
CHAPTER 5

Inference for R = P[X > Y] based on the
Exponential-Gamma (3, λ) Distribution

5.1 Introducion

Stress-strength (SS) reliability analysis is an important area of reliability analysis.
Strength can be considered as a random variable. In light of the uncertainty in the
operating environment of the unit, the stress applied to it should also be considered
as a random variable. Let X represent a unit’s strength, and Y represent the random
stress that the operational environment imposes on the unit. R = P (X > Y ) is SS
reliability (R).

It is easy to compute R if the stress and strength are assumed to or fitted to have
some well-known statistical distribution. At the same time, if the fitted probability
distributions have more parameters, then the problem becomes complicated. In
such situations, one has to estimate SS reliability if the values of parameters are
not available. Estimating the reliability of SS models is essential to determining
strength and stress levels. The estimation of SS reliability is more complicated
for single-component and multi-component systems. The problem of estimating
reliability for single-component SS models is well documented in the literature.

A variety of censoring schemes have been employed in the literature to analyze
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SS reliability. Based on the Gumbel copula under the type-I progressively hybrid
censoring scheme, Bai et al. (2018) assessed the reliability of the multi-component
SS model. Abravesh et al. (2019) assessed SS reliability with classical and Bayesian
estimation methods based on type-II censored Pareto distributions. Byrnes et al.
(2019) used progressively first failure-censored samples to estimate R for the Burr
type XII distribution. Under progressive type II censoring, Zhang et al. (2019)
examined the reliability of the generalized Rayleigh distribution. The inference
of multicomponent SS reliability under progressive Type II censoring is presented
by Jha et al. (2020), in which stress and strength variables have common unit
Gompertz distributions. Karimi Ezmareh and Yari (2022) studied the inference of
SS reliability for the Gompertz distribution using a type II censoring scheme.

The exponential-gamma (3, λ) distribution studied in Chapter 3, which has
a bathtub-shaped failure rate function, is used to analyze SS reliability.In this
chapter, the exponential-gamma distribution (3, λ) is denoted by EGD(3, λ) or
simply EGD.Specifically, EGD(3, λ) has the PDF

f(x) = λ2

1 + λ

(
1 + λ

2x
2
)
e−λx, x > 0, λ > 0. (5.1.1)

It should be noted that EGD(3, λ) is a mixture of exponential distribution
with a scale parameter of λ and gamma distribution with a shape parameter of
3 and a scale parameter of λ with mixing proportion λ

1+λ
. It has been relatively

unexplored whether SS reliability can be estimated when stress and strength vary
independently following an EGD(3, λ) distribution. This motivates the estimation
of stress-strength reliability using EGD(3, λ).

Consider two independent random variables X and Y from the EGD(3, λ)
with different parameters λ1 and λ2. This chapter focuses on the estimation of the
parameter R = P (X > Y ) while stress and strength have EGD(3, λ) distribution
under type-II censoring. Typically, the problem of estimating R arises when dealing
with the reliability of a component of strength X subjected to a load or stress Y .
The component will fail if the stress exceeds its threshold level. As a result, R can
be viewed as a measure of reliability.

The type II censoring method is briefly explained. Suppose that x1, x2, . . . , xn

and y1, y2, . . . , ym are independent random samples drawn from X and Y random
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variables, respectively. Consider the ordered statistics of these samples to be
x(1), x(2), . . . , x(n) and y(1), y(2), . . . , y(m). The xi’s and yi’s are collected until failure
occurs at r1 and r2 (where r1 is less than or equal to n and r2 is less than or equal
to m).

Our goal in this chapter is to estimate the SS reliability when both stress and
strength follow EGD with different parameters λ1 and λ2 under the type II censoring
scheme. Section 5.2 considers the SS reliability of EGD(3, λ). In section 5.3, the
MLE of R using type-II censoring, the asymptotic distribution, and the CI for the
MLE of R are obtained. An extensive simulation study is presented in section 5.4.
Section 5.5 presents the results of the analysis of real data. In the final section, a
summary is given.

5.2 Stress-Strength Reliability of EGD(3, λ) Distribution

In this section, SS reliability is estimated using the EGD distribution. The general
mathematical expression of SS reliability for the independent random variables X
and Y is given by

R =
∫ ∞

−∞
fX(x) FY (x) dx,

where fX(x) and FY (x) are the marginal PDF of X and marginal CDF of Y ,
respectively.

