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PREFACE 

Phosphomolybdate (PMO) is an important sub-class of Polyoxometalates (POMs). This 

phosphorous and molybdenum containing heteropolyanions comprise of a distinguished 

family with versatile structural features and promising applications. The counter cations 

of these anionic clusters can be metal ions, metal complexes or protonated organic 

moieties. The Phosphomolybdates are widely classified into various types. Among these, 

Strandberg-type {P2Mo5O23}
6-, Keggin-type {PMo12O40}

3-, Wells Dawson-type 

{P2Mo18O62}
6− and as fully reduced cluster {P4Mo6O31}

12- are the predominant types. 

Since they are supramolecular materials they can self-assemble into tuneable size and 

shape with varying dimensionality. In this thesis, seven novel Strandberg-type PMOs and 

one copper based Keggin-type solid have been reported along with their characterization 

and related physico-chemical properties. Ammonium Phosphomolybdate (APM) which 

is a Keggin-type PMO was synthesized along with its two composites with polyaniline 

and poly (N-methylaniline), namely APM/PAni and APM/PNMAni respectively. APM 

was found to be a good ion-exchanger to remove cationic dye-stuffs from its aqueous 

solution with high efficiency and appreciable reusability. The Cr(VI) removal efficiency 

of APM and its composites have been investigated and APM/PNMAni was observed as a 

good candidate for the same.  

Two synthetic methods have been used in the thesis namely, solvent evaporation 

technique and hydrothermal technique. In the first method, P and Mo precursors along 

with organic moiety and metal chlorides were taken in the form of clear aqueous solution 

and kept undisturbed for the self-assembly process. The slow evaporation of the solution 

at room temperature resulted in crystallization of PMO based solids. In the second 

method, a hydrothermal bomb was used; which is a sealed Teflon container. The reaction 
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was carried out under autogenous pressure and the precursors were added along with 

water. A temperature range from 100-180oC was selected for a time span of 3 days. The 

slow cooling of the apparatus was allowed for the crystallization of solids. 

The thesis is divided into seven chapters. Chapter I comprises of a brief introduction to 

the work, giving emphasis to the synthetic routes, different classes of PMOs based on 

their structural features and properties along with their important applications. A 

literature survey on the research carried out in this area for the past decade was carried 

out and systematically tabulated.   

In chapter II, two new Strandberg cluster (referred to as {P2Mo5}) based PMOs namely, 

{H-2a3mp}5[{PO3(OH)}{PO4}Mo5O15], and {H-2a4mp}5[{PO3(OH)} {PO4}Mo5O15]. 

6H2O were synthesized via solvent evaporation technique using 2-amino-3-

methylpyridine (2a3mp) and 2-amino-4-methylpyridine (2a4mp) respectively. These 

solids formed a supramolecular framework stabilized by hydrogen bonding interaction 

between cluster anions and organic moieties. CH…π interactions between the organic 

moieties reinforced the crystal packing. The electrochemical behaviour of the 

synthesized solids was explored by means of three electrode system using 1 mM 

K4[Fe(CN)6] in 0.1 M KCl as supporting electrolyte. In addition, the optical band gaps of 

the solids were also calculated using ultraviolet-diffused reflectance spectroscopy data. 

Cyclic voltammogram of both the solids showed reversible waves corresponding to 

MoVI/MoV electron process. The optical band gap energies of the solids showed slight 

difference on account of their difference in the nature of the ligands.   

In chapter III, self-assembly of molybdate and phosphate precursors in the presence of 

zinc ions and organic ligands viz. benzimidazole (bimi), 4-aminopyridine (4-ap) and 

pyrazole (pz), has been carried out under hydrothermal condition. The crystallization of 
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Strandberg cluster based solids {Hbimi}5[HP2Mo5O23].5H2O, {Hbimi}6[P2Mo5O23].H2O, 

{4-Hap}4[H2P2Mo5O23].2H2O, {4-Hap}5[HP2Mo5O23] and {Hpz}6{Zn(pz)4(H2O)2} 

[{Zn(pz)2P2Mo5O23}2].8H2O  was observed. The chapter highlights the structural 

differences in the supramolecular isomers; and the effect of supramolecular isomerism 

and nature of ligands on the optical band gap energies (Eg) of the synthesized solids.   

