
CHAPTER 2

A New Generalization to the DUS
Transformation and its Applications

2.1 Introduction

Modeling and analysis of lifetime distributions have been extensively used in many
fields of science, like engineering, medicine, survival analysis, and biostatistics.
Fitting appropriate distributions is essential for proper data analysis. A search for
distributions with a better fit is quite essential for data analysis in statistics and
reliability engineering. With application to survival data analysis, Kumar et al.
(2015) proposed a method called DUS transformation, which has received attention
from many engineers and researchers in recent years. In terms of computation and
interpretation, this transformation produces a parsimonious result since it does not
include any new parameters other than those involved in the baseline distribution.

In the case where F (x) is the CDF of the baseline distribution, the CDF of the
DUS transformed distribution is as follows:

G(x) = 1
e− 1[eF (x) − 1].

Maurya et al. (2017a) introduced the DUS transformation of the Lindley
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distribution. Tripathi et al. (2019) studied the DUS transformation of an exponential
distribution and its inference based on the upper record values. Recent studies using
the DUS transformation can be seen in the works of Deepthi and Chacko (2020a),
Kavya and Manoharan (2020), Anakha and Chacko (2021), and Gauthami and
Chacko (2021).

In this chapter, a new class of distribution is introduced using an exponentiated
generalization of the DUS transformation, called the power generalized DUS
(PGDUS) transformation. When we consider a parallel system, we have to apply
power transformations to the distribution of components to get the system’s
distribution. Generalized exponential distribution was introduced by Gupta and
Kundu (1999) which is the distribution of a parallel system when components are
distributed exponentially. But when a researcher assumes an exponential distribution
for its lifetime, only jerking, overvoltage, or any such random shocks are the cause
of failure. It is a limitation. Why don’t we go for any other lifetime distribution if
the cause of failure is degradation? DUS transformation proved the advantage of
getting an accurate model for the given data using baseline distributions like Weibull,
Lomax, etc. Nevertheless, the question remains: how would the parallel system be
distributed when components are distributed based on the DUS transformation of
some baseline models? If we use exponential, Weibull, and Lomax distributions as
baselines, what would be their distributional properties? An attempt to investigate
the applicability of the exponentiated generalization of DUS transformation of some
baseline models is addressed in this chapter. The use of other distributions as
baseline distributions can be addressed by researchers.

This generalization improves the flexibility and accuracy of the model. The new
PGDUS transformed distribution can be obtained as follows: Let X be a random
variable with a baseline CDF F (x) and the corresponding PDF f(x). Then, the
CDF of the PGDUS distribution is defined as:

G(x) =
(
eF (x) − 1
e− 1

)θ

, θ > 0, x > 0. (2.1.1)

and the corresponding PDF is,

g(x) = θ

(e− 1)θ
(eF (x) − 1)θ−1eF (x)f(x), θ > 0, x > 0. (2.1.2)
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The associated survival function is,

S(x) = 1 −
(
eF (x) − 1
e− 1

)θ

, θ > 0, x > 0.

The corresponding HRF is,

h(x) = θf(x)eF (x)(eF (x) − 1)θ−1

(e− 1)θ − (eF (x) − 1)θ
, θ > 0, x > 0. (2.1.3)

The primary motivation for this research stems from the significance of Eq.
(2.1.1), as it is the distribution of failures in a parallel system with θ independent
components. When researchers deal with parallel systems with components
distributed as DUS-transformed lifetime distributions, the PGDUS transformation
proves to be an inevitable tool. So the investigation of the PGDUS transformation
of various lifetime distributions is relevant in the sense of the selection of appropriate
lifetime models for parallel systems. In other words, it assists researchers in
determining which distribution transformations best characterize the behavior of
individual components in a parallel system, which has consequences for developing
reliable systems and predicting their overall performance. As a result, this work
is motivated by the need to improve our understanding of how different lifetime
distributions can be effectively used in modeling and optimizing parallel systems,
resulting in improved decision-making and reliability in a variety of engineering and
scientific applications.

The remaining sections are arranged as follows. Section 2.2 introduces the
PGDUS transformation of the exponential distribution. Section 2.3 presents the
PGDUS transformation of the Weibull distribution, and Section 2.4 presents the
PGDUS transformation of the Lomax distribution. The summary is given in section
2.5.

2.2 PGDUS Exponential Distribution

Here, the PGDUS transformation to the exponential distribution is considered.
Consider the exponential distribution with parameter λ as the baseline distribution.
Invoking the PGDUS transformation given in Eq.(2.1.1), the CDF of the PGDUS
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transformation of an exponential (PGDUSE) distribution is obtained as

G(x) =
(
e1−e−λx − 1
e− 1

)θ

, λ > 0, θ > 0, x > 0. (2.2.1)

and the corresponding PDF is given by,

g(x) = θλe1−λx−e−λx(e1−e−λx − 1)θ−1

(e− 1)θ
, λ > 0, θ > 0, x > 0. (2.2.2)

Then, the associated HRF is,

h(x) = θλe1−λx−e−λx(e1−e−λx − 1)θ−1

(e− 1)θ − (e1−e−λx − 1)θ
, λ > 0, θ > 0, x > 0. (2.2.3)

A PGDUSE distribution with parameters λ and θ is denoted by PGDUSE(λ, θ).
Figure 2.1 shows that the density function of PGDUSE(λ, θ) distribution is likely
to be unimodal. The HRF plot for different parameter values is given in Figure 2.2.

Figure 2.1: Density plot for PGDUSE
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Figure 2.2: Failure rate plot for PGDUSE

2.2.1 Statistical Properties of PGDUSE Distribution

For a distribution, the statistical properties are inevitable. Here, a few statistical
properties like moments, moment generating function (MGF), characteristic function
(CF), cumulant generating function (CGF), quantile function (QF), order statistics,
and entropy of the PGDUSE(λ, θ) distribution are derived.

Moments

The rth raw moment of the PGDUSE(λ, θ) distribution is given by

µ′
r = E(Xr) = θλe

(e− 1)θ

∞∑
k=0

∞∑
m=0

(−1)k+m

m!

