
CHAPTER 4

Generalized ν-Birnbaum Saunders
Distribution

4.1 Introduction

Motivated by problems with vibration in commercial aircraft causing fatigue in
the materials, the two-parameter BS distribution, also known as the fatigue life
distribution, was proposed by Birnbaum and Saunders (1969a). The model was
developed based on the impression that failure is due to the development and
growth of a dominant crack. The BS distribution is now a natural model in
many instances where the accumulation of a specific factor forces a quantifiable
characteristic to exceed a critical threshold. A few examples of instances in which
this distribution can be used are (i) heat-induced migration of metallic flaws in
nano-circuits; (ii) ingestion of toxic chemicals from industrial waste by humans;
(iii) pollution in the atmosphere as a result of an accumulation of pollutants over
time; (iv) accumulation of deleterious substances in the lungs from air pollution; (v)
events such as earthquakes and tsunamis occurring naturally, and so on. The BS
distribution has two parameters modifying its shape and scale: a failure rate with
an upside-down bathtub shape and a close relation to the normal distribution; see
Leiva (2015).
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The CDF of a two-parameter BS random variable T can be written as

FT (t;α, β) =


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(4.1.1)

with α > 0 and β > 0 being respectively the shape and scale parameters and Φ(.)
is the standard normal CDF. The corresponding PDF of the BS model can be
expressed in terms of the PDF of the standard normal distribution and is given by

fT (t;α, β) =
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(4.1.2)

It is known that the density function of the BS distribution is unimodal, and
although the hazard rate is not an increasing function of t, the average hazard rate
is nearly a non-decreasing function of t (Mann et al., (1974)).

Often, it is very likely to observe a three-phase behavior of HF in the case
of studying the life cycle of an industrial product or the entire life cycle of a
biological entity. For example, non-monotone hazard rates involving a U-shaped
(bathtub-shaped) pattern are exhibited in the case of the age-specific death rate in
human life tables. The core motivation behind developing a more flexible distribution
is its capability to model the underlying monotonic and non-monotonic failure rate
behavior of the observed data.

In this chapter, a distribution called the ν-Birnbaum Saunders (BS) distribution
is discussed, which generalizes the BS model. It is noted here that the BS distribution
only has a decreasing or upside-down bathtub shape for its hazard function. It is
important to note that the shape of the distribution always depends on the power
of the random variable, thus facilitating the development of more flexible models.
Chacko et al. (2015) considered a generalization of the BS distribution, incorporating
a new shape parameter exhibiting both monotonic and non-monotonic failure rate
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behaviors, but statistical inference has not been given. Since the estimation of
parameters is essential for using any distribution, this chapter provides some
structural properties of the distribution and the method of estimation. A discussion
on maximum likelihood estimation of the parameters is given and derived the
observed information matrix. The use of the distribution is justified by three real-life
data sets: the industrial devices data set reported by Aarset (1987), exceedances of
flood peaks data given in Choulakian and Stephens (2001), and the insurance data
reported in Andrews and Herzberg (2012).

Several extensions and generalizations of the BS distribution are studied by
many researchers, including its bivariate and multivariate extensions. The rest of the
chapter is organized as follows: In Section 4.2, the ν−BS distribution, its structural
properties, moments, quantiles, and order statistics are given. Also, the estimation
procedure is given using the method of maximum likelihood. In addition to this,
an extensive simulation study is carried out along with two real-life applications.
Section 4.3 is devoted to the bivariate ν − BS distribution. In section 4.4, the
multivariate ν − BS distribution is defined. The summary is given in the final
section.

4.2 Univariate ν-Birnbaum Saunders Distribution

In this section, an extension of the BS distribution is considered, motivated by the
work of Chacko et al. (2015), who call this extended version of the BS distribution
ν-BS distribution. The study of ν-BS distribution is motivated by three real-life data
examples-industrial devices data set, exceedances of flood peaks data, and insurance
data. In order to investigate the fitness of the data to the ν-BS distribution, we have
to estimate the parameters. So estimation of the parameters of ν-BS distribution is
considered in this chapter.

