DECLARATION

I hereby declare that the thesis entitled "Photodegradation of Polystyrene by Nano Titanium dioxide and Photosensitzers", submitted to the University of Calicut in partial fulfillment of the requirement for the award of the Degree of Doctor of Philosophy in Chemistry is a bonafied research work done by me under the supervisions of Dr. Sunil Jose T, Assistant Professor, Research and Post graduate Department of Chemistry, St. Thomas' College (Autonomous), Thrissur and Dr. Rajesh C, Assistant Professor, Department of Chemistry, MES Keveeyam College, Valanchery.

I also declare that the material presented in this thesis is original and does not form the basis for the award of any other degree, diploma or other similar titles of any other university.

How Calips **DINOOP LAL S**

Date: 07.12.2020

Acknowledgement

I express my special gratitude to my research guide, **Dr. Sunil Jose T** who made it possible to accomplish the goal of my doctoral studies fruitfully. The freedom of work I enjoyed under his supervision helped me in moulding my potential to tackle the barrier that emerged during the course of my studies. I am very much obliged to my research co-guide **Dr. Rajesh C** without whom my work would have been incomplete. I remember with grace the constant support he gave me during the difficulties that aroused during my work period. Expressing my gratitude for the valuable guidance, support and motivation extended by my research guides remain incomplete through these limited words.

I am greatly motivated by **Dr. Joby Thomas K**, the Vice Principal of our institution and HoD of Chemistry Department. Besides decorating the official chairs of responsibilities, he coordinated the research activities of our institution in an appreciable way. I am always thankful to him. I acknowledge **Dr.Babu Joseph**, the former HoD of our Chemistry department, for his valuable advices and guidance.

The spirit of St.Thomas' College- my research institution has induced an invisible bondage which gave me the feeling of another home. I remember with thanks the former principals of St.Thomas' college **Dr.P O Jenson** and **Dr.Ignatious Antony** along with the current principal **Dr**. Joy K L who implemented their great visions in order to develop the qualities of research. They motivated us a lot. **Rev.Fr.Dr.Martin Kolambrath** the BURSAR of our institution was always approachable and contributed a lot for the development of infrastructures in our research centre. I sincerely thank him for his unforgettable support.

I extend my gratitude to all the teaching and non-teaching staff of St. Thomas' college, Thrissur for their support in one way or the other. I thank with honour, **Dr. C L Joshy**, honourable Registrar of Calicut University and former faculty of our department along with the other faculty members **Dr.Paulson Mathew**, **Dr.Jency Thomas K**, **Dr. Jinish Antony**, **Dr.Joseph Joly V L**, **Prof. Aji C V**, **Prof. Reeja Johnson** and **Prof.Sr.Jisha Joseph** who helped me a lot during the course of my work. I further extent my sincere thanks to **Dr. Jiju A Mathew** Assistant Professor and Head, Department of Computer Science, St.Thomas' College, Thrissur, **Dr.Arun K J**, Assistant Prof., Department of Physics, Sri Keralavarma College Thrissur, **Dr. Soney Varghese**, Associate Professor, School of Material Science and Engineering, NIT Calicut, **Dr. Honey John**, Professor and Head, Department of Polymer Science and Rubber Technology, CUSAT, Kochi, **Dr. Subash**, Assistant professor, School of Materials Science and Engineering, NIT Calicut and **Dr. Siny Paul**, Professor, Department of electrical and Electronics Engineering, M A College of engineering, Kothamangalam, who helped me a lot during various stages of my work.

It is said that the real friends are the ones who comes to our aid during the hardest times of our life. They laugh with us while the rest laugh at us. I can whole heartedly point out such friends whom I consider to be my family members. They include my senior researchers and coresearchers namely Dr.Aby Paul, Dr. Vinod P Raphael, Dr.Shaju K S, Dr. Nimmy Kuriakose, Dr.Drishya Sashidharan, Dr. Sini Varghese, Dr.Binsi M Paulson, Mr. Ramesh N, Ms.Siji T B, Ms.Ragi K, Ms.Anju Rose Puthukkara P, Ms. Vidhya Thomas, Ms.Swathy T S, Ms.Raji, Ms.Memsy C K, Ms. Savitha Unnikrishnan K, Mr. Martin Francis, Ms.Rohini Das K, Ms.Nithya, Ms.Neera, Sr.Cinu Wilson and Ms.Akhila of my institution. The sweet memories of the happiest moments of life spent with my friends presented me an unforgettable nostalgia. I also thank Ms. Divya, MES Keveeyam College, Valanchery. Mr.Saeed NIT Calicut and many more.

I always remain thankful to various institutions which provided me the facilities for conducting my work and/or analysing my samples. These institutions include MES Keveeyam College, Valanchery, NIT Calicut, Department of Polymer Science and Rubber Technology, CUSAT, Kochi, SAIF-STIC CUSAT, Kochi, M.A. Engineering College, Kothamangalam, Government Engineering College, Thrissur, Vetinary college Thrissur, Karunya Institute of Science and technology, Coimbatore, CLIF Trivandrum, NIIST Trivandrum and IISc Banglore. I extend my sincere thanks to all the staffs of C.H.M.K library, University of Calicut, for providing me the facilities for conducting my literature survey. I specially thank **Dr. Vinod V M**, assistant librarian, C.H.M.K library for conducting the plagiarism check of my thesis.

The real strength and support I enjoyed at every instances of my research career could be credited to my family members, especially my parents. Even though I was physically separated from my family during the course of my work, the gravity of their infinite love and bondage cherished within me the real confidence and courage.

I always remember with never ending gratitude, all the personalities who helped at different stages of my work physically and/or mentally. The helping hands extended by each and every one of them are well accounted for which I always bet to remain thankful.

With heartfelt gratitude

DINOOP LAL S

Dedicated to

Our Envíronment

Celebrating the 100th anniversary of polymer science, let the humanity be more concerned about the potential threats posed by the plastic debris to our environment along with the innovative techniques for the development of future polymer technology.

Let us sacrifice our today so that our children can have a better tomorrow - A.P.J. Abdul Kalam

Preface

The increasing demand of plastic commodities resulted in their mass production worldwide. The accumulation of the used and thrown away plastics over land and water bodies has contributed to plastic pollution. The past few decades witnessed a steep increase in the total quantity of plastic debris that has affected the eco system badly. Photo degradation is considered as an ecofriendly and cheap method that could be employed for the demolition of such plastic debris. The disadvantage of photo degradation is that, it is a slow process. Application of suitable methods to accelerate the photodegradation process is our research problem. Photodegradation can be enhanced in the presence of photocatalysts. The entire thesis reports the studies conducted in order to accelerate the rate of photodegradation of polystyrene (PS) using different photocatalysts, under controlled ultraviolet (UV) radiation. The mechanical, electrical and thermal properties of the PS-photocatalyst composites are also studied. Nano TiO₂ has been chosen as the core photocatalyst for the degradation of PS considering its efficiency, non-toxicity, photostability, low cost and ease for synthesis. The full-fledged photocatalytic efficiency could not be exhibited by this semiconductor metal oxide due to its faster charge recombination. Modification of TiO₂ using suitable photosensitizers can alter its surface chemistry, resulting in better charge separation, thereby improving its photocatalytic efficiency. In addition to Nano TiO₂, we have also studied the photocatalytic efficiency of ZnO and modified ZnO for the degradation of PS under UV radiation.

The thesis as a whole is divided into eight chapters. A general introduction along with the literature review of PS chemistry, TiO_2 , surface modified TiO_2 and ZnO are discussed in chapter 1.