(
θ − 1
k

)
eθ−k−1(θ − k)m Γ(r + 1)

(λ+ λm)r+1 .

By putting r=1, 2, 3... the raw moments can be viewed.

37



CHAPTER 2

Moment Generating Function

The MGF of PGDUSE(λ, θ) distribution is given by

MX(t) = θλe

(e− 1)θ

∞∑
k=0

∞∑
m=0

(−1)k+m

m!

(
θ − 1
k

)
eθ−k−1 (θ − k)m

λ+ λm− t
.

Characteristic Function and Cumulant Generating Function

The characteristic function (CF) is given by

ϕX(t) = θλe

(e− 1)θ

∞∑
k=0

∞∑
m=0

(−1)k+m

m!

(
θ − 1
k

)
eθ−k−1 (θ − k)m

λ+ λm− it
,

and the cumulant generating function (CGF) is given by

KX(t) = log
(

θλe

(e− 1)θ

)
+ log

[ ∞∑
k=0

∞∑
m=0

(−1)k+m

m!

(
θ − 1
k

)
eθ−k−1 (θ − k)m

λ+ λm− it

]

where i =
√

−1 is the unit imaginary number.

Quantile Function

The qth quantile Q(q) is the solution of the equation G(Q(q)) = q. Hence,

Q(q) = −1
λ

log(1 − log(q 1
θ (e− 1) + 1)).

The median is obtained by setting q = 0.5 in the above equation. Thus,

Median = −1
λ

log(1 − log(0.5 1
θ (e− 1) + 1)).

Order Statistic

Let X(1), X(2), . . . , X(n) be the order statistics corresponding to the random sample
X1, X2, . . . , Xn of size n from the proposed PGDUSE(λ, θ) distribution. The PDF
and CDF of rth order statistics of the proposed PGDUSE(λ, θ) distribution are
given by

gr(x) = n!θλ
(r − 1)!(n− r)!

e1−λx−e−λx(e1−e−λx − 1)θr−1

(e− 1)2θ

1 −
(
e1−e−λx − 1
e− 1

)θ
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and

Gr(x) =
n∑

i=1

(
n

i

)(
e1−e−λx − 1
e− 1

)θi
1 −

(
e1−e−λx − 1
e− 1

)θ
n−i

.

Then, the PDF and CDF of X(1) and X(n) are obtained by substituting r = 1 and
r = n respectively in gr(x) and Gr(x). It is nothing but the distribution of minimum
and maximum in series and parallel reliability systems, respectively.

Entropy

Entropy quantifies the measure of information or uncertainty. An important measure
of entropy is Rényi entropy (1961). Rényi entropy is defined as

R(δ)ג = 1
1 − δ

log
(∫

gδ(x)dx
)
,

where δ > 0 and δ ̸= 1.

∫ ∞

0
gδ(x)dx = θδλδeδ

(e− 1)θδ

∞∑
k=0

∞∑
m=0

(−1)k+m

m!

(
δ(θ − 1)

k

)
(δθ − k)meδθ−δ−k 1

λ(δ +m)

The Rényi entropy takes the form

R(δ)ג = 1
1−δ

log
[
θδλδeδ

(e− 1)θδ

∞∑
k=0

∞∑
m=0

(−1)k+m

m!

(
δ(θ − 1)

k

)
(δθ − k)meδθ−δ−k 1

λ(δ +m)

]

= δ
1−δ

log
[

θλe

(e− 1)θ

]
+ 1

1−δ
log

[ ∞∑
k=0

∞∑
m=0

(−1)k+m

m!
(

δ(θ−1)
k

)
(δθ − k)m eδθ−δ−k

λ(δ +m)

]
.

2.2.2 Estimation of PGDUSE Distribution

The estimation of parameters by the method of maximum likelihood is discussed.
For this, consider a random sample of size n from PGDUSE(λ, θ) distribution. In
this case, the likelihood function is given by,

L(x) =
n∏

i=1
g(x) =

n∏
i=1

θλ

(e− 1)θ
e1−λxi−e−λxi (e1−e−λxi − 1)θ−1.
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Then the log-likelihood function becomes,

logL = n log θ+n log λ−θn log(e−1)−λ
n∑

i=1
xi+n−

n∑
i=1

e−λxi+(θ−1)
n∑

i=1
log(e1−e−λxi −1).

The maximum likelihood estimators (MLEs) are obtained by maximizing the
log-likelihood concerning the unknown parameters λ and θ.

∂ logL
∂λ

= n

λ
−

n∑
i=1

xi +
n∑

i=1
xie

−λxi + (θ − 1)
n∑

i=1

xie
1−λxi−e−λxi

e1−e−λxi − 1
.

∂ logL
∂θ

= n

θ
− n log(e− 1) +

n∑
i=1

log(e1−e−λxi − 1).

These non-linear equations can be numerically solved through statistical software
like R using arbitrary initial values. In the case of asymptotic normal MLEs, the
confidence interval(CI)s for λ and θ are calculated by computing the observed
information matrix given by

I =


∂2 log L

∂λ2
∂2 log L
∂λ∂θ

∂2 log L
∂θ∂λ

∂2 log L
∂θ2


where

∂2 logL
∂λ2 = − n

λ2 − λ
n∑

i=1
xie

−λxi − (θ − 1)λ
n∑

i=1

xie
−λxi((eλxi − 1)e1−(λxi)−e−λxi − 1)

(e1−e−λxi − 1)2 ,

∂2 logL
∂θ∂λ

= ∂2 logL
∂λ∂θ

=
n∑

i=1
xi

e1−λxi−e−λxi

(e1−e−λxi − 1)
,

and
∂2 logL
∂θ2 = − n

θ2 .