4.2.1 Cumulative Distribution Function

The CDF of a ν −BS random variable T is given by

F (t;α, β, ν) =


Φ
( 1
α

{(
t

β

)ν

−
(
t

β

)−ν})
if t > 0, α, β, ν > 0,

0 otherwise,
(4.2.1)
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where Φ(.) is the standard normal CDF. Here, α > 0 and β > 0 are respectively,
the shape parameter and the scale parameter. Note that the parameters α and β in
Eq. (4.2.1) are governed by the proposed shape parameter ν > 0. One can obtain
the BS distribution in its particular case when ν = 1

2.

4.2.2 Probability Density Function

For a random variable T with CDF defined in Eq.(4.2.1), the corresponding PDF is
given by

f(t;α, β, ν) =


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(4.2.2)

From now on, the notation T ∼ BS(α, β, ν) is used to denote a univariate ν−
BS random variable T with parameters α, β, and ν. The PDF in Figure 4.1 has
been plotted for different values of the parameters. From the plot, it can be seen
that the PDF is unimodal in nature.

4.2.3 Hazard Function

The following section discusses the shape characteristics of the HRF of a BS random
variable. With T ∼ BS(α, β, ν), the HRF of T is given by

hT (t;α, β, ν) = f(t;α, β, ν)
F̄T (t;α, β, ν)

It is possible to choose β = 1 without loss of generality since the HRF’s form
does not depend on the scale parameter β.

hT (t;α, 1, ν) =
1

α
√

2π
ϵ′ν(t) e− 1

2α2 ϵ2
ν(t)

Φ(−ϵν(t)
α )

(4.2.3)

where ϵν(t) = (t)ν−(t)−ν , ϵ′
ν(t) = ν

t

(
(t)ν−(t)−ν

)
and ϵ′′

ν(t) = ν
t2

(
(ν−1)tν−(ν+1)t−ν

)
.

Kundu et al. (2008) then showed that the HRF in Eq. (4.2.3) is always
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Figure 4.1: Probability density function plots

unimodal. The plots of the HF of BS(α, β, ν) in Eq.(4.2.3) for different values of α
and ν, are presented in Figure 4.2. Whenever 0 < ν < 1, from (4.2.3) it can shown
that ln(hT (t;α, 1, ν)) → 1/2α2 as t → ∞.

Moments

If T ∼ BS(α, β, ν) ( T has a ν-BS distribution with parameters α, β and ν), the
moments of the random variable T can be obtained by making the following
transformation:
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Figure 4.2: Failure rate function plots for different parameter values.
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or

T 2ν = β2ν−1W (4.2.5)

where W = β

4
[
αZ +

√
1 + (αZ)2

]2
∼ BS(α, β) and Z ∼ N(0, 1). Hence,

E(T r) = βrE

[(
W

β

) r
2ν
]

= βr− r
2νE

[
W

r
2ν

]

Now in case if r/2ν is an integer then

E(T r) = βr
r/ν∑
j=1

(
r/2ν
2j

) j∑
i=0

(r/ν − 2j + 2i)!
2r/2ν−j+i(r/2ν − j + i)!

(
α

2

)r/ν−2j+2i

(4.2.6)

(see Leiva et al. (2009) in this regard). Rieck (1999) also obtained E(T r), for
fractional values of r/2ν, in terms of the Bessel function, from the MGF of E(ln(W )).
For r = 2ν, then

E(T 2ν) = β2ν−1E(W ) = β2ν

2 (α2 + 2). (4.2.7)

If T ∼ BS(α, β, ν), then it can be easily shown that T−1 ∼ BS(α, β−1, ν−1) ( T has
a ν-BS distribution with parameters α, β−1 and ν−1). Therefore, for integer r, it
can be readily obtained from Eq. (4.2.6) that

E(T−r) = β−r
rν∑

j=1

(
rν/2
2j

) j∑
i=0

(rν − 2j + 2i)!
2rν/2−j+i(rν/2 − j + i)!