Consider X and Y as independent random variables having the EGD distribution
with parameters λ1 and λ2, respectively. Suppose X ∼ EGD(3, λ1) and Y ∼
EGD(3, λ2). Then, SS reliability is

R =
∫ ∞

0

λ2
1

(1 + λ1)

(
1 + λ1

2 x
2
)
e−λ1x

[
1 − (λ2(x(λ2x+ 2) + 2) + 2)e−λ2x

2(1 + λ2)

]
dx

= λ2
1

2(1+λ1)(1+λ2)
∫∞

0

(
1 + λ1x2

2

)
e−λ1x[2(1 + λ2) − (λ2

2x
2 + 2xλ2 + 2λ2 + 2)e−λ2x]dx

= λ2
1

(1 + λ1)

∫ ∞

0

(
1 + λ1

2 x
2
)
e−λ1xdx

− λ2
1

2(1+λ1)(1+λ2)
∫∞

0

(
1 + λ1

2 x
2
)
e−(λ1+λ2)x(λ2

2x
2 + 2xλ2 + 2λ2 + 2)dx
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=1−
[

λ2
1(λ2

2 + λ1λ2 + λ1)
(1 + λ1)(1 + λ2)(λ1 + λ2)3 + λ2

1λ2

(1 + λ1)(1 + λ2)(λ1 + λ2)2 + λ2
1

(1 + λ1)(λ1 + λ2)

+ 6λ3
1λ

2
2

(1 + λ1)(1 + λ2)(λ1 + λ2)5 + 3λ3
1λ2

(1 + λ1)(1 + λ2)(λ1 + λ2)4

]

= λ2(10λ2
1λ

2
2 + 5λ1λ

3
2 + λ4

2 + 12λ2
1λ

3
2 + 6λ1λ

4
2)

(1 + λ1)(1 + λ2)(λ1 + λ2)5

+ λ2(3λ4
1λ2 + 10λ3

1λ
2
2 + λ5

2 + λ5
1λ2 + 4λ4

1λ
2
2 + 6λ3

1λ
3
2 + 4λ2

1λ
4
2 + λ1λ

5
2)

(1 + λ1)(1 + λ2)(λ1 + λ2)5 (5.2.1)

This expression evaluates if the values of parameters are available. But in practice, it
is not available. Hence, one has to estimate the parameters to determine reliability.

5.3 Maximum Likelihood Estimator of R

Let us suppose that X(1), X(2), . . . , X(r1) is a type II censored sample from EGD(3, λ1)
and Y(1), Y(2), . . . , Y(r2) is a type II censored sample from EGD(3, λ2). The two
samples are assumed to be independent. The joint likelihood function is

L = n! m!
(n−r1)!(m−r2)!

λ
2r1
1

(1+λ1)r1 e
−λ1

∑r1
k=1 x(k) λ

2r2
2

(1+λ2)r2 e
−λ2

∑r2
l=1 y(l)

(
1

2(1+λ1)

)n−r1 ( 1
2(1+λ2)

)m−r2

r2∏
l=1

(
1 + λ2

2 y
2
(l)

)[
(λ2(y(r2)(λ2y(r2) + 2) + 2) + 2)e−λ2y(r2)

]m−r2

r1∏
k=1

(
1 + λ1

2 x
2
(k)

)[
(λ1(x(r1)(λ1x(r1) + 2) + 2) + 2)e−λ1x(r1)

]n−r1
. (5.3.1)

The log-likelihood associated with the above equation is given by

logL = log(n!) + log(m!) − log((n− r1)!) − log((m− r2)!) + 2r1 log(λ1) + 2r2 log(λ2)

− r1 log(1 + λ1) − r2 log(1 + λ2) − λ2

r2∑
l=1

y(l) − (n− r1) log(2(1 + λ1))
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− (m− r2) log(2(1 + λ2)) +
r1∑

k=1
log

(
1 + λ1

2 x
2
(k)

)
+

r2∑
l=1

log
(

1 + λ2

2 y
2
(l)

)

− λ1

r1∑
k=1

x(k) + (n− r1) log(λ1(x(r1)(λ1x(r1) + 2) + 2) + 2) − (n− r1)λ1x(r1)