For λ and θ, the 100(1 − γ)% asymptotic CIs are as follows: λ̂ ± z1− γ
2

√
V11

and θ̂ ± z1− γ
2

√
V22, where Vij represents the (i, j)th element in the inverse of the

Fisher information matrix I. The computational efficiency of this interval estimation
method makes it particularly useful.
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2.2.3 Simulation Study

To illustrate the accuracy of the maximum likelihood estimation procedure for
PGDUSE distribution, a Monte Carlo simulation study is carried out using the
inversion method. Samples of sizes 50, 75, 100, 500, and 1000 for the parameter
combinations (0.5, 0.5), (0.5, 1.5), (1, 1.5), and (1.5, 2.5) corresponding to (λ, θ) are
generated. The performance of the estimation procedure is studied by calculating
the bias and mean square error (MSE) of the MLEs. It can be seen from Table
2.1, 2.2, 2.3, and 2.4 that, as the sample size increases, the bias and MSEs of the
estimates decrease.

Table 2.1: Estimate, Biases and MSEs for PGDUSE model at λ = 0.5 and
θ = 0.5

n Estimated value of Parameters Bias MSE

50 λ̂=0.5248 0.0248 0.0126
θ̂=0.5223 0.0223 0.0087

75 λ̂=0.5162 0.0162 0.0086
θ̂=0.5137 0.0137 0.0055

100 λ̂=0.5114 0.0114 0.0044
θ̂=0.5104 0.0104 0.0035

500 λ̂=0.5101 0.0101 0.0010
θ̂=0.5066 0.0066 0.0007

1000 λ̂=0.5019 0.0019 0.0004
θ̂=0.5042 0.0042 0.0003

2.2.4 Data Analysis

Real data analysis is given to assess how well the proposed distribution works have
been performed. The data given in Lawless (1982) that contains the number of
million revolutions before the failure of 23 ball bearings put on life test is considered.
See Table 2.5.

Further, the proposed distribution has been compared with the generalized
DUS exponential (GDUSE) by Maurya et al. (2017b), DUS exponential (DUSE),
exponential (ED), and Kavya-Manoharan exponential (KME) by Kavya and
Manoharan (2021) distributions. AIC, BIC, the value of KS statistic, p-value,
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Table 2.2: Estimate, Biases and MSEs for PGDUSE model at λ = 0.5 and
θ = 1.5

n Estimated value of Parameters Bias MSE

50 λ̂=0.5192 0.0192 0.0066
θ̂=1.6242 0.1242 0.1442

75 λ̂=0.5165 0.0165 0.0042
θ̂=1.5711 0.0790 0.0758

100 λ̂=0.5158 0.0158 0.0031
θ̂=1.5719 0.0719 0.0607

500 λ̂=0.5025 0.0025 0.0005
θ̂=1.5122 0.0122 0.0083

1000 λ̂=0.5009 0.0009 0.0003
θ̂=1.4709 -0.0291 0.0045

Table 2.3: Estimate, Biases and MSEs for PGDUSE model at λ = 1 and θ = 1.5

n Estimated value of Parameters Bias MSE

50 λ̂=1.0236 0.0236 0.0255
θ̂=1.5655 0.0655 0.1267

75 λ̂=1.0190 0.0190 0.0161
θ̂=1.5484 0.0484 0.0793

100 λ̂=1.0116 0.0116 0.0113
θ̂=1.5062 0.0062 0.0434

500 λ̂=1.0091 0.0091 0.0023
θ̂=1.5178 0.0178 0.0098

1000 λ̂=0.9889 -0.0111 0.0010
θ̂=1.4805 -0.0195 0.0039

and log-likelihood value have been used for model selection.

Table 2.6 elucidates that the proposed distribution gives the lowest AIC, BIC,
and KS values, the greatest log-likelihood, and the p-value. Thus, it can be concluded
that the PGDUSE(λ, θ) distribution provides a better fit for the given data set when
compared with other competing distributions. The empirical cumulative density
function (ECDF) plot is depicted in Figure 2.3.
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Table 2.4: Estimate, Biases and MSEs for PGDUSE model at λ = 1.5 and
θ = 2.5

n Estimated value of Parameters Bias MSE

50 λ̂=1.5536 0.0536 0.0453
θ̂=2.7200 0.2200 0.4536

75 λ̂=1.5363 0.0363 0.0290
θ̂=2.6169 0.1169 0.2836

100 λ̂=1.5229 0.0229 0.0210
θ̂=2.6154 0.1154 0.2005

500 λ̂=1.5052 0.0052 0.0040
θ̂=2.5271 0.0271 0.0314

1000 λ̂=1.4897 -0.0103 0.0020
θ̂=2.4774 -0.0226 0.0144

Table 2.5: Ball bearings dataset

17.88 28.92 33.00 41.52 42.12 45.60
48.80 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64
105.12 105.84 127.92 128.04 173.40

Table 2.6: MLEs of the parameters, Log-likelihoods, AIC, BIC, KS Statistics
and p-values of the fitted models

Model MLEs log L AIC BIC KS p-value

PGDUSE
λ̂ = 0.0336

-113.0030 230.0060 232.2770 0.1103 0.9425
θ̂ = 3.8066

GDUSE
α̂ = 4.7391

-113.0466 230.0931 232.3641 0.1179 0.9064
β̂ = 0.0355

DUSE â = 0.0182 -127.4622 256.9244 261.1954 0.2774 0.0580

KME θ̂ = 0.0095 -123.1065 248.2129 252.4839 0.3110 0.0234

ED θ̂ = 0.0138 -121.4393 244.8786 246.0141 0.30673 0.0264
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Figure 2.3: The empirical CDFs of the models.

2.3 PGDUS Weibull Distribution

Weibull distribution is used as the baseline distribution for PGDUS transformation
and investigated the distributional properties. The CDF of Weibull distribution
with parameters α and β is

G(x) = 1 − e−(xβ)α

, α, β > 0, x > 0. (2.3.1)

and corresponding PDF is

g(x) = αβ(xβ)α−1e−(xβ)α

, α, β > 0, x > 0 (2.3.2)

Using Eq.(2.3.1) in Eq.(2.1.1), the CDF of PGDUS transformation of Weibull
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(PGDUSW) distribution is as follows:

F (x) =
(
e1−e−(xβ)α

− 1
e− 1

)θ

, α, β > 0, θ > 0, x > 0. (2.3.3)

and the corresponding PDF is

f(x) = θαβα

(e− 1)θ
xα−1(e1−e−(xβ)α

− 1)θ−1e1−(xβ)α−e−(xβ)α

, α, β, θ > 0, x > 0. (2.3.4)

In relation to Eq.(2.3.3) and Eq.(2.3.4), the HRF is,

h(x) = θαβαxα−1(e1−e−(xβ)α

− 1)θ−1e1−(xβ)α−e−(xβ)α

(e− 1)θ − (e1−e−(xβ)α − 1)θ
, α, β, θ > 0, x > 0. (2.3.5)

The distribution with CDF Eq.(2.3.3) and PDF Eq.(2.3.4) is referred to
as PGDUSW distribution with parameters α, β and θ and is denoted as
PGDUSW (α, β, θ). Figures 2.4 and 2.5 provide the graphical representation of the
pdf and HRF respectively for various parameter values.