The preparation of PS and PS-photocatalyst composite specimens for their photodegradation studies is explained in chapter 2. PS and PS composite sheets prepared by solvent casting methods were subjected to controlled UV irradiation using a UV tube of power 30 W, emitting UV radiation of wavelength 253 nm. All the specimens were irradiated for a total time period of 1000 hours and monitored at regular intervals of 200 hours, using various analysis techniques. The monitoring techniques included gel permeation chromatography, FTIR and UV spectroscopies, SEM, weight loss measurements etc. Specimens were also moulded for the

determination of electrical and mechanical studies as per ISO standards and these specimens were also subjected to UV irradiation. Electrical properties studied include the break down voltage (BDV) and dielectric constant. The mechanical properties included measurement of tensile and flexural strength. Thermo gravimetric analysis (TGA) of the specimens was also conducted. All these studies were conducted for the non-irradiated as well as UV irradiated PS-composite specimens.

The synthesis and characterization of TiO₂ and ZnO photocatalysts are described in chapter 3. Nano TiO₂ has been synthesized by sonication assisted sol-gel technique. ZnO has been synthesized by three different methods- sonication assisted precipitation, hydrothermal method with uncontrolled hydrolysis and hydrothermal method with controlled hydrolysis. ZnO nanospheres obtained via hydrothermal method with controlled hydrolysis were used as photocatalyst. A comparison of photodegradation of PS in the absence and presence of TiO₂ and ZnO photocatalysts were studied under UV radiation. A possible mechanism was proposed for the UV initiated photodegradation of PS in the presence and absence of TiO₂ and ZnO.

Chapter 4 describes the study of photodegradation of PS in the presence of TiO₂ and ZnO modified by graphene oxide (GO) photocatalyst. The synthesis and characterisation of GO by modified Hummer's method and the preparation of GO-modified TiO₂ and ZnO by sonication assisted hydrothermal method are discussed. Different sets of TiO₂-GO and ZnO-GO composites were prepared with varying percentages of GO. The interaction of GO with TiO₂ or ZnO is investigated. All these photocatalysts were loaded into the PS matrix whose photodegradation was studied.

Chapter 5 deals with the study of photodegradation of PS using polyaniline (PANI) modified TiO₂ and ZnO as photocatalysts. Polyaniline has been synthesised by chemical oxidative polymerization. TiO₂-PANI as well as ZnO-PANI composites were also developed by chemical oxidative polymerization method where insitu polymerization of aniline was done over the surface of dispersed TiO₂ or ZnO particles. The mole percentage of aniline was varied in order to obtain TiO₂-PANI/ZnO-PANI composites of different composition. The interaction between TiO₂/ZnO with PANI is also investigated.

The role of a few benzophenone derivatives and tryphenylmethane dyes as photosensitizers for the degradation of PS is discussed in chapter 6. The benzophenone derivatives chosen as photosensitizers were 4-methoxybenzophenone 2-hydroxy-4-methoxybenzophenone, 2-chlorobenzophenone, 4-nitrobenzophenone and benzophenone itself. The dye photosensitizers included malachite green and methyl blue. Photodegradation of PS was studied by loading these photosensitizers directly or in coupled state with nano TiO₂. The mechanism of photodegradation of PS in the presence of these photocatalysts is discussed.

Photodegradation of PS catalysed by metal doped TiO_2 is discussed in chapter 7. TiO₂ was doped with Cu, Fe and Ag separately. The mole percentage of the dopant metal used was varied in order to obtain TiO_2 -metal photocatalysts of varying composition. The phase change occurred in TiO_2 a result of increasing metal percentages is discussed. The mechanism of improved photocatalytic efficiency of metal doped TiO₂, for the photodegradation of PS is also discussed.

The entire work is summarised in chapter 8. The possible application of PScomposites that depends on the type of photocatalysts loaded is discussed. The significance of the work along with its environmental friendliness and future scope is also discussed.

Abbreviations

PS	Polystyrene
UV	Ultraviolet
GPC	Gel permeation chromatography
UV-DRS	UV-visible diffused reflectance spectroscopy
BDV	Breakdown voltage
PANI	Polyaniline
GO	Graphene oxide
BP	Benzophenone
2HO4MOBP	2 by drawy 4 mosth and b array have a
	2-hydroxy-4-methoxybenzophenone
4MOBP	2-nydroxy-4-methoxybenzophenone 4-methoxybenzophenone
4MOBP 2ClBP	
	4-methoxybenzophenone
2ClBP	4-methoxybenzophenone 2-chlorobenzophenone

	Contents	Page No.
	List of Tables	vii
	List of Figures	xvii
Chapter 1	Introduction and Review of Literature	1-51
1.1	A glimpse into the polymer history	1
1.2	Polystyrene	2
1.2.1	Tacticity in PS and its significance	2
1.2.2	Polymerisation techniques for PS production	5
1.2.3	Classification of PS	8
1.2.4	PS blends or copolymers	9
1.3	Plastic Debris and environmental issues	9
1.3.1	Causes and consequences of plastic pollution	9
1.3.2	Remedial measures against plastic pollution	10
1.4	Photodegradation	11
1.4.1	Photodegradation of PS	12
1.5	Titanium dioxide (TiO2)	15
1.5.1	Polymorphs of TiO2	15
1.5.2	General methods for TiO ₂ synthesis	16
1.5.3	TiO ₂ as a photocatalyst	20
1.6	Modified TiO ₂ for enhanced photocatalysis	23
1.6.1	Metal doping	24
1.6.2	TiO ₂ modified by carbonaceous materials	25
1.6.3	<i>TiO</i> ₂ modified by conjugated polymers	30
1.7	Organic compounds as photosensitizers	31
1.8	Zinc oxide (ZnO)	33
1.9	Objectives of the present study	35
	References	35
Chapter 2	Materials and Methods	53-58
2.1	Materials	53
2.2	Preparation of PS and PS-photocatalyst composite sheets	54
2.2.1	Preparation of PS sheets	54
2.2.2	Preparation of PS-composite sheets	54

2.2.3	Preparation of PS and PS-composites for mechanical studies	55
2.2.4	Preparation of PS and PS-composites for electrical studies	55
2.3	Photodegradation reaction setup	56
2.4	Characterisation techniques	57
	Photodegradation of Polystyrene using Nano TiO ₂ and	
Chapter 3	Nano ZnO Catalysts under UV irradiation - a	
	Comparison	59-94
	Abstract	59
3.1	Introduction	60
	Section I	
	Synthesis and characterisation of nano TiO_2 and ZnO	62-70
3.2	Methods	62-63
3.2.1	Synthesis of nano TiO ₂	62
3.2.2	Synthesis of ZnO	62
3.3	Results and Discussion	63-70
3.3.1	Powder XRD	63
3.3.2	FESEM-EDX	65
3.3.3	FTIR Analysis	67
3.3.4	UV-visible diffused reflectance spectroscopy (UV-DRS)	68
	Section II	
	Photodegradation of polystyrene using nano TiO_2 and ZnO	70-91
3.4	Results and Discussion	70-87
3.4.1	Gel permeation chromatography (GPC) analysis	70
3.4.2	FTIR Spectroscopy	73
3.4.3	UV-visible diffused reflectance spectroscopy (UV-DRS)	76
3.4.4	SEM	79
3.4.5	Thermogravimetric Analysis (TGA)	80
3.4.6	Mechanical Properties of PS, PS-TiO2 and PS-ZnO	
	composites	81
3.4.7	Electrical Properties of PS, PS-TiO ₂ and PS-ZnO composites	83
3.4.8	Weight loss measurement	85
3.4.9	Visual observations	86
3.5	Mechanism of Photodegradation of PS under UV radiation	87