+ (m− r2) log(λ2(y(r2)(λ2y(r2) + 2) + 2) + 2) − (m− r2)λ2 y(r2)

The first derivative of the above log-likelihood equation with respect to the unknown
parameters λ1 and λ2 are respectively given by

∂ logL
∂λ1

= 2r1

λ1
− r1

1 + λ1
−

r1∑
k=1

x(k) − (n− r1)
1 + λ1

− (n− r1)x(r1) +
r1∑

k=1

x2
(k)

(2 + λ1x2
(k))

+ 2(n− r1)
(1 + x(r1) + λ1x

2
(r1))

(λ1(x(r1)(λ1x(r1) + 2) + 2) + 2)

∂ logL
∂λ2

= 2r2

λ2
− r2

1 + λ2
−

r2∑
l=1

y(l) − (m− r2)
(1 + λ2)

− (m− r2)y(r2) +
r2∑

l=1

y2
(l)

(2 + λ2y2
(l))

+ 2(m− r2)
(1 + y(r2) + λ2y

2
(r2))

(λ2(x(r2)(λ2y(r2) + 2) + 2) + 2) .

The second derivative of the above log-likelihood equation with respect to the
unknown parameters λ1 and λ2 are respectively given by

∂2 log L
∂λ2

1
= n

(1+λ1)2 − 2r1
λ2

1
−∑r1

k=1
x4

(k)
(2+λ1x2

(k))2 − 2(n− r1)
(x(r1)(λ1x(r1)+2)(λ1x2

(r1)+2)+2)
(λ1(x(r1)(λ1x(r1)+2)+2)+2)2 .
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∂2 log L
∂λ2

2
= m

(1+λ2)2 − 2r2
λ2

2
−∑r2

l=1
y4

(l)
(2+λ2y2

(l))2 − 2(m− r2)
(y(r2)(λ2y(r2)+2)(λ2y2

(r2)+2)+2)
(λ2(y(r2)(λ2y(r2)+2)+2)+2)2 .

Using Eq.(5.2.1), MLE of SS reliability, R̂ML, can be calculated as follows:

R̂ML = λ̂2(10λ̂2
1λ̂2

2+5λ̂1λ̂3
2+λ̂4

2+12λ̂2
1λ̂3

2+6λ̂1λ̂4
2+3λ̂4

1λ̂2+10λ̂3
1λ̂2

2+λ̂5
2+λ̂5

1λ̂2+4λ̂4
1λ̂2

2+6λ̂3
1λ̂3

2+4λ̂2
1λ̂4

2+λ̂1λ̂5
2)

(1+λ̂1)(1+λ̂2)(λ̂1+λ̂2)5 .

(5.3.2)

Asymptotic Distribution and Confidence Intervals

The asymptotic distribution and confidence interval (CI) for the MLE of R are
given in this section. Let us represent the Fisher information matrix of λ = (λ1, λ2)
as I(λ). In order to obtain the asymptotic variance of the MLE of R, R̂ML, use
I(λ) in Eq.(5.3.2), where

I(λ) = E



−∂2 log L
∂λ2

1
−∂2 log L

∂λ1∂λ2

−∂2 log L
∂λ2∂λ1

−∂2 log L
∂λ2

2


.

The asymptotic normality of R is obtained by using the following definition

d(λ) =
(
∂R

∂λ1
,
∂R

∂λ2

)′

= (d1, d2)′

where

∂R
∂λ1

= −λ1λ2
2(λ5

1+(4λ2+6)λ4
1+(+λ2

2+20λ2+3)λ3
1+(4λ3

2+24λ2
2+48λ2)λ2

1+(λ4
2+12λ3

2+21λ2
2+30λ2)λ1+2λ4

2+6λ3
2)

(1+λ1)2(1+λ2)(λ1+λ2)6

and

∂R
∂λ2

= λ2
1λ2(λ5

2+2(2λ1+3)λ4
2+(6λ2

1+20λ1)λ3
2+4λ1(λ2

1+6λ1+12)λ2
2+λ1(λ3

1+12λ2
1+21λ1+30)λ2+2λ4

1+6λ3
1

(1+λ1)2(1+λ2)(λ1+λ2)6

110



Section 5.4

As a result, the asymptotic distribution of R̂ML can be represented as

√
n+m(R̂ML −R) →d N(0, d′(λ) I−1(λ) d(λ)).