Figure 2.4: Density plot for PGDUSW
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Figure 2.5: Failure rate plot for PGDUSW

2.3.1 Statistical Properties of PGDUSW Distribution

Moments, MGF, CF, CGF, QF, distribution of order statistics, and Rényi entropy
of the proposed PGDUSW (α, β, θ) distribution are derived.

Moments

The rth raw moment of the PGDUSW (α, β, θ) distribution is given by

µ′
r = θβ−re

(e− 1)θ

∞∑
k=0

∞∑
m=0

(−1)m+k

m! eθ−k−1
(
θ − 1
k

)
(θ − k)m Γ( r

α
+ 1)

(1 +m) r
α

+1 .

Moment Generating Function

The MGF of PGDUSW (α, β, θ) distribution is

MX(t) = θα

(e− 1)θ

∞∑
k=0

∞∑
m=0

∞∑
n=0

(−1)k+m+n

m!n!
(

θ−1
k

)
eθ−k(θ − k)m(1 +m)nβα+αn Γ(α + αn)

tα+αn
.
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Characteristic Function and Cumulant Generating Function

The CF of PGDUSW (α, β, θ) is given by

ϕX(t) = θα

(e− 1)θ

∞∑
k=0

∞∑
m=0

∞∑
n=0

(−1)k+m+n

m!n!
(

θ−1
k

)
eθ−k(θ−k)m(1+m)nβα+αn Γ(α + αn)

(it)α+αn
,

and the CGF of PGDUSW (α, β, θ) is given by

KX(t) = log ϕX(t)

= log
[

θα
(e−1)θ

∞∑
k=0

∞∑
m=0

∞∑
n=0

(−1)k+m+n

m!n!
(

θ−1
k

)
eθ−k(θ − k)m(1 +m)nβα+αn Γ(α+αn)

(it)α+αn

]

where i =
√

−1 is the unit imaginary number.

Quantile Function

The pth quantile Q(p) of the PGDUSW (α, β, θ) is the real solution of the following
equation

((e1−e−(βQ(p))α

− 1)/(e− 1))θ = p

where p ∼ Uniform(0, 1). Solving the above equation for Q(p), it is obtained that

Q(p) = −1
βα

log[1 − log (e− 1)p 1
θ + 1]

1
α

. (2.3.6)

Setting p = 0.5 in the Eq.(2.3.6) yields the median. Thus,

Median = −1
βα

log[1 − log (e− 1)0.5 1
θ + 1]

1
α

.

Similarly, the quartiles Q1 and Q3 are obtained respectively by setting p = 1
4 and

p = 3
4 in Eq.(2.3.6).

Distribution of Order Statistic

Let X1, X2, . . . , Xm be m independent random variables from the PGDUSW (α, β, θ)
distribution with CDF Eq.(2.3.3) and PDF Eq.(2.3.4). Then the PDF of rth order
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statistics X(r) of the PGDUSW (α, β, θ) distribution is given by

fX(r) = m!
(r − 1)!(m− r)!

θαβαxα−1

(e− 1)θm

(
e1−e−(xβ)α

− 1
)θr−1

e1−(xβ)α−e−(xβ)α

[
(e− 1)θ − (e1−e−(xβ)α

)θ
]m−r

, r = 1, 2, . . . ,m.
(2.3.7)

Then, the PDF of X(1) and X(m) are obtained by setting r = 1 and r = m respectively
in Eq.(2.3.7). This can be used in reliability analysis of series and parallel system.

Rényi Entropy

Rényi entropy introduced by Rényi (1961) is defined as

R(ν)ג = 1
1 − ν

log
(∫

f ν(x)dx
)

where ν > 0 and ν ̸= 1.

∫ ∞

0
f ν(x)dx = (θα)ν

(e− 1)θν

∞∑
k=0

∞∑
m=0

(−1)k+m

m!
(

νθ−ν
k

)
(νθ − k)meνθ−k Γ(ν − ν

α
+ 1)

(ν +m)ν− ν
α

+1βα−ν

Then the Rényi entropy of the PGDUSW (α, β, θ) becomes

R(ν)ג = 1
1−ν

log
[

(θα)ν

(e− 1)θν

∞∑
k=0

∞∑
m=0

(−1)k+m

m!
(

νθ−ν
k

)
(νθ − k)meνθ−k Γ(ν − ν

α
+ 1)

(ν +m)ν− ν
α

+1βα−ν

]

2.3.2 Estimation of PGDUSW Distribution

To estimate the unknown parameters of the PGDUSW (α, β, θ), the maximum
likelihood estimation method is utilized. For this, a random sample of size n from
the PGDUSW (α, β, θ) distribution was chosen. Therefore, the likelihood function
is given by,

L(x) =
n∏

i=1
f(x) =

n∏
i=1

θαβα

(e− 1)θ
xα−1e1−(xiβ)α−e−(xiβ)α

(e1−e−(xiβ)α

− 1)θ−1 (2.3.8)
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Applying the natural logarithm to Eq.(2.3.8), the log-likelihood function becomes

logL = n log(θ) + n log(α) + αn log(β) − θn log(e− 1) + n+
n∑

i=0
(α− 1) log(xi)

−
n∑

i=0
(xiβ)α −

n∑
i=0

e−(xiβ)α + (θ − 1)
n∑

i=0
log(e1−e−(xiβ)α

− 1).