3.6	Conclusion	91
	References	92
Chapter 4	Accelerated photodegradation of Polystyrene Using nano	
	TiO ₂ and ZnO surface modified with Polyaniline	95-133
	Abstract	95
4.1	Introduction	96
	Section I	
	Synthesis and characterisation of TiO ₂ -PANI and ZnO-PANI	
	catalysts	97-113
4.2	Methods	97-98
4.2.1	Synthesis of PANI	97
4.2.2	Synthesis of nano TiO ₂ -PANI composites	97
4.2.3	Synthesis of nano ZnO-PANI composites	98
4.3	Results and Discussion	99-113
4.3.1	Powdered XRD	99
4.3.2	FESEM, EDX, HRTEM and SAED	103
4.3.3	FTIR Spectroscopy	106
4.3.4	UV-visible diffused reflectance spectroscopy (UV-DRS)	109
4.3.5	Structure and interaction within TiO2-PANI or ZnO-PANI	
	composites	112
	Section II	
	Photodegradation of polystyrene using TiO2-PANI and ZnO-	
	PANI catalyst	114-130
4.4	Results and Discussion	114-129
4.4.1	Gel permeation chromatography (GPC) analysis	114
4.4.2	FTIR spectroscopy	117
4.4.3	UV- visible diffused reflectance spectroscopy (UV-DRS)	120
4.4.4	Scanning electron microscopy (SEM)	122
4.4.5	Thermogravimetric Analysis (TGA)	123
4.4.6	Mechanical Properties	124
4.4.7	Electrical Properties	126
4.4.8	Weight loss	128
4.5	Mechanism of Photocatalysis of TiO2-PANI and ZnO-PANI	129

4.6	Conclusion	130
	References	131
Chapter 5	Accelerated photodegradation of Polystyrene Using TiO ₂	
	and ZnO surface modified with Graphene oxide	135-172
	Abstract	135
5.1	Introduction	136
	Section I	
	Synthesis and Characterisation of TiO ₂ -GO and ZnO-GO	
	composites	138-154
5.2	Experimental	138-139
5.2.1	Synthesis of Graphene oxide (GO)	138
5.2.2	Synthesis of TiO ₂ -GO composite	138
5.2.3	Synthesis of ZnO-GO	139
5.3	Results and Discussion	139-154
5.3.1	Powder XRD	139
5.3.2	FTIR Spectroscopy	142
5.3.3	Raman Spectroscopy	144
5.3.4	X-ray photoelectron spectroscopy (XPS)	145
5.3.5	UV-visible diffused reflectance spectroscopy (UV-DRS)	147
5.3.6	SEM-EDX, HRTEM and SAED	149
5.3.7	Interactions of TiO_2/ZnO with GO in the composites	152
	Section II	
	Photodegradation of polystyrene using TiO2-GO and ZnO-	
	GO composites as photocatalysts	154-168
5.4	Results and Discussion	154-166
5.4.1	Gel permeation chromatography (GPC)	154
5.4.2	FTIR Spectroscopy	157
5.4.3	UV-Diffused reflectance spectroscopy (UV-DRS)	160
5.4.4	Mechanical Properties	162
5.4.5	Electrical properties	164
5.4.6	Thermogravimetric Analysis (TGA)	166
5.4.7	Weight loss	166
5.5	Mechanism of Photodegradation of PS-TiO2-GO composites	167

5.6	Conclusions	168
	References	170
Chapter 6	UV degradation of Polystyrene using Organic	
	Photosensitisers coupled and uncoupled with Nano TiO ₂	173-210
	Abstract	173
6.1	Introduction	174
	Section I	
	UV degradation of polystyrene using benzophenone	
	derivatives and organic dyes as photosensitizers	176-191
6.2	Results and Discussion	178-191
6.2.1	Gel permeation chromatography (GPC)	178
6.2.2	FTIR Spectroscopy	181
6.2.3	UV- visible diffused reflectance spectroscopy (UV-DRS)	183
6.2.4	Mechanical properties	186
6.2.5	Electrical properties	187
6.2.6	Thermogravimetric Analysis (TGA)	189
6.2.7	Weight loss	188
	Section II	
	Enhanced photocatalytic activity of Nano TiO ₂ coupled	
	benzophenone derivatives and organic dyes for the UV	
	degradation of Polystyrene	191-208
6.3	Preparation of PS-TiO ₂ -photosensitizer composites	191
6.4	Results and Discussion	193-206
6.4.1	Gel Permeation Chromatography (GPC)	193
6.4.2	FTIR spectroscopy	196
6.4.3	UV-visible diffused reflection spectroscopy (DRS)	198
6.4.4	Mechanical properties	201
6.4.5	Electrical properties	202
6.4.6	Thermogravimetric Analysis (TGA)	203
6.4.7	Weight loss	204
6.4.8	Scanning Electron Microscopy (SEM)	205
6.5	Mechanism of photosensitized PS degradation	206
6.6	Conclusion	208

	References	209
Chapter 7	Enhanced photocatalytic activity of metal doped TiO ₂ in	
	the UV light initiated photodegradation of Polystyrene	211-237
	Abstract	211
7.1	Introduction	212
	Section I	
	Synthesis and Characterisation of Metal doped TiO ₂	213-225
7.2	Experimental	213-215
7.2.1	Synthesis of Ag Doped TiO ₂	213
7.2.2	Synthesis of Fe Doped TiO_2	214
7.2.3	Synthesis of Cu Doped TiO ₂	214
7.3	Results and discussion	215-225
7.3.1	Powder XRD	215
7.3.2	FESEM-EDX analysis	221
7.3.3	FTIR spectroscopy	222
7.3.4	UV- visible diffused reflectance spectroscopy (UV-DRS)	222
	Section II	
	Photodegradation of PS using metal doped TiO ₂	226-234
7.4	Method	226
7.5	Results and Discussion	226-233
7.5.1	Gel permeation chromatography (GPC)	226
7.5.2	FTIR Spectroscopy	228
7.5.3	UV- visible diffused reflectance spectroscopy (UV-DRS)	229
7.5.4	Mechanical Properties	230
7.5.5	Electrical properties	231
7.5.6	Thermogravimetric Analysis (TGA)	231
7.5.7	Weight loss	232
7.6	Mechanism of photocatalysis of TiO2-metal composites	231
7.7	Conclusions	234
	References	235
Chapter 8	Summary and Conclusion	239-241
	Publications and Conference presentations	

List of figures	List	of	figures
-----------------	------	----	---------

	Chapter 1: Introduction and Review of Literature	
Figure	Figure caption	Page
no:		No
1.1	Illustration of tacticity in PS	3
1.2.1	Mechanism of PS polymerisation via free-radical polymerisation as	
	proposed by P.J.Florey (1937)	7
1.2.2	Mechanism of PS polymerisation via free-radical polymerisation as	
	proposed by F.R. Mayo (1968)	7
1.2.3	Formation of dimer (F.R. Mayo) from diradical (P.J.Florey) as	
	explained by J.Mulzer (1988)	7
1.3	Mechanism of conjugated double bond formation in PS chain under	
	UV irradiation proposed by Grassie and Weir (1965)	13
1.4	Arrangement of TiO_2 octahedral units in anatase, rutile and brookite	
	polymorphs of TiO ₂	15
1.5	Bands and sub-bands in the electronic structure due to octahedral	
	splitting, tetragonal, triagonal and orthorhombic distortions	16
1.6	Mechanism of photocatalysis of TiO ₂	21
	Chapter 2: Materials and Methods	
Figure	Figure caption	Page
no:		No
2.1	Dimensions of injection molded specimens for tensile and flexural	
	measurements as per ISO standards	55
2.2	Illustruction of PS composites preparation and their	
	photodegradation setup	56
2.3	Setup for BDV measurement	58
	Chapter 3: Photodegradation of Polystyrene using Nano TiO ₂	
	and Nano ZnO Catalysts under UV irradiation - a Comparison	
Figure	Figure caption	Page
no:	ð í	No
3.1.1	XRD pattern of nano TiO_2 particles	63
3.1.2	XRD pattern of nano ZnO particles	64
3.2.1	FESEM image (A) and EDX pattern (B) of nano TiO_2	66
3.2.2	FESEM image of ZnO synthesized through: Precipitation method (A)	
	Hydrothermal method (uncontrolled hydrolysis) (B) Hydrothermal	
	method (controlled hydrolysis)(C) and EDX pattern of nano ZnO	
	(D)	66
3.3	FTIR spectra of nano TiO ₂ and nano ZnO	67
3.4	A): Absorption spectra of ΠO_2 and ZnO , B): Plot of $F(R)$ versus nu	
3.4	<i>A</i>): Absorption spectra of TiO_2 and ZnO , <i>B</i>): Plot of $F(R)$ versus hv <i>C</i>): $(F(R)hv)^2$ versus hv representing the direct allowed Eg and <i>D</i>):	
3.4	<i>A):</i> Absorption spectra of $I1O_2$ and ZnO , <i>B):</i> Plot of $F(R)$ versus nv <i>C):</i> $(F(R)hv)^2$ versus hv representing the direct allowed Eg and <i>D):</i> $(F(R)hv)^{1/2}$ versus hv representing the indirect allowed Eg of TiO_2	

