
CHAPTER 3

Exponential-Gamma (3, θ) Distribution: A
Bathtub Shaped Failure Rate Model

3.1 Introduction

Modeling and analyzing lifetime data using mixture distribution is a prominent
practice in many applied sciences, such as medicine, engineering, and finance.
Mixture distributions are useful when dealing with lifetime data analysis. When a
new component switches on for the first time, it may fail at the same instant, or
it may fail due to overvoltage, jerking, or any such shocks. Failure due to random
shocks can be modeled using an exponential distribution, while failure due to the
degradation of components occurs. Failure time may be distributed as a Gamma
distribution, Weibull distribution, or any other lifetime distribution if it is fitted
to the data. When a group of lifetimes consists of lifetimes due to both types of
failures, such as random failures and failures due to degradation, one should use a
mixture.

A variety of distributions can be used to model lifetime data, though the failure
rate functions of the majority of them do not exhibit bathtub shapes. However,
many real-life systems demonstrate BFR functions. To address this discrepancy,
distributions like the exponentiated Weibull by Pal et al.(2006), exponentiated
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gamma by Nadarajah and Gupta (2007), generalized Lindley by Nadarajah et al.
(2011), and X-exponential by Chacko (2016) have been proposed to model lifetime
data with bathtub-shaped failure rate models.

Models with bathtub-shaped failure rate functions apply to reliability analysis,
particularly in reliability-related decision-making, cost analysis, and burn-in analysis.
It is necessary to use exponential distributions when dealing with random failures
and other lifetime distributions when dealing with failures due to ageing in such
situations. The purpose of this chapter is to examine a mixture of an exponential
distribution and a gamma distribution that has a BFR function. Real-world problems
can be accurately modeled by this distribution.

The introduction of a mixture distribution uses gamma and exponential
distributions in many different areas. This modeling strategy is useful when
working with populations, systems, or datasets that have intrinsic differences in their
properties. The exponential distribution is used to represent constant failure rates,
whereas the gamma distribution, with a shape value of 3, describes wear-out failure
mechanisms. The occurrence of various behaviors within a population or system can
be explained by using these two distributions as a mixture. The fact that we can
produce bathtub-shaped failure rate behavior for this combination distribution is a
major concern. This is beneficial in reliability analysis, health research, financial
modeling, quality control, and other fields.

This chapter is organized as follows. Section 3.2 considers the exponential-gamma
(3, θ) distribution. In section 3.3, various statistical properties of the
exponential-gamma (3, θ) distribution are derived. The estimation procedure is given
in section 3.4. Section 3.5 provides a comprehensive simulation study. Additionally,
section 3.6 provides data analysis. At the end of the chapter, a summary is given.

3.2 Exponential-Gamma (3, θ) Distribution

A mixture of exponential (θ) and gamma (3,θ) distributions are considered. It is
denoted as EGD(θ). The PDF of the mixture of the exponential (θ) and gamma
(3,θ) distribution is as follows:

f(x; θ) = p f1(x; θ) + (1 − p) f2(x; 3, θ),

70



Section 3.2

where p = θ
1+θ

, f1(x; θ) = θe−θx and f2(x; 3, θ) = θ3 x2

2 e
−θx.

Then,
f(x; θ) = θ2

1 + θ
(1 + θ

2x
2)e−θx, x > 0, θ > 0. (3.2.1)

The CDF corresponding to the EGD(θ) distribution is

F (x; θ) = 1 − (θ(x(θx+ 2) + 2) + 2)e−θx

2(1 + θ) ;x > 0, θ > 0. (3.2.2)

The Survival function associated with Eq.(3.2.2) is

F̄ (x; θ) = 1 − F (x; θ) = (θ(x(θx+ 2) + 2) + 2)e−θx

2(1 + θ) ;x > 0, θ > 0. (3.2.3)

The first derivative of the PDF is

f ′(x) = θ3e−θx

1 + θ

(
x− 1 − θx2

2

)
.

The second derivative of the PDF is

f ′′(x) = θ3e−θx

1 + θ

(
1 − 2θx+ θ + θ2x2

2

)
.

The mode of f(x) is the point x = x0 satisfying f ′(x0) = 0. Here f ′(x0) = 0 is at
the point x0 = 1±

√
1− θ

2
θ

, f ′′(x) < 0 for 0 < x < 1 and f ′′(x) > 0 for 1 ≤ x ≤ 2.