Computing the first order partial derivatives,

∂ logL
∂α

= n

α
−

n∑
i=0

(xiβ)α log(xiβ) +
n∑

i=0
log(xi) +

n∑
i=0

(xiβ)αe−(xiβ)α log(xiβ)

+n log(β) + (θ − 1)(xiβ)α

(e1−e−(xiβ)α − 1)
log(xiβ)e1−(xiβ)α−e−(xiβ)α

,

(2.3.9)

∂ logL
∂β

= nα

β
−

n∑
i=0

α(xiβ)α

β
+

n∑
i=0

α(xiβ)α

β
e−(xiβ)α

+(θ − 1)α
β

n∑
i=0

(xiβ)α e
1−(xiβ)α−e−(xiβ)α

(e1−e−(xiβ)α − 1)
,

(2.3.10)

and

∂ logL
∂θ

= n

θ
− n log(e− 1) +

n∑
i=0

log(e1−e−(xiβ)α

− 1). (2.3.11)

Equations (2.3.9), (2.3.10) and (2.3.11) are not in closed form. The solution to
these explicit equations can be obtained analytically and can be solved numerically
using R software by taking arbitrary initial values. In the case of asymptotic normal
MLEs, the confidence interval(CI)s for α, β, and θ are calculated by computing the
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observed information matrix given by

I =



∂2 log L
∂α2

∂2 log L
∂α∂β

∂2 log L
∂α∂θ

∂2 log L
∂β∂α

∂2 log L
∂β2

∂2 log L
∂β∂θ

∂2 log L
∂θ∂α

∂2 log L
∂θ∂β

∂2 log L
∂θ2


where

∂2 logL
∂α2 = −n

α
−

n∑
i=1

log2(xiβ)(xiβ)α((xiβ)α − 1)e−(xiβ)α

+(θ − 1)∑n
i=1

(xiβ)α log2(xiβ)e1−(xiβ)α−e−(xiβ)α

((((xiβ)α−1)e1−e−(xiβ)α

−(xiβ)αe−(xiβ)α )+(1−(xiβ)α))
(e1−e−(xiβ)α

−1)2
,

∂2 logL
∂α∂β

= −
n∑

i=1
(xiβ)αe−(xiβ)α [α((xiβ)α − 1) ln(xiβ) − 1]

+ n

β
− (θ − 1)

n∑
i=1

(xiβ)α([α[(xiβ)α − 1]e(xiβ)α − α(xiβ)α]e1−(xiβ)α−e−(xiβ)α

β(e1−e−(xiβ)α − 1)2

−
n∑

i=1
xα

i β
α−1(α ln(xiβ) + 1) − (θ − 1)

n∑
i=1

α(1 − (xiβ)α) ln(xiβ) − e1−e1−(xiβ)α

+ 1)
β(e1−e−(xiβ)α − 1)2

,

∂2 logL
∂α∂θ

=
n∑

i=1

(xiβ)α log(xiβ)e1−(xiβ)α−e−(xiβ)α

(e1−e−(xiβ)α − 1)
,
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∂2 logL
∂β2 = −αn

β2 − α(α− 1)
β2

n∑
i=1

(xiβ)α − α

β2

n∑
i=1

(xiβ)α(α(xiβ)α − α + 1)e−(xiβ)α

+(θ − 1) α
β2
∑n

i=1(xiβ)α (((α(xiβ)α−α+1)e(xiβ)α −α(xiβ)α)e1−(xiβ)α−e−(xiβ)α

(−α(xiβ)α+α−1))
(e1−e−(xiβ)α

−1)2

∂2 logL
∂β∂θ

= α

β

n∑
i=1

(xiβ)αe1−(xiβ)α−e−(xiβ)α

(e1−e−(xiβ)α − 1)
,

and

∂2 logL
∂θ2 = − n

θ2 .

For α, β, and θ, the 100(1 − γ)% asymptotic CIs are as follows: α̂ ± z1− γ
2

√
V11,

β̂ ± z1− γ
2

√
V22, and θ̂ ± z1− γ

2

√
V33, where Vij represents the (i, j)th element in the

inverse of the Fisher information matrix I.

2.3.3 Simulation Study

To illustrate the performance of the maximum likelihood method for
PGDUSW (α, β, θ) distribution, the inverse transformation method is used. For
different values of α, β and θ, samples of sizes n = 100, 250, 500, 750 and 1000 are
generated from the proposed model. For 1000 repetitions, the bias and mean square
error (MSE) of the estimated parameters are computed. The selected parameter
values are α = 0.5, β = 0.5 and θ = 0.5, α = 0.5, β = 1 and θ = 0.5 and α = 1, β = 1
and θ = 0.5. From the Tables 2.7, 2.8 and 2.9, it is noted that bias and MSE
decrease for the selected parameter values as sample size increases.

2.3.4 Data Analysis

A real data analysis is carried out to determine the performance of the proposed
model. For this, the data on the number of million revolutions before the failure of
23 ball bearings put on test is considered (Lawless (1982)), see Table 2.5.
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Table 2.7: Estimate, Biases and MSEs for PGDUSW model at α = 0.5, β = 0.5
and θ = 0.5

n Estimated Parameter values Bias MSE

100

α̂=0.5668 0.0668 0.0473

β̂=0.7541 0.2541 1.0617

θ̂=0.5021 0.0031 0.0413

250

α̂=0.5251 0.0251 0.0118

β̂=0.5831 0.0831 0.1488

θ̂=0.5032 0.0022 0.0165

500

α̂=0.5297 0.0189 0.0057

β̂=0.4929 0.0177 0.0318

θ̂=0.4922 0.0007 0.0068

750

α̂=0.5188 0.0188 0.0034

β̂=0.4935 -0.0065 0.0223

θ̂=0.5026 0.0003 0.0050

1000

α̂=0.5165 0.0165 0.0025

β̂=0.4795 -0.0205 0.0159

θ̂=0.4922 -0.0078 0.0035

Different distributions namely, Inverse Weibull (IW) distribution, DUS
Exponential (DUSE) distribution by Kumar et al. (2015), and Kavya-Manoharan
Weibull (KMW) by Kavya and Manoharan (2021) distribution are used to compare
the performance with the proposed PGDUSW (α, β, θ) distribution.