3.5.1	A): Weight average (\overline{M}_w) and B): number average (\overline{M}_n) molecular	
	weights of PS and PS-3% TiO ₂ composite under different UV	
	irradiation time	71
3.5.2	A): Number of chain scissions per molecules (S) and B): number of	
	scission events per gram (N_t) of PS and PS-3% TiO ₂ composite under	
	different UV irradiation time	72
3.5.3	Polydispersity index (PDI) of PS and PS-3%TiO ₂ , PS-3%ZnO	
	composite under different UV irradiation time	72
3.6.1	FTIR spectra of PS after different UV exposure time intervals	
	ranging from 0h to 1000h	73
3.6.2	FTIR spectra of $PS-3\%TiO_2$ after different UV exposure time	
	intervals ranging from 0h to 1000h	74
3.6.3	FTIR spectra of PS-3%ZnO after different UV exposure time	
	intervals ranging from 0h to 1000h	74
3.7.1	UV-DRS of PS (A), PS-3%TiO ₂ (B) and PS-3%ZnO (C) at regular	
	UV irradiation intervals and their degradation percentages (D%)	77
3.7.2	Optical bandgap energy determination from the plot of $(\alpha h v)^2 v/s h v$	
	for PS (A), PS-3%(TiO ₂) (B) and PS-3%ZnO) (C) subjected to	
	different UV exposure time intervals ranging from 0h to 1000h	78
3.8	SEM image of PS-3%TiO ₂ and PS-3%ZnO respectively before (a & c) and	
	after (b & d) UV irradiation of 1000 h	79
3.9	TGA thermogram of PS, PS-3%TiO ₂ , PS-3%ZnO before and after	
	UV irradiation of 1000h	80
3.10.1	Stress-strain plot of pristine PS	83
3.10.2	Tensile (A) and flexural (B) strengths of PS with different weight	
	percentages of TiO ₂	83
3.10.3	Tensile (A) and flexural (B) strengths of PS, PS-TiO ₂ and PS-ZnO	
	composites exposed to UV radiation for 0,400 and 1000 h	83
3.11.1	Dielectric breakdown (breakdown voltage) of PS, PS-3%TiO ₂ and	
	PS-3%ZnO at varying UV irradiation time	84
3.11.2	Dielectric constants of PS, PS-3%TiO ₂ and PS-3%ZnO at UV	
	irradiation intervals of 0,400 and 1000 hours	85
3.12	Weight loss percentages of PS, PS-TiO ₂ and PS-ZnO Composites at	
	regular intervals of UV irradiation	86
3.13	PS-TiO ₂ Composite before UV irradiation (A) and after UV	
	<i>irradiation of 1000 h (B)</i>	86
3.14.1	Possible -C-C- and/or -C-H- bond scissions at various sites of PS	88
3.14.2	Formation of $C=C$ double bond and conjugated double bonds	89
3.14.3	Formation of $-OOH$, $>C=O$ and $-OH$	90

nano TiO ₂ and ZnO surface modified with Polyaniline		
Figure	Figure caption	Page
no:		No.
4.1.1	PXRD pattern of PANI	99
4.1.2	PXRD pattern of nano TiO2-PANI composites	100
4.1.3	PXRD pattern of nano ZnO-PANI composites	101
4.2.1	SEM image (A) and EDX pattern (B) of nano TiO ₂ -10% PANI composite	104
4.2.2	TEM image (A&B) and SAED pattern (C) of nano TiO ₂ -10% PANI composite	104
4.2.3	TEM image (A, B & C) and SAED pattern (D) of nano ZnO-PANI composite	105
4.3.1	FTIR spectra of TiO ₂ , PANI and TiO ₂ -PANI composites	106
4.3.2	FTIR spectra of ZnO, PANI and ZnO-PANI composites	108
4.4.1	<i>UV-visible spectra</i> , B) <i>Plot of</i> $F(R)$ <i>versus hv</i> , C) $(F(R)hv)^{1/2}$ <i>versus hv and</i> D) $(F(R)hv)^2$ <i>versus hv of</i> TiO_2 , <i>PANI and</i> TiO_2 - <i>PANI</i>	
	composites	109
4.4.2	<i>UV-visible spectra</i> , B) <i>Plot of</i> $F(R)$ <i>versus hv</i> , C) $(F(R)hv)^2$ <i>versus hv</i> and D) $(F(R)hv)^{1/2}$ <i>versus hv of ZnO</i> , <i>PANI and ZnO-PANI</i> <i>composites</i>	111
4.5	Structure of PANI and interaction between TiO ₂ /ZnO and PANI	113
4.6.1	A) Weight average (\overline{M}_w) and B) number average (\overline{M}_n) molecular weights of PS-TiO ₂ -PANI composite under different UV irradiation	
4.6.2	time A) Weight average (\overline{M}_w) and B) number average (\overline{M}_n) molecular weights of PS-ZnO-PANI composite under different UV irradiation time	114 115
4.6.3	(A) Number of chain scissions per molecule (S) and (B) number of scission events per gram(N_t) of PS-TiO ₂ -PANI composite under different UV irradiation time	115
4.6.4	<i>A)</i> Number of chain scissions per molecule (S) and <i>B</i>) number of scission events per gram (N_t) of PS-ZnO-PANI composite under different UV irradiation time	115
4.6.5	<i>Polydispersity index (PDI) of PS -TiO</i> ₂ -PANI and PS-ZnO –PANI composite under different UV irradiation time	116
4.7.1	FTIR spectra of PS-(TiO ₂ -10% PANI) composite after different UV exposure time intervals ranging from 0h to 1000h	118
4.7.2	FTIR spectra of PS-(TiO ₂ -30% PANI) composite after different UV exposure time intervals ranging from 0h to 1000h	118
4.7.3	FTIR spectra of PS-(ZnO-10% PANI) composite after different UV exposure time intervals ranging from 0h to 1000h	119
4.7.4	FTIR spectra of PS-(ZnO-30% PANI) composite after different UV	