The shape of the PDF is given in figure 3.1 and 3.2.
From the above figures, it is apparent that the PDF can be decreasing or unimodal.
The HRF of EGD(θ) is given below.

h(x) = f(x, θ)
F̄ (x, θ)

=
2(1 + θ)θ2(1 + θx2

2 )
(θ(x(θx+ 2) + 2) + 2);x > 0, θ > 0. (3.2.4)

The first derivative of HRF is

h′(x) = 2(1 + θ)θ2 θx(θ(x(θx+ 2) + 2) + 2) − 2θ(θx+ 1)(1 + θx2

2 )
(θ(x(θx+ 2) + 2) + 2)2 .
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Figure 3.1: PDF plot for θ ≤ 1
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Figure 3.2: PDF plot for θ > 1

The second derivative of HRF is given by

h′′(x) = 4θ3(θx+ 1)(−θ2x2 + 6θ − 2θx+ 2)(1 + θ)
(θ(x(θx+ 2) + 2) + 2)3 .
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Figure 3.3: HRF plot of EGD(θ) for θ =4.95, 5, 5.15

The extremum of h(x) is the point x = x0 satisfying h′(x0) = 0, and these points
correspond to a maximum or a minimum or a point of inflection according to
h′′(x) < 0, h′′(x) > 0 and h′′(x) = 0 respectively. Here h′(x) = 0 at the point
x0 = −1+

√
1+2θ

θ
and h′′(x) > 0 for θ > 0. So h(x) must attain a unique minimum at

x = x0.
Initially, the plot of h(x) decreases monotonically and then increases, giving a
bathtub shape. Fig.3.3 provides the HRFs of EGD(θ) for different parameter values.

3.3 Statistical Properties of EGD(3, θ)

Here, the statistical measures for the EGD(θ) distribution, such as moments,
skewness, kurtosis, MGF, CF, quantile function, median, Rènyi entropy, Lorenz
curve, and Gini index are discussed.
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3.3.1 Moments

In the statistical literature, the concept of moments is of paramount importance.
We can measure the central tendency of a population by using moments. Moments
also help in measuring the scatteredness, asymmetry, and peakedness of a curve for
a particular distribution.

The rth raw moment (about the origin) of EGD(θ) is

µ′
r = p

r!
θr

+ (1 − p)Γ(r + 3)
2θr

= 2θr! + Γ(r + 3)
2(1 + θ)θr

.

Therefore, the mean and variance of EGD(θ) are respectively given by

µ = θ + 3
θ(1 + θ) ,

and
σ2 = θ2 + 8θ + 3

θ2(1 + θ)2 .

The skewness and kurtosis can be obtained using these raw moments as

Skewness = 2θ3 + 30θ2 − 63θ + 16
θ2 + 8θ + 3 ,

and
Kurtosis = 9θ4 + 192θ3 + 306θ2 + 216θ + 45

(θ2 + 8θ + 3)2 .

3.3.2 Moment Generating Function and Characteristic Function

Let X has EGD(θ) distribution, then the MGF of X, MX(t) = E(etX), is

MX(t) = θ2

1 + θ

(
− (t− θ)2 + θ

(t− θ)3

)
,

for t > 0. Similarly, the CF of X becomes ϕ(t) = MX(it),

ϕ(t) = θ2

1 + θ

(
− (it− θ)2 + θ

(it− θ)3

)
,

where i =
√

−1.
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3.3.3 Quantile Function and Median

Here, the quantile and median formulas of EGD(θ) distribution are determined.
The quantile xp of the EGD(θ) is given from

F (xp) = p, 0 < p < 1

The 100 pth percentile can be obtained as,

(θ(x(θx+ 2) + 2) + 2)e−θx = 2(1 − p)(1 + θ). (3.3.1)

Setting p = 0.5 in Eq. (3.3.1), the median of EGD(θ) is obtained as follows.

(θ(x(θx+ 2) + 2) + 2)e−θx = (1 + θ).

The x0.5 is the solution of the above monotone increasing function. Using different
statistical software, the quantiles or percentiles can be obtained.

3.3.4 Rènyi Entropy

An important entropy measure is Rènyi entropy (Rènyi (1980)). If X has the EGD(θ)
then Rènyi entropy is defined by

ℑR(ν) = 1
1 − ν

log
{ ∫

f ν(x)dx
}
,

where ν > 0 and ν ̸= 1. Then we can calculate, for EGD(θ),

∫
f ν(x)dx =

∫ ∞

0

{
θ2

1 + θ
e

−θx

(
1+ θx2

2

)}ν

dx

=
(

θ2

1 + θ

)ν ∫ ∞

0

(
1 + θx2

2

)ν

e−νθx

=
(

θ2

1 + θ

)ν ∞∑
k=0

(
ν

k

)
(−1)k

∫ ∞

0
x2ke−νθxdx

=
(

θ2

1 + θ

)ν ∞∑
k=0

(
ν

k

)
(−1)k Γ(2k + 1)

(νθ)2k+1 .