To check the acceptability of the PGDUSW (α, β, θ) distribution for the given
data set AIC, Corrected Akaike Information Criterion (AICc), log-likelihood value,
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Table 2.8: Estimate, Biases and MSEs for PGDUSW model at α = 0.5, β = 1
and θ = 0.5

n Estimated Parameter values Bias MSE

100

α̂=0.5729 0.0729 0.0460

β̂=1.4827 0.4827 3.7354

θ̂=0.51341 0.0434 0.0485

250

α̂=0.5019 0.0019 0.0083

β̂=1.2852 0.2852 0.6372

θ̂=0.5333 0.0393 0.0169

500

α̂=0.4943 -0.0057 0.0041

β̂=1.2236 0.2236 0.2915

θ̂=0.5399 0.0339 0.0102

750

α̂=0.4886 -0.0109 0.0023

β̂=1.1045 0.1814 0.1353

θ̂=0.5244 0.0244 0.0050

1000

α̂=0.4822 -0.0178 0.0022

β̂=1.1814 0.1045 0.1195

θ̂=0.5207 0.0207 0.0042

and KS goodness of fit test statistic with the p-value are used and the computed
values are provided in Table 2.10. It is worth noting that in the goodness of fit
test, the purpose is to determine whether the sets of data with the distribution
function F (y) and the hypothesised distribution FP GDUSW (y) are compatible. This
problem can be formulated as H0 : F (y) = FP GDUSW (y) versus the alternative
H1 : F (y) ̸= FP GDUSW (y).
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Table 2.9: Estimate, Biases and MSEs for PGDUSW model at α = 1, β = 1
and θ = 0.5

n Estimated Parameter values Bias MSE

100

α̂=1.1273 0.1273 0.1628

β̂=1.1460 0.1460 0.8851

θ̂=0.5223 0.0223 0.0545

250

α̂=1.0184 0.0184 0.0449

β̂=1.0889 0.0889 0.1068

θ̂=0.5205 0.0205 0.0177

500

α̂=1.0109 0.0109 0.0185

β̂=1.0490 0.0490 0.0447

θ̂=0.5151 0.0151 0.0085

750

α̂=1.0056 0.0056 0.0107

β̂=1.0381 0.0381 0.0260

θ̂=0.5095 0.0095 0.0049

1000

α̂=0.9851 -0.0149 0.0074

β̂=1.0239 0.0239 0.0167

θ̂=1.0012 0.0012 0.0035

From Table 2.10, it is noted that the PGDUSW (α, β, θ) distribution fits well
for the given data set. To facilitate a better understanding of the results, the plot
of the ECDF is shown in the Figure 2.6 along with the plot of fitted densities in
the Figure 2.7 of the distributions for the ball bearings dataset. Furthermore, our
proposed distribution is found to fit better than those of the other distributions.
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Table 2.10: Findings for PGDUSW Distribution

Model MLEs log L AIC AICc KS p-value

IW
λ̂ = 1.8341

-115.7887 235.5774 236.1774 0.1328 0.8118
θ̂ = 0.0206

DUSE â = 0.0182 -127.4622 256.9244 257.1149 0.2774 0.0580

KMW
λ̂ = 2.3169

-113.4076 230.8152 231.4152 0.1421 0.7419
κ̂ = 0.0107

PGDUSW

α̂ = 0.9362

-113.0114 230.0228 230.6228 0.10921 0.9467β̂ = 0.0383

θ̂ = 4.4478
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Figure 2.6: ECDF plot for various distributions.
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Figure 2.7: Fitted Density plot for various distributions.

2.4 PGDUS Lomax Distribution

Power Generalized DUS Lomax (PGDUSL) Distribution, denoted as
PGDUSL(α, β, θ), is obtained using PGDUS transformation with Lomax
distribution as baseline distribution. Then the CDF of the PGDUSL(α, β, θ)
distribution using Eq.(2.1.1) is given by

F (x) =
(
e1−(1+xβ)−α − 1

e− 1

)θ

, α, β > 0, θ > 0, x > 0. (2.4.1)

Then the PDF is

f(x) = θαβ

(e− 1)θ
(e1−(1+xβ)−α − 1)θ−1e1−(1+xβ)−α(1 + xβ)−(α+1). (2.4.2)

The HRF is

h(x) = θαβ(e1−(1+xβ)−α − 1)θ−1e1−(1+xβ)−α(1 + xβ)−(α+1)

(e− 1)θ − (e1−(1+xβ)−α − 1)θ
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Figure 2.8: PGDUSL distribution density plot for various parameter values.

2.4.1 Properties of PGDUSL Distribution

Here, a few properties of the PGDUSL distribution are explored.

Moments

The rth raw moments of PGDUSL(α, β, θ) is

µ′
r = θα

(e− 1)θ

∞∑
k=0

∞∑
m=0

∞∑
n=0

(−1)k+m+n

n!

(
α + k

k

)(
θ − 1
m

)
βk+1 eθ−m (θ −m)n

B(r + k + 1, αn− r − k − 1).

Moment Generating Function

The MGF of PGDUSL(α, β, θ) is

MX(t) = θα

(e− 1)θ

∞∑
m=0

∞∑
k=0

∞∑
n=0

∞∑
l=0

(−1)k+m+n

n! l! βl

(
α− k

k

)(
θ − 1
m

)
eθ−m (θ −m)n tl

B(k + l + 1, α n− k − l − 1).
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Figure 2.9: PGDUSL distribution HRF plot for various parameter values.

Characteristic Function and Cumulant Generating Function

The CF of the proposed distribution is given by

ϕX(t) = θα

(e− 1)θ

∞∑
m=0

∞∑
k=0

∞∑
n=0

∞∑
l=0

(−1)k+m+n

n! l! βl

(
α− k

k

)(
θ − 1
m

)
eθ−m (θ −m)n (it)l

B(k + l + 1, α n− k − l − 1).

The CGF of the proposed distribution is given by

KX(t) = log
{∑∞

m=0
∑∞

k=0
∑∞

n=0
∑∞

l=0
(−1)k+m+n

n! l! βl

(
α−k

k

)(
θ−1
m

)
eθ−m (θ −m)n (it)l

B(k + l + 1, α n− k − l − 1)
}

+ log
(

θα

(e− 1)θ

)
.