Chapter 4: Accelerated photodegradation of Polystyrene Using

	exposure time intervals ranging from 0h to 1000h	119
4.8.1	UV-DRS of (A) PS-3% PANI, (B) PS-3% (TiO ₂ +3% PANI), (C) PS-	
	3% (TiO ₂ +10% PANI) and (D) (TiO ₂ +30% PANI) at regular UV	
	irradiation intervals	120
4.8.2	UV-DRS of (A) PS-3% (ZnO+3% PANI), (B) PS-3% (ZnO +10%	
	PANI) and (C) PS-3%(ZnO +30% PANI) at regular UV irradiation	
	intervals	121
4.8.3	Degradation percentages (D %) of PS-TiO ₂ -PANI (A) and PS-ZnO-	
	PANI composites (B)	122
4.9	SEM image of PS-3% PANI (a) and PS-3%(TiO ₂ -30% PANI)(b)	
	before UV irradiation and PS-3%(TiO ₂ -30% PANI)(c) after UV	
	irradiation of 1000h	123
4.10	TGA thermogram of PS-3%(TiO ₂ -10% PANI) (A) and PS-3%(ZnO-	
	10% PANI) (B) composites before and after UV irradiation of 1000h	123
4.11.1	Flexural (A) and tensile (B) strengths of PS-TiO ₂ , PS-PANI and PS-	
	TiO ₂ -PANI composites- a comparison	124
4.11.2	Flexural (A) and tensile (B) strengths of PS-ZnO, PS-PANI and PS-	
	ZnO-PANI composites - a comparison	124
4.11.3	Flexural strengths of PS-TiO ₂ -PANI (A) and PS-ZnO-PANI (B)	
	composites exposed to UV radiation for 0,400 and 1000 h	125
4.11.4	Tensile strengths of PS-TiO ₂ -PANI (A) and PS-ZnO-PANI (B)	
	composites exposed to UV radiation for 0,400 and 1000 h	126
4.12.1	Dielectric breakdown (breakdown voltage) of PS-TiO ₂ -PANI and PS-	
	ZnO-PANI composites at varying UV irradiation time	127
4.12.2	Dielectric constants of PS-TiO ₂ -PANI and PS-ZnO-PANI composites	127
4.12.3	Dielectric constants of PS-TiO ₂ -PANI and PS-ZnO-PANI composites	
	at UV irradiation intervals of 0,400 and 1000 hours	128
4.13	Comparision of weight loss percentages of PS-TiO ₂ and PS-PANI	
	Composites with PS-TiO ₂ -PANI (A) and PS-ZnO-PANI (B)	
	composites at regular intervals of UV irradiation	128
4.14	Mechanism of photodegradation of PS using TiO ₂ -PANI or ZnO-	
	PANI composites	129
	Chapter 5: Accelerated photodegradation of Polystyrene Using	
	TiO2 and ZnO surface modified with Graphene oxide	
Figure	Figure caption	Page
no:		No.
5.1.1	XRD patterns of Graphite, GO, TiO ₂ and TiO ₂ -GOcomposites	140
5.1.2	XRD patterns of ZnO and ZnO-GO composites	141
5.2	FTIR spectra of TiO ₂ -GO composites (A) and ZnO-GO composites	
	(B) in comparison with that of GO, TiO_2 and ZnO	143
5.3	FTIR spectra of GO (a) and TiO ₂ -30% GO (b) composite	145
5.4	XPS of GO and TiO ₂ -30%GO (A). Deconvoluted XPS of Ti 2p, C 1s	
	and O1s regions of GO and TiO_2 -30% GO composite (B to F)	146

5.5.1	UV-DRS of TiO_2 , GO & TiO_2 -GO composites (A). Optical band gap energy (Eg) determination of TiO_2 and TiO_2 -GO composites (B,C & D)
5.5.2	UV DRS of ZnO, GO and ZnO-GO composites (A). Optical bandgap energy (Eg) determination of ZnO and ZnO-GO composites (B,C & D)
5.6.1	SEM image (A) and EDX (B) of TiO ₂ -30% GO composite
5.6.2	HRTEM image ($A, B \& C$), SAED pattern (D) of TiO ₂ -3% GO
5.6.3	FESEM image (A) and EDX (B) of ZnO-30% GO composite
5.6.4	HRTEM image (A, B & C), SAED pattern (D) of ZnO-30% GO
5.7	Interaction between TiO ₂ -GO or ZnO-GO through hydrogen bond formation
5.8.1	A) Weight average (\overline{M}_w) and B) number average (\overline{M}_n) molecular weights of PS-TiO ₂ -GO composites under different UV irradiation time
5.8.2	A) Weight average (\overline{M}_w) and B) number average (\overline{M}_n) molecular weights of PS-ZnO-GO composites under different UV irradiation time
5.8.3	(A) Number of chain scissions per molecule (S) and (B) number of scission events per gram (N_t) of PS-TiO ₂ -GO composites under
5.8.4	different UV irradiation time intervals
5.8.5	different UV irradiation time intervals Polydispersity index (PDI) of PS-TiO ₂ -GO (A) and PS-ZnO-GO (B) composites under different UV irradiation time
5.9.1	FTIR spectra of PS-3%(TiO_2 -10% GO) after different UV exposure time intervals ranging from 0h to 1000h
5.9.2	FTIR spectra of PS-3%(TiO ₂ -30% GO) after different UV exposure time intervals ranging from 0h to 1000h
5.9.3	FTIR spectra of PS-3%(ZnO-10% GO) after different UV exposure time intervals ranging from 0h to 1000h
5.9.4	FTIR spectra of PS-3%(ZnO-30% GO) after different UV exposure time intervals ranging from 0h to 1000h
5.10.1	UV-DRS of PS-3%(TiO ₂ -30% GO) (A), PS-3%(ZnO-10% GO)(C) and degradation percentages of PS-TiO ₂ -GO (B), PS-ZnO-GO(D) composites at different UV exposure time intervals ranging from 0h to 1000h
5.10.2	Optical bandgap energy determination from the plot of $(\alpha hv)^2 v/s hv$ for PS-3%(TiO ₂ -30% GO) (A) and PS-3%(ZnO-10% GO) (C) composites subjected to different UV exposure time intervals ranging from 0h to 1000h
5.11.1	Flexural (A) and tensile (B) strengths of PS-TiO ₂ -GO composites

5.11.2 Flexural (A) and tensile (B) strengths of PS-ZnO-GO co	omposites
before UV irradiation-a comparison	
5.11.3 Flexural strengths of A) PS-TiO ₂ -GO and B) PS-ZnO-GO co	-
exposed to UV radiation for 0,400 and 1000 h	
5.11.4 Tensile strengths A) PS-TiO ₂ -GO and B) PS-ZnO-GO co	1
exposed to UV radiation for 0, 400 and 1000 h	
5.12.1 Dielectric break down of PS-TiO ₂ -GO and PS-ZnO-GO co	1
exposed to UV radiation for 0,400 and 1000 h	
5.12.2 Dielectric permittivity of PS-(TiO ₂ -30%GO) and PS-(ZnO-	· · · · · · · · · · · · · · · · · · ·
composites exposed to UV radiation for 0,400 and 1000 h 5.12 TC 4, there are a f $DS 20(-(TiO + 200(-CO) - (4)))$ are	
5.13 TGA thermogram of PS-3% (TiO ₂ +30% GO) (A) and (ZnO+30% GO) (B) composites before and after UV irrad	
(2nO+30% GO) (B) composites before and after OV irrad	v
5.14 Comparison of weight loss percentages of PS-3%(TiO ₂ - GC	
<i>PS-3%(ZnO-GO)(B)</i> composites at regular intervals	/ (/
irradiation	-
5.15 Schematic representation of photodegradation mechanism of	
<i>TiO₂-GO/ZnO-GO catalysts through charge transfer</i>	
Chapter 6: UV degradation of Polystyrene using Or	
Photosensitisers coupled and uncoupled with Nano	0
FigureFigure caption	Page
	0
no:	No.
no: 6.1 Photoreactions of benzophenone	No.
	No.
6.1 <i>Photoreactions of benzophenone</i>	No. 174 molecular ites under
6.1Photoreactions of benzophenone6.2.1A) Weight average (\overline{M}_w) and B) number average (\overline{M}_n) is weights of PS-benzophenone based photosensitizer composed different UV irradiation time	No. 174 molecular ites under
 6.1 Photoreactions of benzophenone	No. No. 174 molecular ites under 179 molecular
 6.1 Photoreactions of benzophenone	No. 174 molecular ites under
 6.1 Photoreactions of benzophenone	No. No. 174 molecular ites under 179 molecular n time 179 number of
 6.1 Photoreactions of benzophenone	No174molecularites under179molecularn time179pumber ofpe based
 6.1 Photoreactions of benzophenone	No. No. 174 molecular ites under 179 molecular n time 179 number of the based tion time
 6.1 Photoreactions of benzophenone	No174molecularites under179molecularn time179number ofbebasedtion time180
 6.1 Photoreactions of benzophenone	No.No.molecularites underites under179molecularn time179number oftion time180number of
 6.1 Photoreactions of benzophenone	No.No.174molecularites under179molecularn time179number ofbasedtion time180number ofomposites
 6.1 Photoreactions of benzophenone	No.No.molecularites underites under179molecularn time179number oftion time180number ofomposites180
 6.1 Photoreactions of benzophenone	No.Image: No.<
 6.1 Photoreactions of benzophenone	No.Image: No.molecularites underites underites underites undermolecularmolecularn time179mumber ofition timeition timeition timeition time180number ofompositesition time180ition time180ition time180ition time180ition time180ition time180ition time181
 6.1 Photoreactions of benzophenone	No.Image: No.molecularites underites underites underites undermolecularmolecularn time179number ofiton time180number ofomposites180nd PS-dyene181omposites
 6.1 Photoreactions of benzophenone	No.Image: No.<
 6.1 Photoreactions of benzophenone	No.Image: No.<