We obtain the asymptotic variance of R̂ML as follows:

AV (R̂ML) = 1
n+m

d′(λ) I−1(λ) d(λ)

= V (λ̂1)d2
1 + V (λ̂1)d2

2 + 2d1d2(λ̂1λ̂1).

Asymptotic 100(1 − ω)% CI for R can be obtained as

R̂ML ± Zω/2

√
AV (R̂ML)

where Zω/2 is the upper ω/2 quantile of the standard normal distribution. To assess
the efficiency of the estimators, a simulation study is carried out and given in next
section.

5.4 Simulation Study

This section presents some results related to the performance of estimators of R
using the Newton-Raphson method. For this purpose, 1000 samples are generated
using independent EGD(3, λ1) and EGD(3, λ2) distributions for various sample
sizes under type II censoring scheme. The parameter values, (λ1, λ2), used in this
study were (0.5, 1.5), (1, 1.5), and (1.5, 0.5). Corresponding to these parameter
values, R values are 0.8391, 0.6405, and 0.1609, respectively.

Tables 5.1- 5.3 provided estimates of R based on the MLE method along with
average biases, mean square errors (MSEs), and 95% CIs. From these simulation
results, biases and MSEs decrease with increasing sample size (n,m).
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Table 5.1: MLE, average(Avg) bias, and MSEs of different estimators of R when
λ1 = 0.5 and λ2 = 1.5.

(n,m) (r1, r2) Avg Bias MSEs 95% CI Estimates

(15,15) (15,15) 0.0124 0.0080 (0.7361, 0.9523) λ̂1=0.5124

0.0878 0.1124 λ̂2=1.5878

(14,14) 0.0193 0.0091 (0.6832, 0.9927) λ̂1=0.5193

0.0589 0.1044 λ̂2=1.5589

(12,12) 0.0215 0.0105 (0.7259, 0.9563) λ̂1=0.5215

0.0940 0.1412 λ̂2=1.5940

(25,25) (25,25) 0.0113 0.0046 (0.7499, 0.9290) λ̂1=0.5113

0.0430 0.0557 λ̂2=1.5430

(23,23) 0.0114 0.0046 (0.7648, 0.9185) λ̂1=0.5114

0.0621 0.0643 λ̂2=1.5621

(21,21) 0.0135 0.0057 (0.7713, 0.9072) λ̂1=0.5135

0.0493 0.0642 λ̂2=1.5493

(30,30) (30,30) 0.0088 0.0040 (0.7615, 0.9197) λ̂1=0.5089

0.0440 0.0454 λ̂2=1.5440

(28,28) 0.0089 0.0041 (0.7638, 0.9123) λ̂1=0.5099

0.0231 0.0442 λ̂2=1.5231

(25,25) 0.0087 0.0048 (0.7584, 0.9201) λ̂1=0.5087

0.0324 0.0511 λ̂2=1.5324
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Table 5.2: MLE, Avg bias, and MSEs of different estimators of R when λ1 = 1
and λ2 = 1.5.

(n,m) (r1, r2) Avg Bias MSEs 95% CI Estimates

(15,15) (15,15) 0.0322 0.0382 (0.4666, 0.8290) λ̂1=1.0322

0.0878 0.1124 λ̂2=1.5878

(14,14) 0.0477 0.0447 (0.3602, 0.9138) λ̂1=1.0477

0.0589 0.1044 λ̂2=1.5589

(12,12) 0.0479 0.0481 (0.4690, 0.8167) λ̂1=1.0479

0.0885 0.1253 λ̂2=1.5885

(25,25) (25,25) 0.0281 0.0218 (0.4877, 0.7925) λ̂1=1.0281

0.0430 0.0557 λ̂2=1.5430

(23,23) 0.0280 0.0222 (0.5142, 0.7738) λ̂1=1.0280

0.0621 0.0643 λ̂2=1.5621

(21,21) 0.0332 0.0279 (0.5269, 0.7526) λ̂1=1.0332

0.0493 0.0642 λ̂2=1.5493

(30,30) (30,30) 0.0208 0.0173 (0.5233, 0.7624) λ̂1=1.0208

0.0447 0.0470 λ̂2=1.5447

(28,28) 0.0242 0.0202 (0.5100, 0.7700) λ̂1=1.0242

0.0362 0.0463 λ̂2=1.5380

(25,25) 0.0254 0.0209 (0.5195, 0.7626) λ̂1=1.0254

0.0434 0.0535 λ̂2=1.5434
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Table 5.3: MLE, Avg bias, and MSEs of different estimators of R when λ1 = 1.5
and λ2 = 0.5.