(
α

2

)rν−2j+2i

. (4.2.8)

For r = 2ν, then

E(T−2ν) = β−2ν+1E(W−1) = β−2ν

2 (α2 + 2). (4.2.9)
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Quantiles

Quantiles can be obtained as a solution to the equation FT (tq) = q, where tq is the
qth quantile. Hence,

Φ
 1
α


tq
β

ν

−
β
tq

ν
 = q.

Now, solving the above equation, the qth quantile (0 < q < 1) can be written as

tq = β

2 1
ν

(
αzq +

√
(αzq)2 + 4

) 1
ν

, (4.2.10)

where zq = Φ−1(q) is the qth quantile of a standard normal random variable.
Then, using the ν- BS quantile function, that is, the inverse transform method,
a generator of random numbers for the ν-BS distribution is summarized in the
following Algorithm 1.

Algorithm 1 : Generator of random numbers from ν −BS distribution.
1: Generate a random number z from Z ∼ N(0, 1).
2: Set values for α, β and ν of T ∼ BS(α, β, ν).
3: Compute a random number t from T ∼ BS(α, β, ν) by using Eq. (4.2.10)

conducting to

t = β

21/ν

[
αz +

√
4 + (αz)2

]1/ν
.

4: Repeat steps 1 to 3 until the required amount of random numbers to be
completed.

Order Statistics

Order statistics make their appearance in many areas of statistical theory and
practice. The density function fp:n(t) of the p-th order statistic Tp:n, for p = 1, . . . , n,
from independent identically distributed BS(α, β, ν) random variables T1, . . . , Tn is
given by

fp:n(t) = f(t)
B(p, n− p+ 1)F (t)p−1[1 − F (t)]n−p.

90



Section 4.2

For convenience, let us consider the Eq.(4.2.1) and Eq.(4.2.2) as

F (t) = Φ(µt) (4.2.11)

where µt = 1
α
ϵν( t

β
) and

f(t) = ϕ(µt)Mt (4.2.12)

where Mt = dµt/dt and ϕ(.) is the standard normal density function. As a result of
substituting Eq.(4.2.11) and Eq.(4.2.12) into the above expression,

fp:n(t) = ϕ(µt)Mt

B(p, n− p+ 1)[Φ(µt)]p−1[1 − Φ(µt)]n−p.

The above PDF can be expressed in terms of the binomial expansion as

fp:n(t) = ϕ(µt)Mt

B(p, n− p+ 1)

n−p∑
k=0

(−1)k

(
n− p

k

)
[Φ(µt)]p+k−1.

Thus, this PDF of the BS(α, β, ν) order statistics can be reduced to

fp:n(t) =
n−p∑
k=0

mkf(t), t > 0 (4.2.13)

where mi+1 = (−1)k(n−p
k )[Φ(µt)]p+k−1

B(p,n−p+1) and f(t) is in Eq.(4.2.12). As a result, the PDF
Eq.(4.2.13) of BS(α, β, ν) order statistics can be viewed as a linear combination of
the BS(α, β, ν) density functions. In this way, many mathematical properties of
BS(α, β, ν) order statistics, such as moments and the generating function, can be
determined from the BS(α, β, ν) distribution.

4.2.4 Estimation and Testing of Hypothesis

In this Section, the estimation methodologies for the unknown parameters in the
case of the ν-BS distribution are first discussed. The likelihood ratio (LR) test is
then discussed in this setup.