In chapter IV, an attempt was made to crystallize phosphorous and molybdenum 

precursors in the presence of MCl2.xH2O (M = Co, Ni, Cu and Zn) with pyrazole to form 

PMO solids of varying dimensionality. The solids obtained were: 

{Hpz}6{Zn(pz)4(H2O)2}[{Zn(pz)2P2Mo5O23}2].8H2O, [{Cu(pz)4}2 {H2P2Mo5O23}].H2O, 

{Ni(pz)4}[{Ni(pz)4}2{H2P2Mo5O23}]2  [{Ni(pz)4}{Ni(pz)4 (H2O)} {HP2Mo5O23}]2. 

14H2O, [Ni(pz)4Cl2], {pz}2[{Co(pz)4}5 {P2Mo5O23}2].6H2O and [{Cu(pz)2}4 

{CuMo12O38(OH)2}].8H2O. Among these, the last solid is a rare example of copper 

based Keggin cluster. Except for this solid, which was synthesized using hydrothermal 

method; all other solids were obtained via solvent evaporation method. The magnetic 

properties of the solids were investigated using Guoy Balance.  

In chapter V, synthesis, characterization and dye removal efficiency of ammonium 

phosphomolybdate (APM) which is a Keggin-type solid has been discussed. It was 

concluded that APM could be effectively used as an ion-exchanger to remove cationic 

dye-stuffs from aqueous solution.  The dyes used for investigation were methylene blue, 

malachite green, methyl red and eosin. The influence of parameters such as nature of 

light, amount of APM, contact time and pH on dye removal efficiency was investigated.  

In chapter VI, the synthesis and characterization of two composites of APM with 

polyaniline and poly (N-methylaniline), namely APM/PAni and APM/PNMAni 

respectively have been summarised. The difference in band gap energy in APM upon the 
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formation of the composite was investigated, and the capacity of these composites in the 

removal of hexavalent chromium from aqueous solution was explored. It was concluded 

that APM/PNMAni could effectively reduce harmful Cr(VI) to environmentally benign 

Cr(III).   

Chapter VII concludes the entire work and emphasizes the future scopes of PMO based 

hybrid solids.  
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ABSTRACT 

Polyoxometalate (POM) is an important class of early transition metal-oxygen clusters 

with plenteous intrinsic structures and widespread applications. Phosphomolybdate 

(PMO), a prominent sub-class of POMs, has been attracting the attention of researchers 

on account of their versatile building blocks and controllable architectures. 

Supramolecular self-assembly is a powerful tool to create PMO solids with attracting 

properties. Important factors affecting the self-assembly process are nature of organic 

moiety, temperature, pH of the medium and nature of metal ions. Owing to the 

controllable external factors, the self-assembly can lead to the formation of 

supramolecular aggregates with varying size and dimensionality such as one dimensional 

chain, two dimensional sheets and three dimensional networks. Moreover, nitrogen 

donor ligands and their pH related nature play a vital role in the crystal engineering. 

They have the capability to form complex with metal centres or undergo protonation. 

Recently a new trend of designing composite materials of PMOs with suitable substances 

like polymers has been observed.  

In this thesis, various novel PMOs with varying structure and dimensionality have been 

synthesized. The characterization of the synthesized solids was done successfully by 

single crystal X-ray diffraction, powder X-ray diffraction, fourier transform infrared 

spectroscopy and thermo gravimetric analysis. The behavior and dynamics of these 

solids on account of their non-bonding interactions involved in the self-assembly process 

and affecting factors have been illustrated. Some predominant properties of the 

synthesized solids like optical band gap energy, magnetic properties and electrochemical 

properties were investigated. Ammonium phosphomolybdate (APM), a member of 

Keggin-type PMO was synthesized and characterized. Its ability to remove cationic dye-

stuffs from aqueous solutions was explored. Two unique composites of APM with 
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polyaniline and poly(N-methylaniline) viz. APM/PAni and APM/PNMAni were 

synthesized and characterized. Moreover, APM/PNMAni composite was found as a good 

candidate to reduce environmental pollutant Cr(VI) to Cr(III) from contaminated 

aqueous solution.  
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