion2813.26a)Arrhenius plots and b)log (K/T) vs1000/T plots of CS corrosion2813.27a)Arrhenius plots and b)log (K/T) vs1000/T plots of CS corrosion2813.28a)Arrhenius plots and b)log (K/T) vs1000/T plots of CS corrosion2823.28a)Arrhenius plots and b)log (K/T) vs1000/T plots of CS corrosion2823.29a)Arrhenius plots and b)log (K/T) vs1000/T plots of CS corrosion2823.30in the presence and absence of ANNPTDA in 1M HCl2823.30a)Arrhenius plots and b) log (K/T) vs1000/T plots of CS corrosion2823.31in the presence and absence of T2CDACH in 1M HCl2833.32treated with A9CNPTDA (1mM) (d) CS treated with T2CDACH2873.33a)Nyquist plots and b) Bode plots of CS corrosion in the presence2873.34a)Nyquist plots and b) Bode plots of CS corrosion in the presence2873.33a)Nyquist plots and b) Bode plots of CS corrosion in the presence2873.34a)Nyquist plots and b) Bode plots of CS corrosion in the presence28	3.23		276
3.24       3APNPTDA (d) 2APNPTDA (e) ANNPTDA (f) I3A2AT (g)       278         T2CDACH on CS in 1M HCl       a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl       281         3.25       a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl       281         3.26       a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl       281         3.27       in the presence and absence of A0CNPTDA in 1M HCl       282         3.28       a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl       282         3.29       a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 13A2AT in 1M HCl       282         3.30       a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl       283         3.31       in the presence and absence of CS corrosion in the presence and absence of P2CNPTDA (1mM) (d) CS treated with T2CDACH (1mM) for 48h.       283         3.32       a) Arrhenius plots and b) Bode plots of CS corrosion in the presence and absence of SAPNPTDA in 1M HCl       287         3.33       a) Nyquist plots and b) Bode p			
T2CDACH on CS in 1M HCl2813.25a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2813.26a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl2813.27a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2813.28a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2823.29a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T3CDACH in 1M HCl2823.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.32sEM images of (a) bare CS (b) CS treated with 1M HCl (c) CS treated with A9CNPTDA (1mM) (d) CS treated with T2CDACH (1mM) for 48h.2873.33and absence of A9CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl288	3.24		278
3.25a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2813.26a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl2813.27a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2813.27a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2823.28a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2823.29a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.31in the presence and absence of T2CDACH in 1M HCl2833.32SEM images of (a) bare CS (b) CS treated with 1M HCl (c) CS treated with A9CNPTDA (1mM) (d) CS treated with T2CDACH (1mM) for 48h.2873.33a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2883.36a) Nyquist p	5.24		
3.25in the presence and absence of A9CNPTDA in 1M HCl2813.26a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl2813.27a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2813.28a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2823.29a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2823.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.32treated with A9CNPTDA (1mM) (d) CS treated with T2CDACH (1mM) for 48h.2873.33a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9NPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and abs			
3.26a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HC12813.27a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HC12813.28a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HC12823.29a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of ANNPTDA in 1M HC12823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of I3A2AT in 1M HC12823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HC12833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HC12833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HC12833.32SEM images of (a) bare CS (b) CS treated with 1M HC1 (c) CS (1mM) for 48h.2873.33a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HC12873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HC12873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HC12883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HC12883.38a)	3.25		281