Point Estimation

The point estimation of the parameters of the ν-BS distribution by the method of
maximum likelihood is considered.
1. Complete data case: Let T = {T1,T2,...,Tn} be a random sample of size n
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and θ = (α, β, ν) be the unknown parameter vector. Based on the random sample,
θ̂, the MLE of θ, can be obtained by maximizing the log-likelihood function. The
associated likelihood and the log-likelihood function are respectively given by

L(θ|t) =
(

ν

αβ
√

2π

)n

e
− 1

2α2
∑n

i=1

[(
ti
β

)2ν

+
(

ti
β

)−2ν

−2
]

n∏
i=1

[(
ti
β

)ν−1

+
(
ti
β

)−(ν+1)]
,

(4.2.14)

and

l(θ|t) = n ln ν − n lnα− n ln β − n

2 ln(2π) − 1
2α2

n∑
i=1

[(
ti
β

)2ν

+
(
ti
β

)−2ν

− 2
]

+
n∑

i=1
log

[(
ti
β

)ν−1

+
(
ti
β

)−(ν+1)]
, (4.2.15)

where t = {t1, t2,...,tn} is the observed sample. The components of the score vector
U(θ) = (Uα, Uβ, Uν)T are

Uα = −n
α

+ 1
α3

n∑
i=1

[(
ti
β

)2ν

+
(
β

ti

)2ν

− 2
]

Uβ = n

β
+ ν

α2

n∑
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[
β2ν−1

t2ν
i

− t2ν
i

β2ν+1

]
+ (ν + 1)

n∑
i=1

βν
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i

− tν−1
i

βν

( ti

β
)ν−1 + ( β

ti
)ν+1

Uν = n
ν

− 1
α2
∑n

i=1

[(
ti
β

)2ν

log

(
ti
β

)
+

(
β
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)2ν

log

(
β
ti

)]
+∑n

i=1
( ti

β
)ν−1 log( ti

β
)+( β

ti
)ν+1 log( β

ti
)

( ti
β

)ν−1+( β
ti

)ν+1

Setting these equations to zero, U(θ) = 0, and solving them simultaneously yields
θ̂ of the three parameters. From the score equation Uα = 0, it can be written as

α̂ = α̂(β, ν) =
 1
n

n∑
i=1

[(
ti
β

)2ν

+
(
β

ti

)2ν

− 2
]

1
2

. (4.2.16)

Plugging in α̂ replacing α in the log-likelihood function l(θ|t), the profile
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log-likelihood function of β and ν is obtained first and then maximized using some
numerical routine to obtain β̂ and ν̂. Finally, α̂ = α̂(β̂, ν̂) is obtained.
2. Multicensored data case: More often, censored data occur in lifetime data
analysis. Some basic mechanisms of censoring are well known in the literature
as, for example, Type-I and Type-II censoring. The survival function of the ν-BS
distribution has a simple convenient form and hence this distribution can be employed
in analyzing censored data. In this context, the general case of multicensored data is
considered. Suppose there are n = n0 + n1 + n2 units of which n0 are known to have
failed at the times t1, . . . , tn0 ; n1 are known to have failed in the interval [si−1, si]
for i = 1, . . . , n1; and n2 units have survived at least till a time ri (i = 1, ..., n2)
but not observed any longer. It is to note here that Type-I and Type-II censoring
are contained as particular cases of multicensoring. The log-likelihood function of
θ = (α, β, ν) for this multicensored data takes the following form:

l(θ|t) ∝ n0 ln ν − n0 ln(αβ) − 1
2α2

n0∑
i=1

[(
ti
β

)2ν

+
(
ti
β

)−2ν

− 2
]

+
n0∑
i=1

log
[(
ti
β

)ν−1

+
(
ti
β

)−(ν+1)]

+
n2∑
i=1

log
[
1 − Φ

( 1
α

{(
ri

β

)ν

−
(
ri

β

)−ν})]

+
n1∑
i=1

log
[
Φ
( 1
α

{(
si

β

)ν

−
(
si

β

)−ν})]
−

n1∑
i=1

log
[
Φ
( 1
α

{(
si−1

β

)ν

−
(
si−1

β

)−ν})]
.