6.5.1	Flexural (A) and tensile (B) strengths of PS- benzophenone based photosensitizer and PS - dye composites before UV irradiation-a comparison	186
6.5.2	comparison Flexural (A) and tensile (B) strengths of PS-benzophenone based and PS- dye composites exposed to UV radiation for 0,400 and 1000 h	180
6.6.1	<i>Dielectric breakdown (breakdown voltage) of PS-4MOBP, PS-2ClBP and PS-MB composites with varying UV irradiation time</i>	187
6.6.2	Dielectric constants of PS-3% 4MOBP and PS-3% 2ClBP composites at UV irradiation intervals of 0,400 and 1000 hours	189
6.6.3	Dielectric constants of PS-3% MB and PS-3% MG composites at UV irradiation intervals of 0,400 and 1000 hours	189
6.7	TGA thermogram of PS-3% 4MOBP (A) and PS-3% MB (B) composites before and after UV irradiation of 1000h	190
6.8	Comparison of weight loss percentages of PS-3% benzophenone based photosensitizer (A) and PS-3% dye (B) composites at regular intervals of UV irradiation	190
6.9.1	A) Weight average (\overline{M}_w) and B) number average (\overline{M}_n) molecular weights of PS-TiO ₂ - benzophenone based photosensitizer composites under different UV irradiation time	194
6.9.2	A) Weight average (\overline{M}_w) and B) number average (\overline{M}_n) molecular weights of PS-TiO ₂ -dye composites under different UV irradiation	194
6.9.3	time	105
6.9.4	photosensitiser composites under different UV irradiation A) Number of chain scissions per molecule (S) and B) number of scission events per gram (N_t) of PS-TiO ₂ -dye composites under different UV irrediction	195
6.9.5	different UV irradiation Polydispersity index (PDI) of PS-TiO ₂ -benzophenone based photosensitizer and PS-organic dye composite under various UV	195
6.10.1	<i>irradiation times</i> <i>FTIR spectra of PS-TiO₂-benzophenone based photosensitizer</i> <i>composites at different UV exposure time intervals ranging from 0h</i>	196
6.10.2	to 1000h. FTIR spectra of PS-TiO ₂ - benzophenone based photosensitiser composites at different UV exposure time intervals ranging from 0h to 1000h	197 198
6.11.1	UV-DRS of PS-TiO ₂ benzophenone based photosensitizer composites with UV irradiation time intervals	199
6.11.2	<i>UV-DRS of PS-TiO₂-dye composites at regular UV irradiation time intervals</i>	200
6.12	Flexural (A) and tensile (B) strengths of PS-TiO ₂ - benzophenone	