3.26in the presence and absence of P2CNPTDA in 1M HCI2813.27a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCI2813.28a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCI2823.29a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCI2823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of I3A2AT in 1M HCI2823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCI2833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCI2833.32SEM images of (a) bare CS (b) CS treated with 1M HCI (c) CS treated with A9CNPTDA (1mM) (d) CS treated with T2CDACH (1mM) for 48h.2873.33a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCI2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9NPTDA in 1M HCI2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of APNPTDA in 1M HCI2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCI2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCI2883.37a) Nyquist plots and b) Bode plot			
3.27a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2813.28a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2823.29a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.32SEM images of (a) bare CS (b) CS treated with 1M HCl (c) CS (1mM) for 48h.2833.33a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.39a) Nyquist plots and	3.26		281
3.27in the presence and absence of 3APNPTDA in 1M HCl2813.28a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2823.29a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.32SEM images of (a) bare CS (b) CS treated with 1M HCl (c) CS (1mM) for 48h.2853.33a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 13A2AT			
3.28a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2823.29a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2823.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.32SEM images of (a) bare CS (b) CS treated with 1M HCl (c) CS treated with A9CNPTDA (1mM) (d) CS treated with T2CDACH (1mM) for 48h.2873.33a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of AANNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39	3.27		281
3.28in the presence and absence of 2APNPTDA in 1M HCl2823.29a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2823.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.32SEM images of (a) bare CS (b) CS treated with 1M HCl (c) CS treated with A9CNPTDA (1mM) (d) CS treated with T2CDACH (1mM) for 48h.2873.33a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 13A2AT in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 13A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence <td></td> <td>-</td> <td></td>		-	
3.29a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2823.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion 	3.28		282
3.29in the presence and absence of ANNPTDA in 1M HCl2823.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2823.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.32SEM images of (a) bare CS (b) CS treated with 1M HCl (c) CS treated with A9CNPTDA (1mM) (d) CS treated with T2CDACH (1mM) for 48h.2873.33a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T		-	
3.30a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2823.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.31SEM images of (a) bare CS (b) CS treated with 1M HCl (c) CS treated with A9CNPTDA (1mM) (d) CS treated with T2CDACH (1mM) for 48h.2853.32a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosi	3.29		282
3.30in the presence and absence of I3A2AT in 1M HCl2823.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.32SEM images of (a) bare CS (b) CS treated with 1M HCl (c) CS treated with A9CNPTDA (1mM) (d) CS treated with T2CDACH (1mM) for 48h.2853.33a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2903.40Comparison of the corrosion inhibition efficiencies (η _{EIS%} ) of 'S' attemption211		*	
3.31a) Arrhenius plots and b) log (K/T) vs 1000/T plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2833.31SEM images of (a) bare CS (b) CS treated with 1M HCl (c) CS treated with A9CNPTDA (1mM) (d) CS treated with T2CDACH (1mM) for 48h.2853.32a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2903.40Comparison of the corrosion inhibition efficiencies (η _{EIS%} ) of 'S' attemption211	3.30		282
3.31in the presence and absence of T2CDACH in 1M HCl2833.32SEM images of (a) bare CS (b) CS treated with 1M HCl (c) CS2853.32treated with A9CNPTDA (1mM) (d) CS treated with T2CDACH (1mM) for 48h.2873.33a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2803.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2903.40Comparison of the corrosion inhibition efficiencies ( $\eta_{EIS\%}$ ) of 'S'211		*	
SEM images of (a) bare CS (b) CS treated with 1M HCl (c) CS treated with A9CNPTDA (1mM) (d) CS treated with T2CDACH (1mM) for 48h.2853.33a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl290	3.31		283
3.32treated with A9CNPTDA (1mM) (d) CS treated with T2CDACH (1mM) for 48h.2873.33a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2883.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl290		<u> </u>	285
3.33a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of A9CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2903.40Comparison of the corrosion inhibition efficiencies (\eta _{EIS%} ) of 'S'201	3.32		
3.33and absence of A9CNPTDA in 1M HCl2873.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2903.40Comparison of the corrosion inhibition efficiencies (η _{EIS%} ) of 'S'201		(1mM) for 48h.	