(4.2.17)

The MLEs are obtained by maximizing the above log-likelihood function with respect
to unknown parameters. It is not possible to obtain any of the MLEs as a function
of one or others. One requires either carrying out a three-dimensional maximization
of the objective function l(θ|t) in Eq. (4.2.17) or obtaining the score vector and
solving them to obtain θ.
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Interval Estimation

Assuming the asymptotic normality of the MLEs, the CIs for θ are computed using

the observed information matrix I =
((

∂l(θ|t)
∂θi∂θj

))
, i, j = 1, 2, 3, where l(θ|t) is the

log-likelihood function as defined in Eq.(4.2.15). The 100(1 − γ)% asymptotic CIs
for θ are respectively given by α̂± z1− γ

2

√
V11, β̂ ± z1− γ

2

√
V22, ν̂ ± z1− γ

2

√
V33 where

Vij is the (i, j)−th element of the inverse of the observed Fisher information matrix
I. This interval estimation method is quite useful for its computational ease and
provides coverage probabilities close to the nominal value.

Testing of Hypothesis

In this context, it is worthwhile to mention that the LR statistic often turns out
to be useful for testing the goodness-of-fit of the ν-BS model and for comparing it
with the usual BS model. One can easily check if the fit using the ν-BS model is
statistically “superior” to a fit using the BS model for a given data set by computing

w = 2{l(α̂, β̂, ν̂|t) − l(α̃, β̃, 0.5|t)},

where α̂, β̂, ν̂ are the unrestricted MLEs and α̃, β̃ are the restricted estimates. Also,
the LR statistic is asymptotically distributed under the null model as χ2 distribution
with 1 degree of freedom. Further, the LR test rejects the null hypothesis if w > ηn,
where ηn denotes the upper 100η% point of the χ2 distribution with 1 degree of
freedom.

4.2.5 Simulation Study

In this section, a simulation study is performed with various sample sizes
and parameter values to assess the effectiveness of the proposed estimation
methodology. For illustration purposes, different sample sizes are considered
(n = 40, 60, 80, 100, 120) and the parameter values are taken as α = 2, β = 1, ν = 1.5.
Based on the likelihood principle, the average estimates (AEs), MSEs, and biases
for each unknown model parameter are computed. When it comes to the interval
estimation problem, it is noted that the exact distribution of the MLEs is not
possible to compute. Hence, interval estimates are computed in terms of asymptotic
CIs. All the results are based on 5000 replications and are available in Table 4.1.

Some of the observations are quite evident from the results obtained in Table
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4.1. As the sample size increases, the AEs approach the true values of the model
parameters in all cases, and the corresponding MSEs decrease. In the case of the
results associated with the interval estimates, the performance of asymptotic CIs
is quite satisfactory in terms of coverage probabilities (CPs). With the increase in
sample sizes, the average lengths (ALs) of all the model parameters decrease, which
is quite expected.

Table 4.1: MLEs, MSEs, Biases, CPs and ALs for ν − BS model with α =
2, β = 1 and ν = 1.5

n MLEs MSE Bias CP AL

40

α̂= 2.3355 2.0985 0.6355 0.9875 4.5109

β̂=1.0004 0.0053 0.0004 0.9154 0.2310

ν̂=1.7261 0.3938 0.2261 0.9028 1.9249

60

α̂=2.2167 1.1183 0.4167 0.9930 3.9053

β̂=1.0047 0.0039 0.0047 0.9321 0.2139

ν̂=1.6515 0.2552 0.1515 0.9261 1.7610

80

α̂=2.1666 0.7898 0.3666 0.9883 3.2447

β̂=1.0016 0.0026 0.0016 0.9201 0.1855

ν̂=1.6483 0.1769 0.1483 0.9298 1.4733

100

α̂=2.1259 0.5568 0.2259 0.9710 2.8059

β̂=1.0025 0.0019 0.0025 0.9171 0.1666

ν̂=1.5887 0.1248 0.0887 0.9411 1.3035

120

α̂= 2.1930 0.4671 0.1930 0.9710 2.4835

β̂=1.0015 0.0016 0.0015 0.9271 0.1537

ν̂=1.5749 0.1001 0.0749 0.9461 1.1789
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4.2.6 Real Life Applications