(n,m) (r1, r2) Avg Bias MSEs 95% CI Estimates

(15,15) (15,15) 0.0618 0.0913 (0.0564, 0.2635) λ̂1=1.5618

0.0151 0.0080 λ̂2=0.5151

(14,14) 0.0682 0.1229 (0.0472, 0.2696) λ̂1=1.5682

0.0132 0.0078 λ̂2=0.5132

(12,12) 0.0826 0.1231 (0.0369, 0.2811) λ̂1=1.5826

0.0186 0.0099 λ̂2=0.5186

(25,25) (25,25) 0.0406 0.0516 (0.0820, 0.2431) λ̂1=1.5369

0.0141 0.0048 λ̂2=0.5141

(23,23) 0.0387 0.0620 (0.0881, 0.2340) λ̂1=1.5381

0.0111 0.0050 λ̂2=0.5111

(21,21) 0.0464 0.0659 (0.0700, 0.2506) λ̂1=1.5464

0.0117 0.0056 λ̂2=0.5117

(30,30) (30,30) 0.0369 0.0463 (0.0923, 0.2264) λ̂1=1.5406

0.0078 0.0035 λ̂2=0.5078

(28,28) 0.0381 0.0478 (0.0873, 0.2304) λ̂1=1.5387

0.0060 0.0040 λ̂2=0.5060

(25,25) 0.0312 0.0525 (0.0989, 0.2245) λ̂1=1.5312

0.0107 0.0042 λ̂2=0.5107
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5.5 Applications

To check the applicability of the model we considered the dataset used by Sonker et
al. (2023) which is extracted from the dataset available in Andrews and Herzberg
(2012) and contains information on Kevlar pressure vessels’ stress rupture life under
constant pressure. With r1 = r2 = 19, Type II right censoring is performed on the
complete dataset.The data are presented as follows.

X : 6121, 11604, 9711, 9106, 11026, 17568, 1921, 4921, 10861, 11214, 11608,
5956, 1337, 10205, 11745, 2322, 16179, 14110, 7501, 8666.

Y : 1942, 17568, 3629, 11362, 4006, 14496, 6068, 7886, 5905, 6473, 11895,
4012, 13670, 10396, 17092, 8108, 1051, 5445, 5817, 5620.

When the EGD model is fitted to the data, it can be seen that the model fits
the data quite well. Similarly, the following data is fitted with the Lindley (LD)
model, and it can be observed that the EGD model provides a better fit to the data
than the LD model. Since, the EGD model has minimum CVM and KS values, and
maximum p-values.

The MLE for parameters λ1 and λ2, Cramer-Von Mises (CVM) and the
Kolmogorov-Smirnov (K-S) tests are given in Table 5.4 and 5.5. As a result, the
MLE of R of EGD model is R̂ = 0.5002, and the 95% CI for R is (0.2805,0.7199).

Table 5.4: MLE, CVM, and KS goodness of fit tests for X data

Data Estimates CVM (p-value) KS (p-value)

LD 0.0002 0.1883 (0.2929) 0.1836 (0.4873)

EGD 0.0003 0.1297 (0.4614) 0.1683 (0.5967)
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Table 5.5: MLE, CVM, and KS goodness of fit tests for Y data

Data Estimates CVM (p-value) KS (p-value)

LD 0.0002 0.1883 (0.2929) 0.1836 (0.4872)

EGD 0.0003 0.1299 (0.4607) 0.1680 (0.5989)

5.6 Summary

There have been several well-developed estimation techniques for SS models with
single components that follow well-known lifetime distributions. The EGD model is
found to be a better model than some existing models. In this chapter, the problem
of estimating SS reliability with an EGD distribution in a single-component SS
model for independent stress and strength random variables under type-II censoring
is discussed in detail. The MLE of SS reliability, R̂ML, is obtained. The extensive
simulation revealed that the MSE and average biases caused by estimates approach
zero when sample sizes are increased. The analysis is conducted on real-life datasets
and compares the EGD model with the Lindley model. The EGD model is found to
be a good fit, and it can be used for SS reliability analysis.
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