and absence of A9CNP1DA in 1M HC12073.34a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of P2CNPTDA in 1M HC12873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HC12873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HC12883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HC12883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HC12883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HC12883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HC12903.40Comparison of the corrosion inhibition efficiencies (η _{EIS%} ) of 'S'201		a) Nyquist plots and b) Bode plots of CS corrosion in the presence	
3.34and absence of P2CNPTDA in 1M HCl2873.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2903.40Comparison of the corrosion inhibition efficiencies (η _{EIS} ) of 'S'201	3.33	and absence of A9CNPTDA in 1M HCl	287
and absence of P2CNPTDA in IM HCl2673.35a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2903.40Comparison of the corrosion inhibition efficiencies ( $\eta_{EIS\%}$ ) of 'S'201	2.24	a) Nyquist plots and b) Bode plots of CS corrosion in the presence	
3.35and absence of 3APNPTDA in 1M HCl2873.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2903.40Comparison of the corrosion inhibition efficiencies (η _{EIS} ) of 'S'201	3.34	and absence of P2CNPTDA in 1M HCl	287
and absence of 3APNPTDA in 1M HCl3.36a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2903.40Comparison of the corrosion inhibition efficiencies (η _{EIS} ) of 'S'201	2.25	a) Nyquist plots and b) Bode plots of CS corrosion in the presence	207
3.36and absence of 2APNPTDA in 1M HCl2883.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2883.40Comparison of the corrosion inhibition efficiencies (η _{EIS} ) of 'S'290	3.35	and absence of 3APNPTDA in 1M HCl	287
and absence of 2APNPTDA in 1M HCl2003.37a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2883.40Comparison of the corrosion inhibition efficiencies (η _{EIS%} ) of 'S'290	2.26	a) Nyquist plots and b) Bode plots of CS corrosion in the presence	
3.37and absence of ANNPTDA in 1M HCl2883.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2903.40Comparison of the corrosion inhibition efficiencies (η _{EIS%} ) of 'S'291	3.30	and absence of 2APNPTDA in 1M HCl	288
and absence of ANNPTDA in IM HCl2553.38a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2903.40Comparison of the corrosion inhibition efficiencies (η _{EIS%} ) of 'S' 201201	2 27	a) Nyquist plots and b) Bode plots of CS corrosion in the presence	
3.38and absence of I3A2AT in 1M HCl2883.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2903.40Comparison of the corrosion inhibition efficiencies (η _{EIS%} ) of 'S' 201201	3.37	and absence of ANNPTDA in 1M HCl	288
and absence of 13A2A1 in 1M HCl2003.39a) Nyquist plots and b) Bode plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl2903.40Comparison of the corrosion inhibition efficiencies (η _{EIS%} ) of 'S' 201291	2 20	a) Nyquist plots and b) Bode plots of CS corrosion in the presence	
3.39and absence of T2CDACH in 1M HCl2903.40Comparison of the corrosion inhibition efficiencies (η _{EIS} %) of 'S'	3.38	and absence of I3A2AT in 1M HCl	288
and absence of 12CDACH in IM HCl Comparison of the corrosion inhibition efficiencies ( $\eta_{EIS\%}$ ) of 'S'	2 20	a) Nyquist plots and b) Bode plots of CS corrosion in the presence	200
3.40	3.39	and absence of T2CDACH in 1M HCl	290
$^{3.40}$ containing heterocyclic in 1M HCl on CS in 1M HCl at $28^{\circ}$ C 291	3.40	Comparison of the corrosion inhibition efficiencies ( $\eta_{EIS\%}$ ) of 'S'	<b>.</b>
		containing heterocyclic in 1M HCl on CS in 1M HCl at 28°C	291
a) Tafel plots and b) Linear polarization plots of CS corrosion in the	3.41	a) Tafel plots and b) Linear polarization plots of CS corrosion in the	
3.41presence and absence of A9CNPTDA in 1M HCl.294		presence and absence of A9CNPTDA in 1M HCl.	294
a) Tafel plots and b) Linear polarization plots of CS corrosion in the	3.42	a) Tafel plots and b) Linear polarization plots of CS corrosion in the	204
3.42 presence and absence of P2CNPTDA in 1M HCl 294		presence and absence of P2CNPTDA in 1M HCl	294

r		
3.43	a) Tafel plots and b) Linear polarization plots of CS corrosion in the presence and absence of 3APNPTDA in 1M HCl	294