In the following, applications of the ν-BS distribution to real data are presented
for illustrative purposes. In order to show how well the ν-BS distribution can be
applied to real-life phenomena, three real-life data sets are used- industrial devices
data given by Aarset (1987), exceedances of flood peaks data given in Choulakian
and Stephens (2001), and insurance data reported in Andrews and Herzberg (2012).

Industrial devices data

At first, industrial devices’ real-life data set are considered (see Aarset (1987) in
this respect) which is given in Table 4.2. This data set represents the lifetimes
of 50 industrial devices put on life tests at time zero. In real data applications,
several authors studied this data set for different statistical models since it presents a
bathtub-shaped failure rate, see for example, Ahmed (2014) and Kayal et al. (2017).
A detailed summary of these data is provided in Table 4.3.

Table 4.2: Industrial devices data

0.1 0.2 1 1 1 1 1 2 3 6

7 11 12 18 18 18 18 18 21 32

36 40 45 46 47 50 55 60 63 63

67 67 67 67 72 75 79 82 82 83

84 84 84 85 85 85 85 85 86 86

The MLEs of all the model parameters are computed based on the principle of
maximum likelihood. Despite our inability to theoretically verify the unimodality
of the profile log-likelihood function of β and ν, the contour plot in Figure 4.3(a)
indicates that the function is indeed unimodal. The K-S distance is also reported
along with the p-value for the goodness of fit. It is observed that both the BS
distribution and ν−BS distribution fit the data well. However, based on the
Maximum log-likelihood (MLL) value, K-S distance, and AIC value, it can be seen
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Table 4.3: Descriptive statistics: Industrial devices data

Mean Median Variance Skewness Kurtosis Minimum Maximum

35.8800 34.0000 861.6100 -0.1400 1.4100 0.1000 83.0000

that the proposed ν−BS distribution outperforms the BS distribution. All the
associated results are listed in Table 4.4. The LR statistic to test the hypothesis
H0 : BS against H1 : ν−BS is 52.6200 (p-value < 0.01). Thus, using any usual
significance level, the null hypothesis is rejected in favor of the ν−BS distribution,
i.e., the ν−BS distribution is significantly better than the BS distribution.

Table 4.4: MLEs (standard errors in parentheses), K-S distance, p-values, MLL
values, and AIC values: industrial devices Aarset data set

Distribution Estimates K-S distance p-value MLL AIC

BS(α, β, ν) 31.9352 3.8157 1.2286 0.1543 0.8356 -227.1600 460.3200

(18.9847) (0.4530) (0.1769)

BS(α, β) 2.7455 7.1877 0.1783 0.7798 -253.4700 510.9400

(0.2982) (1.5499)

Exceedances of flood peaks data

For our second real-life illustration, a data set corresponding to the exceedances
of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon Territory,
Canada is considered. The data consist of 72 exceedances for the years 1958–1984,
rounded to one decimal place (see Choulakian and Stephens (2001) in this respect)
and are given in Table 4.5. Table 4.6 gives a descriptive summary of these data.