58



Section 2.4

Quantile Function

The pth quantile Q(p) of the PGDUSL(α, β, θ) is the real solution of the following
equation

((e1−1+(βQ(p))α − 1)/(e− 1))θ = p,

where p ∼ Uniform(0, 1). Solving the above equation for Q(p), it can be obtained
as

Q(p) = 1
β

{ [
1 − log

[
p

1
θ (e− 1) + 1

]]−1
α − 1

}
.

Setting p = 0.5 in the above equation yields median. Thus,

Median = 1
β

{ [
1 − log

[
0.5 1

θ (e− 1) + 1
]]−1

α − 1
}
.

2.4.2 Estimation of PGDUSL Distribution

Method of Maximum likelihood estimation is used to estimate the unknown
parameters of PGDUSL(α, β, θ). For this, a random sample of size n from
PGDUSL(α, β, θ) distribution was chosen. Then the likelihood function is given by,

L(x) =
n∏

i=1
f(x) = (θαβ)n

(e− 1)θn

n∏
i=1

(e1−(1+xiβ)−α −1)θ−1e1−(1+xiβ)−α(1+xiβ)−α+1 (2.4.3)

The log-likelihood function becomes

logL = n log(θ) + n log(α) + n log(β) − θn log(e− 1) + n−
n∑

i=1
(1 + xiβ)−α

− (α + 1)
n∑

i=1
log(1 + xiβ) + (θ − 1)

n∑
i=1

log(e1−(1+xiβ)−α − 1). (2.4.4)

Computing the first order partial derivatives of Eq.(2.4.4),

∂ logL
∂α

= n

α
+

n∑
i=1

log(1 + xiβ)(1 + xiβ)−α −
n∑

i=1
log(1 + xiβ)

+
n∑

i=1

(θ − 1) log(1 + xiβ)e1−(1+xiβ)−α(1 + xiβ)−α

(e1−(1+xiβ)−α − 1) .

(2.4.5)
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∂ logL
∂β

= n

β
−

n∑
i=1

αxi(1 + xiβ)−(α+1) − (α + 1)
n∑

i=1

xi

1 + xiβ

−
n∑

i=1

αxi(θ − 1)(1 + xiβ)−(α+1)

(e1−(1+xiβ)−α − 1) ,

(2.4.6)

and

∂ logL
∂θ

= n

θ
− n log(e− 1) +

n∑
i=1

log(e1−(1+xiβ)−α − 1). (2.4.7)

Equations (2.4.5), (2.4.6) and (2.4.7) are not in closed form. The solution of these
explicit equations can be obtained analytically and can be solved numerically using
R software by taking arbitrary initial values.

In the case of asymptotic normal MLEs, the confidence interval(CI)s for α, β,
and θ are calculated by computing the observed information matrix given by

I =



∂2 log L
∂α2

∂2 log L
∂α∂β

∂2 log L
∂α∂θ

∂2 log L
∂β∂α

∂2 log L
∂β2

∂2 log L
∂β∂θ

∂2 log L
∂θ∂α

∂2 log L
∂θ∂β

∂2 log L
∂θ2


where

∂2 logL
∂α2 = − n

α2 −
n∑

i=1
(1 + βxi)−α log2(1 + βxi)

+ (θ − 1)
n∑

i=1

log2(1 + xiβ)e1−(1+xiβ)−α(1 + xiβ)−α[1 − (1 + xiβ)−α − e1−(1+xiβ)−α ]
(e1−(1+xiβ)−α − 1)2 ,
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∂2 logL
∂α∂β

= −
n∑

i=1
xiA

−1 − (θ − 1)
n∑

i=1
A−(α+1)e1−A−α [xi(e1−A−α − 1 − αxiA

−(α+1))]
(e1−A−α − 1)2

+ (θ − 1)
n∑

i=1
A−(α+1)e1−A−α [α log(A)e1−A−α(A−α log(A) − 1 + e−(1−A−α) − A−αe−(1−A−α))]

(e1−A−α − 1)2

−
n∑

i=1
xiA

−(α+1)[α log(A) − 1]

where A = (1 + xiβ)

∂2 logL
∂α∂θ

= ∂2 logL
∂θ∂α

=
n∑

i=1

log(1 + βxi)e1−(1+βxi)−α(1 + βxi)−α

(e1−(1+βxi)−α − 1) ,

∂2 logL
∂β2 = − n

β2 −
n∑

i=1
α(α + 1)x2

i (1 + βxi)−(α+2) + (α + 1)
n∑

i=1
x2

i (1 + βxi)−2+

α(θ − 1)∑n
i=1 x

2
i

(α+1)(1+βxi)−(α+2)(e1−(1+βxi)−α −1)−α(1+βxi)−2(α+1)e1−(1+βxi)−α

(e1−(1+βxi)−α −1)2 ,

∂2 logL
∂β∂θ

= −
n∑

i=1

αxi(1 + βxi)−(α+1)

(e1−(1+βxi)−α − 1) ,

and

∂2 logL
∂θ2 = − n

θ2 .

For α, β, and θ, the 100(1 − γ)% asymptotic CIs are as follows: α̂ ± z1− γ
2

√
V11,

β̂ ± z1− γ
2

√
V22, and θ̂ ± z1− γ

2

√
V33, where Vij represents the (i, j)th element in the

inverse of the Fisher information matrix I.

2.4.3 Simulation Study

In order to demonstrate the performance of the maximum likelihood method for the
proposed PGDUSL(α, β, θ) distribution, the inverse transformation method is used.
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For different combinations of values of α, β, and θ, samples of sizes n = 250, 500,
750, and 1000 are generated from the PGDUSL(α, β, θ) model. The bias and mean
square error (MSE) of the estimated parameters are calculated for 1000 iterations.
The selected parameter values are α = 0.5, β = 0.5 and θ = 0.5, α = 1, β = 1.5
and θ = 0.5 and α = 1, β = 1.5 and θ = 1. From Tables 2.11, 2.12, and 2.13, it
is observed that bias and MSE decreases for the selected parameter values as the
sample size increases.