3.44	a) Tafel plots and b) Linear polarization plots of CS corrosion in the presence and absence of 2APNPTDA in 1M HCl	295
3.45	a) Tafel plots and b) Linear polarization plots of CS corrosion in the presence and absence of ANNPTDA in 1M HCl	295
3.46	a) Tafel plots and b) Linear polarization plots of CS corrosion in the presence and absence of I3A2AT in 1M HCl	295
3.47	a) Tafel plots and b) Linear polarization plots of CS corrosion in the presence and absence of T2CDACH in 1M HCl	296
3.48	Comparison study of corrosion inhibition efficiencies ( $\eta_{pol\%}$ ) of 'S' containing heterocyclic Schiff base inhibitors on CS in 1M HCl at $28^{0}$ C	297
3.49	Corrosion inhibition mechanism of A9CNPTDA molecules on metallic surface	299
3.50	Noise current for CS with and without 'S' containing heterocyclic inhibitors in 1M HCl solution	300
3.51	PSD curves of CS in a) blank b) A9CNPTDA c) P2CNPTDA d) 3APNPTDA e) 2APNPTDA f) ANNPTDA g) I3A2AT h) T2CDACH (1mM) in 1M HCl)	301
3.52	Pitting index curves of CS in a) blank b) A9CNPTDA c) P2CNPTDA d) 3APNPTDA e) 2APNPTDA f) ANNPTDA g) I3A2AT and h) T2CDACH	302
3.53	a) HOMO and b) LUMO of A9CNPTDA	305
3.54	a) HOMO and b) LUMO of P2CNPTDA	305
3.55	a) HOMO and b) LUMO of 3APNPTDA	305
3.56	a) HOMO and b) LUMO of 2APNPTDA	306
3.57	a) HOMO and b) LUMO of ANNPTDA	306
3.58	a) HOMO and b) LUMO of I3A2AT	306
3.59	a) HOMO and b) LUMO of T2CDACH	306
3.60	Optimised geometries of 'S' containing Schiff bases	307
3.61	Variation of corrosion rates of CS with the concentration of 'S' containing heterocyclic Schiff base inhibitors in $0.5M$ H ₂ SO ₄ for 24h	309
3.62	Comparison of corrosion inhibition efficiencies $(\eta_w\%)$ of 'S' containing heterocyclic Schiff base inhibitors on CS in 0.5M H ₂ SO ₄ for 24h	310
3.63	Langmuir adsorption isotherms of (a) A9CNPTDA (b) P2CNPTDA (c) 3APNPTDA (d) 2APNPTDA (e) ANNPTDA (f) I3A2AT (g) T2CDACH on CS in 0.5M H ₂ SO ₄	313
3.64	SEM images of (a) bare CS (b) CS treated with $0.5M H_2SO_4$ (c) CS treated with A9CNPTDA (1mM) (d) CS treated with ANNPTDA	315

	(1  mM) for 24h	
2 (5	(1mM) for 24h	
3.65	a) Nyquist plots and b) Bode plots of CS corrosion in the presence	316
	and absence of A9CNPTDA in 0.5M H ₂ SO ₄	510
3.66	a) Nyquist plots and b) Bode plots of CS corrosion in the presence	216
	and absence of P2CNPTDA in 0.5M H ₂ SO ₄	316
3.67	a) Nyquist plots and b) Bode plots of CS corrosion in the presence	
	and absence of 3APNPTDA in $0.5M H_2SO_4$	316
3.68	a) Nyquist plots and b) Bode plots of CS corrosion in the presence	
	and absence of 2APNPTDA in 0.5M H ₂ SO ₄	317
3.69	a) Nyquist plots and b) Bode plots of CS corrosion in the presence	
	and absence of ANNPTDA in 0.5M H ₂ SO ₄	317
3.70	a) Nyquist plots and b) Bode plots of CS corrosion in the presence	
	and absence of I3A2AT in 0.5M H ₂ SO ₄	317
3.71	a) Nyquist plots and b) Bode plots of CS corrosion in the presence	
	and absence of T2CDACH in 0.5M H ₂ SO ₄	318
	Comparison of Corrosion inhibition efficiencies ( $\eta_{EIS\%}$ ) of 'S'	
3.72	containing heterocyclic Schiff base inhibitors on CS in 0.5M H ₂ SO ₄	319
	at 28 ⁰ C	
2 72	a) Tafel plots and b) Linear polarization curves of CS corrosion in	
3.73	the presence and absence of A9CNPTDA in 0.5M H ₂ SO ₄	322
3.74	a) Tafel plots and b) Linear polarization curves of CS corrosion in	
	the presence and absence of P2CNPTDA in 0.5M H ₂ SO ₄	322
3.75	a) Tafel plots and b) Linear polarization curves of CS corrosion in	
	the presence and absence of 3APNPTDA in 0.5M H ₂ SO ₄	323
3.76	a) Tafel plots and b) Linear polarization curves of CS corrosion in	
	the presence and absence of 2APNPTDA in $0.5M H_2SO_4$	323
3.77	a) Tafel plots and b) Linear polarization curves of CS corrosion in	
	the presence and absence of ANNPTDA in $0.5M H_2SO_4$	323
3.78	a) Tafel plots and b) Linear polarization curves of CS corrosion in	
	the presence and absence of I3A2AT in $0.5M H_2SO_4$	324
3.79	a) Tafel plots and b) Linear polarization curves of CS corrosion in	
	the presence and absence of T2CDACH in $0.5M H_2SO_4$	324
3.80	Comparison study of corrosion inhibition potencies ( $\eta_{pol}$ %) of 'S'	
2.00	containing heterocyclic Schiff bases on CS in 0.5M $H_2SO_4$ at 28 ^o C	324
l		