The MLEs of all the model parameters are computed based on the principle of
maximum likelihood. Despite our inability to theoretically verify the unimodality
of the profile log-likelihood function of β and ν, the contour plot in Figure 4.3(b)
indicates that the function is indeed unimodal. The K-S distance is also reported
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Table 4.5: Exceedances of flood peaks data

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0 12.0 9.3

1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1 2.5 14.4 1.7 37.6

0.6 2.2 39.0 0.3 15.0 11.0 7.3 22.9 1.7 0.1 1.1 0.6

9.0 1.7 7.0 20.1 0.4 2.8 14.1 9.9 10.4 10.7 30.0 3.6

5.6 30.8 13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0

1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5 2.5 27.0

Table 4.6: Descriptive statistics: exceedances of flood peaks data

Mean Median Variance Skewness Kurtosis Minimum Maximum

12.2000 9.5000 151.2200 1.4700 5.8900 0.1000 64.0000

along with the p-value for the goodness of fit. It is observed that both the BS
distribution and ν− BS distribution fit the data well. However, based on the
MLL value, K-S distance, and AIC value, it can be seen that the proposed ν− BS
distribution outperforms the BS distribution. All the associated results are listed in
Table 4.10. The LR statistic to test the hypothesis H0 : BS against H1 : ν−BS is
50.3400 (p-value < 0.01). Thus, the null hypothesis is rejected in favor of the ν−BS
distribution using any usual significance level. Therefore, the ν−BS distribution is
significantly better than the BS distribution based on the LR statistic.

Insurance data

Finally, the data representing Swedish third-party motor insurance for 1977 for one
of several geographical zones are considered. The data were compiled by a Swedish
committee on the analysis of risk premiums in motor insurance. The data points
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Table 4.7: MLEs (standard errors in parentheses), K-S distance, p-values, MLL
values, and AIC values: exceedances of flood peaks data set

Distribution Estimates K-S distance p-value MLL AIC

BS(α, β, ν) 1.0897 5.1582 0.3481 0.1404 0.5996 -230.8600 467.7200

(0.9356) (1.4117) (0.2447)

BS(α, β) 1.7583 4.4179 0.1457 0.5470 -256.0300 516.2300

(0.1477) (0.6497)

are the aggregate payments by the insurer in thousand Skr (Swedish currency). The
data set was originally reported in Andrews and Herzberg (2012) and is as provided
in Table 4.8. Table 4.9 gives a descriptive summary of these data.

Table 4.8: Insurance data

5014 5855 6486 6540 6656 6656

7212 7541 7558 7797 8546 9345

11762 12478 13624 14451 14940 14963

15092 16203 16229 16730 18027 18343

19365 21782 24248 29069 34267 38993

Table 4.9: Descriptive statistics: Insurance data

Mean Median Variance Skewness Kurtosis Minimum Maximum

14525.7300 14037.5000 69927726 1.3016 1.6004 5014 38993

MLEs of all the model parameters are computed based on the principle of
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maximum likelihood. Despite our inability to theoretically verify the unimodality
of the profile log-likelihood function of β and ν, the contour plot in Figure 4.3(c)
indicates that the function is indeed unimodal. The K-S distance is also reported
along with the p-value for the goodness of fit. It is observed that both the BS
distribution and ν− BS distribution fit the data well. However, based on the
MLL value, K-S distance, and AIC value, it can be seen that the proposed ν− BS
distribution outperforms the BS distribution. All the associated results are listed
in Table 4.10. The LR statistic to test the hypothesis H0 : BS against H1 : ν−BS
is 7.1230 (p-value = 0.0076 < 0.01). Thus, the null hypothesis is rejected in favor
of the ν−BS distribution using any usual significance level. Therefore, the ν−BS
distribution is significantly better than the BS distribution based on the LR statistic.

Table 4.10: MLEs (standard errors in parentheses), K-S distance, p-values,
MLL values, and AIC values: insurance data set

Distribution Estimates K-S distance p-value MLL AIC

BS(α, β, ν) 2.4285 1.3219 1.6654 0.1305 0.7052 -16.7831 39.5662

(1.4121) (0.1069) (0.5985)

BS(α, β) 0.5595 1.2559 0.1385 0.6130 -20.3446 44.6892

(0.0722) (0.1233)

4.3 Bivariate ν- Birnbaum Saunders Distribution

In this section, a new generalized form of BVBS distribtion is proposed and call it a
ν-BVBS distribution.