Table 2.11: Estimate, Biases and MSEs for PGDUSL model at α = 0.5, β = 0.5
and θ = 0.5

n Estimated value of Parameters Bias MSE

250

α̂=0.5100 0.0100 0.0031

β̂=0.5520 0.0720 0.0665

θ̂=0.5218 0.0218 0.0049

500

α̂=0.4921 -0.0039 0.0016

β̂=0.5926 0.0526 0.0422

θ̂=0.5197 0.0197 0.0023

750

α̂=0.4960 -0.0079 0.0010

β̂=0.5313 0.0343 0.0181

θ̂=0.5088 0.0088 0.0013

1000

α̂=0.4889 -0.0111 0.0008

β̂=0.5343 0.0313 0.0134

θ̂=0.5046 0.0046 0.0009

2.4.4 Real Data Application

Real data analysis is used to determine the applicability of the PGDUSL model.
The data set shown in Table 2.14 is uncensored. Among 128 patients with bladder
cancer in a random sample, it corresponds to the number of months they experienced
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Table 2.12: Estimate, Biases and MSEs for PGDUSL model at α = 1, β = 1.5
and θ = 0.5

n Estimated value of Parameters Bias MSE

250

α̂=1.0268 0.0268 0.0314

β̂=1.6452 0.1800 0.4484

θ̂=0.5217 0.0217 0.0037

500

α̂=1.0140 0.0140 0.0131

β̂=1.6800 0.1452 0.2215

θ̂=0.5187 0.0187 0.0017

750

α̂=0.9838 -0.0070 0.0080

β̂=1.6374 0.1374 0.1404

θ̂=0.5040 0.0050 0.0008

1000

α̂=0.9930 -0.0162 0.0059

β̂=1.6070 0.1070 0.0906

θ̂=0.5050 0.0040 0.0006

remission, as reported by Lee and Wang (2003). Different distributions, namely
the Lomax distribution (LD) by Lomax (1954), the DUSE distribution by Kumar
et al. (2015), and the DUS Lomax (DUSL) distribution by Deepthi and Chacko
(2020), are used to compare the performance with the proposed PGDUSL(α, β, θ)
distribution.

To check the acceptability of the PGDUSL(α, β, θ) distribution for the given
data set AIC, Corrected AIC (AICc), log-likelihood value, KS value and p-value
are used and the computed values are provided in Table 2.15. From Table 2.15,
it is clear that PGDUSL(α, β, θ) distribution fits well for the given data set. To
facilitate a better understanding of the results, the plot of the ECDF is shown in
the Figure 2.10 along with fitted density plot in the Figure 2.11 of the distributions
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Table 2.13: Estimate, Biases and MSEs for PGDUSL model at α = 1, β = 1.5
and θ = 1

n Estimated value of Parameters Bias MSE

250

α̂=1.0284 0.0284 0.0194

β̂=1.69386 0.19386 0.71071

θ̂=1.05298 0.05297 0.03426

500

α̂=1.0179 0.0179 0.0082

β̂=1.5999 0.0999 0.1999

θ̂=1.0472 0.0472 0.0144

750

α̂=0.9917 -0.0083 0.0049

β̂=1.5596 0.0596 0.1101

θ̂=1.0145 0.0145 0.0068

1000

α̂=0.9836 -0.0164 0.0033

β̂=1.5187 0.0187 0.0755

θ̂=0.9967 -0.0033 0.0051

for the blood cancer patients dataset. Furthermore, our proposed distribution is
found to fit better than those of the other distributions.

2.5 Summary

In this chapter, a new class of distribution generalizing the DUS transformation,
called the PGDUS transformation, is introduced. A new lifetime distribution
called the PGDUSE distribution with exponential as the baseline distribution is
proposed. The generalized form provides greater flexibility in modeling real datasets.
When a parallel system is considered, if the components are distributed as DUS
transformations of some baseline models, PGDUS transformation is the only solution.
Different statistical properties such as moments, MGF, CF, quantile function, CGF,
order statistic, and entropy of the PGDUSE distribution are derived. The parameter
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Table 2.14: Blood Cancer Patients Dataset

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23

0.52 4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09

0.22 13.80 25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24

0.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81

0.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32

0.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66

0.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01

0.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33

0.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 17.36

0.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 5.85

0.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02 2.02

0.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 12.07

0.73 2.07 3.36 6.93 8.65 12.63 22.69 5.49

Table 2.15: Findings for PGDUSL distribution

Model MLEs log L AIC AICc KS p-value

LD
λ̂ = 15.2817

-414.98 833.960 834.056 0.094 0.208
θ̂ = 0.0074

DUSE µ̂ = 0.1342 -433.139 868.278 868.309 0.081 0.366

DUSL
λ̂ = 6.471

-413.077 830.153 830.249 0.075 0.463
θ̂ = 0.0253

PGDUSL

α̂ = 3.842

-411.019 828.039 828.2324 0.035 0.998β̂ = 0.0605

θ̂ = 1.3984

estimation has been done using the method of maximum likelihood. Monte Carlo
simulations are carried out. Real data analysis is performed to show that the
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Figure 2.10: ECDF plot of the models for blood cancer patients dataset.
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Figure 2.11: Estimated densities of the models for the blood cancer patients
dataset.

proposed generalization of the DUS transformation using exponential distributions
can be used effectively to provide better fits.

Similarly, the power generalized DUS transformations of Weibull and Lomax
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distributions have been proposed. Studies on fundamental properties like moments,
MGF, CF, CGF, quantile function, distribution of order statistics, and Rényi entropy
are also carried out. The parameter estimation has been given by the maximum
likelihood method. By using the simulation study, it is observed that the estimates
of the proposed distributions have a smaller bias and mean square error when the
sample size is large. Real data applications have been performed to determine the
applicability of the proposed model. Furthermore, a better fit is adjudged for the
proposed model when compared with a few existing models. When conducting
reliability analyses on a parallel system where each of the components has a specific
DUS-transformed lifetime distribution, the PGDUS approach is highly useful.
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