75



CHAPTER 3

Therefore, Rènyi entropy is given by

ℑR(ν) = 1
1 − ν

log
{(

θ2

1 + θ

)ν ∞∑
k=0

(
ν

k

)
(−1)k Γ(2k + 1)

(νθ)2k+1

}

= ν

1 − ν
log

(
θ2

1 + θ

)
+ 1

1 − ν
log

{ ∞∑
k=0

(
ν

k

)
(−1)k Γ(2k + 1)

(νθ)2k+1

}
.

3.3.5 Lorenz Curve and Gini Index

The Lorenz curve and the Gini index have applications not only in economics but
also in reliability.
The Lorenz curve is defined by

L(p) = 1
p

∫ q

0
xf(x)dx

or equivalently,
L(p) = 1

p

∫ q

0
xF−1(x)dx,

where p = E(X) and q = F−1(p).
The Gini index is given by

G = 1 − 2
∫ 1

0
L(p)dp.

If X has EGD(θ) then

L(p) = 1
p

[
θ + 3
θ(θ + 1) − (θ(q(θ(q(θq + 3) + 2) + 6) + 2) + 6)e−θq

2θ(1 + θ)

]
.

Gini Index is

G = 1 − 2
pθ(1 + θ)

[
θ + 3 − (θ(q(θ(q(θq + 3) + 2) + 6) + 2) + 6)e−θq

2

]
, θ > 0.

3.3.6 Distribution of Maximum and Minimum

Let X1, X2, . . . , Xn be a simple random sample from EGD(θ). Let
X(1), X(2), . . . , X(n) denote the order statistics obtained from this sample. The
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PDF of X(r) is given by,

fr:n(x) = 1
B(r, n− r + 1)[F (x; θ)]r−1[1 − F (x; θ)]n−rf(x; θ),

where F (x; θ), f(x; θ) are the CDF and PDF given by Eq. (3.2.2) and Eq. (3.2.1),
respectively. That is,

fr:n(x) = 1
B(r, n− r + 1)

[
1 − (θ(x(θx+2)+2)+2)e−θx

2(1+θ)

]r−1[
(θ(x(θx+2)+2)+2)e−θx

2(1+θ)

]n−r

θ2

1 + θ

(
1 + θ

2x
2
)
e−θx. (3.3.2)

Then the PDF of the smallest and largest order statistics, X(1) and X(n), respectively,
are

f1(x) = 1
B(1, n)

[
(θ(x(θx+ 2) + 2) + 2)

2(1 + θ)

]n−1
θ2

1 + θ

(
1 + θ

2x
2
)
e−θx

and

fn(x) = 1
B(n, 1)

[
1 − (θ(x(θx+ 2) + 2) + 2)

2(1 + θ)

]n−1
θ2

1 + θ

(
1 + θ

2x
2
)
e−θx.

The CDF of X(r) is

Fr:n(x) =
n∑

j=r

(
n

j

)[
1 − (θ(x(θx+ 2) + 2) + 2)

2(1 + θ)

]j[(θ(x(θx+ 2) + 2) + 2)
2(1 + θ)

]n−j

.

(3.3.3)

Then the CDF of the smallest and largest order statistics X(1) and X(n), respectively,
are

F1(x) = 1 −
[

(θ(x(θx+ 2) + 2) + 2)
2(1 + θ)

]n

, θ > 0
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and
Fn(x) =

[
1 − (θ(x(θx+ 2) + 2) + 2)

2(1 + θ)

]n

, θ > 0.

These distributions can be used in reliability operations.

3.4 Parametric Estimation

In this section, point estimation of the unknown parameter of the EGD(θ) is
described by using the method of maximum likelihood for complete sample data, as
given below.

3.4.1 Maximum Likelihood Estimation

The likelihood function of the EGD(θ) distribution is

L =
n∏

i=1
f(xi; θ) =

n∏
i=1

θ2(1 + θ
2x

2
i )e−θx

1 + θ

The log-likelihood function is,

logL(xi; θ) = 2n log θ − n log(1 + θ) +
n∑

i=1

[
log

(
1 + θx2

i

2

)
− θxi

]
.