	based photosensitizer and PS- TiO ₂ -organic dye composites exposed	
	to UV radiation for 0,400 and 1000 h	201
6.13.1	Dielectric breakdown (breakdown voltage) of PS- TiO ₂ -4MOBP, PS-	
	TiO_2 -2ClBP and PS-TiO_2-MB composites at varying UV irradiation	
	time	202
6.13.2	Dielectric constants of PS-3% 4MOBP and PS-3% 2ClBP	
	composites at UV irradiation intervals of 0,400 and 1000 hours	203
6.13.3	Dielectric constants of PS-3% MB and PS-3% MG composites at UV	
	irradiation intervals of 0,400 and 1000 hours	203
6.14	TGA thermogram of PS-3% (TiO ₂ +4MOBP) (A) and PS-3%	
	$(TiO_2+5\%MB)$ (B) composites before and after UV irradiation of	
	1000 h	204
6.15	Comparision of weight loss percentages of PS-	
	3%(TiO ₂ +benzophenone based photosensitizer) (A) and PS-	
	<i>3%(TiO</i> ₂ + <i>dye)(B)</i> composites at regular intervals of UV irradiation	204
6.16	SEM image of PS-3%(TiO_2 +4MOBP) composite before (a) and after	
	(b) UV irradiation of 1000 hours. b_1 ' and b_2 ' represents a portion of	
	image 'b' in high resolution	205
	Chapter 7: Enhanced photocatalytic activity of metal doped TiO ₂	
	in the UV light initiated photodegradation of Polystyrene	
Figure	Figure caption	Page
		NT
no:		No.
7.1.1	XRD pattern of TiO ₂ –Cu composites	215
7.1.1 7.1.2	XRD pattern of TiO ₂ –Ag composites	215 218
7.1.1	XRD pattern of TiO_2 –Ag composites XRD pattern of TiO_2 –Fe composites	215
7.1.1 7.1.2	XRD pattern of TiO_2 – Ag composites XRD pattern of TiO_2 – Fe composites FESEM image and EDX spectra of TiO_2 – 3% Cu (A & A ₁), TiO_2 –	215 218
7.1.1 7.1.2 7.1.3 7.2	XRD pattern of TiO_2 –Ag composites XRD pattern of TiO_2 –Fe composites FESEM image and EDX spectra of TiO_2 –3% Cu (A & A ₁), TiO_2 – 3% Fe (B & B ₁) and TiO_2 –3% Ag (C & C ₁) composites	215 218
7.1.1 7.1.2 7.1.3	XRD pattern of TiO_2 –Ag composites XRD pattern of TiO_2 –Fe composites FESEM image and EDX spectra of TiO_2 –3% Cu (A & A ₁), TiO_2 – 3% Fe (B & B ₁) and TiO_2 –3% Ag (C & C ₁) composites FTIR image of TiO_2 –30% Cu (a), TiO_2 –30% Fe(b) and TiO_2 –30%	215218219221
7.1.1 7.1.2 7.1.3 7.2 7.3	XRD pattern of TiO_2 –Ag composites XRD pattern of TiO_2 –Fe composites FESEM image and EDX spectra of TiO_2 –3% Cu (A & A ₁), TiO_2 – 3% Fe (B & B ₁) and TiO_2 –3% Ag (C & C ₁) composites FTIR image of TiO_2 –30% Cu (a), TiO_2 –30% Fe(b) and TiO_2 –30% Ag (c) composites	215 218 219
7.1.1 7.1.2 7.1.3 7.2	XRD pattern of TiO_2 –Ag composites XRD pattern of TiO_2 –Fe composites FESEM image and EDX spectra of TiO_2 –3% Cu (A & A ₁), TiO_2 – 3% Fe (B & B ₁) and TiO_2 –3% Ag (C & C ₁) composites FTIR image of TiO_2 –30% Cu (a), TiO_2 –30% Fe(b) and TiO_2 –30%	 215 218 219 221 222
7.1.1 7.1.2 7.1.3 7.2 7.3	XRD pattern of TiO_2 –Ag composites XRD pattern of TiO_2 –Fe composites FESEM image and EDX spectra of TiO_2 –3% Cu (A & A ₁), TiO_2 – 3% Fe (B & B ₁) and TiO_2 –3% Ag (C & C ₁) composites FTIR image of TiO_2 –30% Cu (a), TiO_2 –30% Fe(b) and TiO_2 –30% Ag (c) composites	215218219221
7.1.1 7.1.2 7.1.3 7.2 7.3	XRD pattern of TiO_2 –Ag composites XRD pattern of TiO_2 –Fe composites FESEM image and EDX spectra of TiO_2 –3% Cu (A & A ₁), TiO_2 – 3% Fe (B & B ₁) and TiO_2 –3% Ag (C & C ₁) composites FTIR image of TiO_2 –30% Cu (a), TiO_2 –30% Fe(b) and TiO_2 –30% Ag (c) composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C)	 215 218 219 221 222
7.1.1 7.1.2 7.1.3 7.2 7.3 7.4.1	XRD pattern of TiO_2 –Ag composites XRD pattern of TiO_2 –Fe composites FESEM image and EDX spectra of TiO_2 –3% Cu (A & A ₁), TiO_2 – 3% Fe (B & B ₁) and TiO_2 –3% Ag (C & C ₁) composites FTIR image of TiO_2 –30% Cu (a), TiO_2 –30% Fe(b) and TiO_2 –30% Ag (c) composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Cu composites	 215 218 219 221 222
7.1.1 7.1.2 7.1.3 7.2 7.3 7.4.1	XRD pattern of TiO_2 –Ag composites XRD pattern of TiO_2 –Fe composites FESEM image and EDX spectra of TiO_2 –3% Cu (A & A ₁), TiO_2 – 3% Fe (B & B ₁) and TiO_2 –3% Ag (C & C ₁) composites FTIR image of TiO_2 –30% Cu (a), TiO_2 –30% Fe(b) and TiO_2 –30% Ag (c) composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Cu composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites	 215 218 219 221 222 223
7.1.1 7.1.2 7.1.3 7.2 7.3 7.4.1 7.4.2	XRD pattern of TiO_2 –Ag composites XRD pattern of TiO_2 –Fe composites FESEM image and EDX spectra of TiO_2 –3% Cu (A & A ₁), TiO_2 – 3% Fe (B & B ₁) and TiO_2 –3% Ag (C & C ₁) composites FTIR image of TiO_2 –30% Cu (a), TiO_2 –30% Fe(b) and TiO_2 –30% Ag (c) composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Cu composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C)	 215 218 219 221 222 223
7.1.1 7.1.2 7.1.3 7.2 7.3 7.4.1 7.4.2	XRD pattern of TiO_2 –Ag composites XRD pattern of TiO_2 –Fe composites FESEM image and EDX spectra of TiO_2 –3% Cu (A & A ₁), TiO_2 – 3% Fe (B & B ₁) and TiO_2 –3% Ag (C & C ₁) composites FTIR image of TiO_2 –30% Cu (a), TiO_2 –30% Fe(b) and TiO_2 –30% Ag (c) composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Cu composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites	 215 218 219 221 222 223 224
7.1.1 7.1.2 7.1.3 7.2 7.3 7.4.1 7.4.2 7.4.3	XRD pattern of TiO_2 –Ag composites XRD pattern of TiO_2 –Fe composites FESEM image and EDX spectra of TiO_2 –3% Cu (A & A ₁), TiO_2 – 3% Fe (B & B ₁) and TiO_2 –3% Ag (C & C ₁) composites FTIR image of TiO_2 –30% Cu (a), TiO_2 –30% Fe(b) and TiO_2 –30% Ag (c) composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Cu composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Ag composites A) Weight average (\overline{M}_w) and B) number average (\overline{M}_n) molecular	 215 218 219 221 222 223 224
7.1.1 7.1.2 7.1.3 7.2 7.3 7.4.1 7.4.2 7.4.3	XRD pattern of $TiO_2 - Ag$ composites XRD pattern of $TiO_2 - Fe$ composites FESEM image and EDX spectra of $TiO_2 - 3\%$ Cu (A & A ₁), $TiO_2 - 3\%$ Fe (B & B ₁) and $TiO_2 - 3\%$ Ag (C & C ₁) composites FTIR image of $TiO_2 - 30\%$ Cu (a), $TiO_2 - 30\%$ Fe(b) and $TiO_2 - 30\%$ Ag (c) composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Cu composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Ag composites A) Weight average (\overline{M}_w) and B) number average (\overline{M}_n) molecular weights of PS-TiO_2-metal composites under different UV irradiation	 215 218 219 221 222 223 224 225
7.1.1 7.1.2 7.1.3 7.2 7.3 7.4.1 7.4.2 7.4.3 7.5.1	XRD pattern of TiO_2 –Ag composites XRD pattern of TiO_2 –Fe composites FESEM image and EDX spectra of TiO_2 –3% Cu (A & A ₁), TiO_2 – 3% Fe (B & B ₁) and TiO_2 –3% Ag (C & C ₁) composites FTIR image of TiO_2 –30% Cu (a), TiO_2 –30% Fe(b) and TiO_2 –30% Ag (c) composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Cu composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Ag composites A) Weight average (\overline{M}_w) and B) number average (\overline{M}_n) molecular weights of PS-TiO ₂ -metal composites under different UV irradiation time	 215 218 219 221 222 223 224
7.1.1 7.1.2 7.1.3 7.2 7.3 7.4.1 7.4.2 7.4.3	XRD pattern of TiO_2 –Ag composites XRD pattern of TiO_2 –Fe composites FESEM image and EDX spectra of TiO_2 –3% Cu (A & A ₁), TiO_2 – 3% Fe (B & B ₁) and TiO_2 –3% Ag (C & C ₁) composites FTIR image of TiO_2 –30% Cu (a), TiO_2 –30% Fe(b) and TiO_2 –30% Ag (c) composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Cu composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Ag composites A) Weight average (\overline{M}_w) and B) number average (\overline{M}_n) molecular weights of PS-TiO_2-metal composites under different UV irradiation time A) Number of chain scissions per molecule (S) and B) number of	 215 218 219 221 222 223 224 225
7.1.1 7.1.2 7.1.3 7.2 7.3 7.4.1 7.4.2 7.4.3 7.5.1	XRD pattern of $TiO_2 -Ag$ composites XRD pattern of $TiO_2 -Fe$ composites FESEM image and EDX spectra of $TiO_2 -3\%$ Cu (A & A ₁), $TiO_2 - 3\%$ Fe (B & B ₁) and $TiO_2 -3\%$ Ag (C & C ₁) composites FTIR image of $TiO_2 -30\%$ Cu (a), $TiO_2 -30\%$ Fe(b) and $TiO_2 -30\%$ Ag (c) composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Cu composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Ag composites A) Weight average (\overline{M}_w) and B) number average (\overline{M}_n) molecular weights of PS-TiO_2-metal composites under different UV irradiation time A) Number of chain scissions per molecule (S) and B) number of scission events per gram (N ₁) of PS-TiO_2-metal composites under	 215 218 219 221 222 223 224 225 227
7.1.1 7.1.2 7.1.3 7.2 7.3 7.4.1 7.4.2 7.4.3 7.5.1	XRD pattern of TiO_2 –Ag composites XRD pattern of TiO_2 –Fe composites FESEM image and EDX spectra of TiO_2 –3% Cu (A & A ₁), TiO_2 – 3% Fe (B & B ₁) and TiO_2 –3% Ag (C & C ₁) composites FTIR image of TiO_2 –30% Cu (a), TiO_2 –30% Fe(b) and TiO_2 –30% Ag (c) composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Cu composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Fe composites Absorption spectra (A), F(R) versus hv (B), $(F(R)hv)^{1/2}$ versus hv (C) and $(F(R)hv)^2$ versus hv (D) of TiO_2 -Ag composites A) Weight average (\overline{M}_w) and B) number average (\overline{M}_n) molecular weights of PS-TiO_2-metal composites under different UV irradiation time A) Number of chain scissions per molecule (S) and B) number of	 215 218 219 221 222 223 224 225