4.3.1 CDF, PDF, and HRF of ν- BVBS Distribution

The joint CDF of a ν-BVBS random vector (T1, T2) with parameters
α1, β1, ν1, α2, β2, ν2, and ρ can be written as
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Figure 4.3: Contour plot of β and ν in (a)industrial devices data, (b)exceedances
of flood peaks data and (c)insurance data using ν− Birnbaum
Saunders distribution
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F (t1, t2) = Φ2
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(4.3.1)

Here α1 > 0, β1 > 0, α2 > 0, β2 > 0,−1 < ρ < 1 and Φ2(.; ρ) is CDF of standard
BV normal vector (z1, z2) with correlation coefficient ρ. One can obtain the BVBS
distribution in its particular case when ν1 = ν2 = 1

2 . For a BV random vector (T1, T2)
with CDF as in Eq. (4.3.1), the corresponding joint PDF is given by
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4.3.2 Properties of ν-BVBS Distribution

1. If (T1, T2) ∼ BVBS (α1, β1, ν1, α2, β2, ν2, ρ) then it can be easily shown that
its marginals, Ti, ∼ ν −BS(αi, βi, νi)

2. If (T1, T2) ∼ ν −BS(α1, β1, ν1, α2, β2, ν2, ρ) then

• (T−1
1 , T−1

2 ) ∼ ν −BS(α1,
1

β1
, ν1, α2,

1
β2
, ν2, ρ)

• (T−1
1 , T2) ∼ ν −BS(α1,

1
β1
, ν1, α2, β2, ν2, ρ)

• (T1, T
−1
2 ) ∼ ν −BS(α1, β1, ν1, α2,

1
β2
, ν2, ρ)

4.4 Multivariate ν- Birnbaum Saunders Distribution

Along the same lines as the univariate and bivariate ν−BS distribution, the
multivariate ν−BS distribution can be defined. First, let us recall the definition of
the multivariate BS distribution [see Eq. 1.2.4].
Then the multivariate ν−BS distribution is as follows:
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Definition 4.4.1. Let α, β ∈ Rm, where α = (α1, · · · , αm)T and β = (β1, · · · , βm)T ,
with α1 > 0, βi > 0 for i = 1, 2, · · · ,m. Let Γ be a m×m positive definite correlation
matrix. Then, the random vector T = (T1, · · · , Tm)T is said to have a m-variate BS
distribution with parameters (α, β,Γ, ν) if it has the joint CDF as

P (T ≤ t) = P (T1 ≤ t1, · · · , Tm ≤ tm)

= Φm

[
1
α1

((
t1
β1

)ν

−
(
β1

t1

)ν)
, · · · , 1

αm

((
tm
βm

)ν

−
(
βm

tm

)ν)
; Γ
]

for t1 > 0, · · · , tm > 0 and 0 < ν < 1. Here, for u = (u1, · · · , um)T ,Φm(u; Γ) denotes
the joint CDF of a standard normal vector Z = (Z1, · · · , Zm)T with correlation matrix
Γ.

4.5 Summary

This chapter considers the univariate, bivariate, and multivariate ν− Birnbaum
Saunders distributions and mainly focuses on the univariate case. Several interesting
and useful properties are studied in detail. The point estimates of the model
parameters of the univariate ν− Birnbaum Saunders distribution are obtained
by employing the maximum likelihood principle. In order to obtain interval
estimates, asymptotic CIs are computed using the observed information matrix.
In an extensive simulation study, both estimation methodologies were thoroughly
explored. Applications of the ν−BS distribution to three real data sets are given
to show that the ν− Birnbaum Saunders distribution provides consistently better
modeling than the BS distribution. This extension is intended to attract a broad
range of applications to the literature on fatigue life distributions.
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