The first partial derivatives of the log-likelihood function with respect to θ is

∂L

∂θ
= 2n

θ
− n

1 + θ
+

n∑
i=1

(
x2

i

2(1 + θx2
i

2 )
− xi

)
(3.4.1)

Setting the left side of the above equation to zero, the likelihood equation
as a system of nonlinear equations in θ is obtained. Solving this system in
θ gives the MLE of θ. It is easy to obtain numerically by using a statistical
software package like the nlm package in R programming with arbitrary initial values.

The Fisher information about θ, I(θ), is

I(θ) = E

{
− ∂2

∂θ2 log f(X; θ)
}

= E

(
2
θ2 − 1

(1 + θ)2 + x4

4
1

(1 + θx2

2 )2

)
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= 2
θ2 − 1

(1 + θ)2 + E

{
x4

4
1

(1 + θx2

2 )2

}
.

Then the asymptotic 100(1 − α)% confidence interval for θ is given by

θ̂ ± Zα/2
I−1/2(θ̂)√

n
.

3.5 Simulation Study

A simulation study is conducted to illustrate the performance of the accuracy of the
estimation method. The following scheme is used:

1. Specify the value of the parameter θ.

2. Specify the sample size n.

3. Generate a random sample with size n from EGD(θ).

4. Using the estimation method used in this chapter, calculate the point estimate
of the parameter θ.

5. Repeat steps 3-4, N=1000 times.

6. Calculate the bias and the MSE.

3.6 Applications

Data analysis is provided to see how the new model works. The data set is taken
from Klein and Berger (1997). It shows survival data on the death times of 26
psychiatric inpatients admitted to the University of Iowa hospital during the years
1935-1948.
Different distributions were used, such as ED, EED, and EGD(θ), to analyze the

data. The estimate(s) of the unknown parameter(s), corresponding KS test statistic,
and Log L values for three different models are given in table 3.3. The AIC (see
Akaike(1974)), BIC, and CAIC are presented in the following table 3.4.

Table 3.3 shows the parameter MLEs, KS test statistic value with p-value,
and log-likelihood values of the fitted distributions, and table 3.4 shows the values
of AIC, BIC, and CAIC. The values in tables 3.3 and 3.4 indicate that the EGD(θ)
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Table 3.1: Simulation study for θ = 1, 1.5, 1.85.

θ n Bias MSE

1

50 -0.0009 3.6485×10−05

100 0.0004 1.5573×10−05

500 1.311×10−05 8.599×10−08

1000 3.6889×10−05 1.491×10−09

1.5

50 -0.0007 2.637×10−05

100 -0.0006 3.393×10−05

500 -3.906×10−06 7.628×10−09

1000 -3.823×10−05 1.462×10−06

1.85

50 0.0017 0.0002

100 0.0009 8.593×10−05

500 0.0002 1.410×10−05

1000 3.296×10−05 1.086×10−06

Table 3.2: The survival data on the death times of Psychiatric inpatients

1 1 2 22 30 28 32 11 14 36 31 33 33

37 35 25 31 22 26 24 35 34 30 35 40 39

distribution is a strong competitor to other distributions used here for fitting the
dataset.

P-P plot for ED, EED and EGD(θ) are given in Figure 3.4 which shows that
EGD(θ) model is more plausible than ED and EED models.
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Table 3.3: The estimates, K-S test statistic and log-likelihood for the dataset

Model Estimates KS Log L p value

ED θ̂ =0.0378 0.3728 -111.1302 0.0015

EED â =1.79724674,b̂ =0.0525 0.3146 -108.9871 0.0116

EGD θ̂ =0.1050 0.2613 -104.5856 0.0574

Table 3.4: AIC, BIC, and CAIC of the models based on the dataset

Model AIC BIC CAIC

ED 224.2604 225.5185 226.5185

EED 221.9741 224.4903 226.4903

EGD 211.1713 212.4294 213.4294

3.7 Summary

A bathtub-shaped failure rate model, Exponential-Gamma(3, θ) distribution, is
discussed, and its properties are studied. Moments, skewness, kurtosis, MGF, CF,
Rènyi entropy, Lorenz curve, Gini index, and the distribution of maximum and
minimum order statistics are obtained. A simulation study is conducted to illustrate
the accuracy of the estimation method that has been obtained using maximum
likelihood estimators. The application of EGD(θ) to real data shows that the
new distribution is effective in providing a better fit than the exponential and
exponentiated exponential distributions.
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Figure 3.4: P-P Plots
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