7.6	<i>FTIR spectra of PS-3%(TiO₂-3% Ag) at different UV exposure time intervals ranging from 0h to 1000h</i>	228
7.7	UV-visible absorption spectra of PS-3%(TiO_2 -3%Cu) (A), PS-3%(TiO_2 - 3%Fe)(B), PS-3%(TiO_2 -3% Ag)(C) and degradation percentages of PS- (TiO_2 -3% metal) composites (D) at different UV exposure time intervals ranging from 0h to 1000h	229
7.8.1	Tensile (A) and flexural (B) strengths of PS -TiO ₂ -metal and PS -TiO ₂ composites -a comparison	230
7.8.2	Tensile (A) and flexural (B) strengths of $PS-3\%(TiO_2-3\% Ag)$ composites exposed to UV radiation for 0, 400 and 1000 h	230
7.9	Dielectric break down (A) and dielectric permittivity (B) of PS- $(TiO_2-3\% Ag)$ composite exposed to UV radiation for 0, 400 and 1000 h	231
7.10	TGA thermogram of PS-3%($TiO_2+3\%$ Ag) composites before and after UV irradiation of 1000h	232
7.11	Comparison of weight loss percentages of PS-TiO ₂ -metal composites at regular intervals of UV irradiation	232
7.12	Pictorial representation of electron transfer from conduction band of TiO_2 to the doped transition metal reducing the electron-hole	
	recombination	233

Photodegradation of Polystyrene by Nano Titanium dioxide and Photosensitizers Page xvi

List of tables

	List of Tables	
	Chapter 1: Introduction and Review of Literature	
Table	Table heading	Page
no:		No
1.1	Expected properties of TiO ₂ related to its structural dimensionality	21
	Chapter 3: Photodegradation of Polystyrene using Nano TiO ₂ and Nano ZnO Catalysts under UV irradiation - a Comparison	
Table	Table heading	Page
no:	Tuble neuring	No
3.1	Interplanar distance d corresponding to each 2θ angles of TiO_2 and ZnO	65
3.2 3.3	Optical bandgap energies $(E_g s)$ of nano TiO ₂ and nano ZnO Important observations made from FTIR spectra of PS and PS-TiO ₂	70
3.4	composites Observations and conclusions made from GPC, FTIR spectroscopy, UV-DRS spectroscopy, electrical studies, weight loss measurements	76
	and SEM	87
	Chapter 4: Accelerated photodegradation of Polystyrene Using nano TiO ₂ and ZnO surface modified with Polyaniline	
Table	Table heading	Page
no:	Ŭ	No.
4.1.1	Mole percentages and weights of the components in TiO ₂ -PANI composites	98
4.1.2	Mole percentages and weights of the components in ZnO-PANI composites	98
4.2.1	Tabulated values of crystallite sizes of TiO ₂ -PANI and ZnO-PANI composites	102
4.2.2	Interplanar distance d corresponding to each 2θ angles of TiO ₂ -PANI composites in comparison to pristine TiO ₂	102
4.2.3	Interplanar distance d corresponding to each 2θ angles of ZnO-PANI composites in comparison to pristine ZnO	103
4.2.4	Values of optical bandgap energies of TiO ₂ -PANI composites	111
4.2.5	Values of optical bandgap energies of ZnO- PANI composites	112
	Chapter 5: Accelerated photodegradation of Polystyrene Using	
	TiO ₂ and ZnO surface modified with Graphene oxide	
Table	Table heading	Page
no:		No.
5.1.1	Inter planar distances (d) corresponding to 2θ peaks of TiO ₂ and TiO ₂ -	1/1
5.1.2	GO composites Inter planar distances (d) corresponding to 2θ peaks of ZnO and TiO ₂ -	141
5.1.3	GO composites Crystallite size of TiO ₂ -GO and ZnO-GO composites calculated using	142

	Debye- Scherrer equation	142
5.2.1	Highlighted peaks from FTIR spectra of GO and TiO ₂ -GO composites.	144
5.2.2	Highlighted peaks from FTIR spectra of GO and ZnO-GO composites.	144
5.3	Values of optical band gap energies of TiO_2 - GO and ZnO-	
	<i>GO</i>	149
	Chapter 6: UV degradation of Polystyrene using Organic	
	Photosensitisers coupled and uncoupled with Nano TiO2	
Table	Table heading	Page
no:		No.
6.1.1	List of benzophenone based photosensitizers	177
6.1.2	List of dye photosensitizers	178
6.2.1	PS- TiO ₂ -benzophenone based photosensitizer composite	192
6.2.2	PS- TiO ₂ -dye photosensitizer composite	192
	Chapter 7: Enhanced photocatalytic activity of metal doped TiO ₂	
	in the UW Babt in History date down detions of Delantements	
	in the UV light initiated photodegradation of Polystyrene	
Table	Table heading	Page
Table no:		Page No.
		0
no:	Table heading	No.
no: 7.1.1	Table heading TiO ₂ -Ag composites	No. 213
no: 7.1.1 7.1.2	Table heading TiO ₂ -Ag composites TiO ₂ -Fe composites	No. 213 214
no: 7.1.1 7.1.2 7.1.3	Table heading TiO2-Ag composites	No. 213 214 215
no: 7.1.1 7.1.2 7.1.3 7.2.1	TiO2-Ag composites TiO2-Fe composites TiO2-Fe composites TiO2-Cu composites Percentage of anatase and rutile phases in TiO2-Cu composites	No. 213 214 215 216
no: 7.1.1 7.1.2 7.1.3 7.2.1 7.2.2	Table heading TiO2-Ag composites	No. 213 214 215 216 217
no: 7.1.1 7.1.2 7.1.3 7.2.1 7.2.2 7.2.3	TiO2-Ag composites TiO2-Ag composites TiO2-Fe composites TiO2-Fe composites TiO2-Cu composites Percentage of anatase and rutile phases in TiO2-Cu composites Tabulated values of crystallite size of TiO2-Cu composites Percentage of anatase and rutile phases in TiO2-Cu composites Percentage of anatase and rutile phases in TiO2-Cu composites Percentage of anatase and rutile phases in TiO2-Ag composites	No. 213 214 215 216 217 218
no: 7.1.1 7.1.2 7.1.3 7.2.1 7.2.2 7.2.3 7.2.4	Table heading TiO2-Ag composites	No. 213 214 215 216 217 218 218
no: 7.1.1 7.1.2 7.1.3 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5	Table heading TiO ₂ -Ag composites	No. 213 214 215 216 217 218 218 220
no: 7.1.1 7.1.2 7.1.3 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6	TiO2-Ag composites TiO2-Ag composites TiO2-Fe composites TiO2-Fe composites TiO2-Cu composites Percentage of anatase and rutile phases in TiO2-Cu composites Tabulated values of crystallite size of TiO2-Cu composites Percentage of anatase and rutile phases in TiO2-Cu composites Tabulated values of crystallite size of TiO2-Cu composites Percentage of anatase and rutile phases in TiO2-Ag composites Tabulated values of crystallite size of TiO2-Ag composites Percentage of anatase and rutile phases in TiO2-Fe composites Tabulated values of crystallite size of TiO2-Fe composites Tabulated values of crystallite size of TiO2-Fe composites	No. 213 214 215 216 217 218 218 220 220