
CHAPTER 6

A Simple Step-Stress Analysis of Type II
Gumbel Distribution

6.1 Introduction

Technology in the modern world evolves faster than ever before. As it gets better,
every industry gains. Ultimately, we gain from their results because they lead to
better products and services. Since its inception, the market has been and always
will be competitive. As a result, producers compete to offer their clients the highest
quality products possible. Failure time within a specific timeframe under normal
operating conditions cannot be estimated because product quality is constantly
advancing. Early failures using ALT methodologies are encouraged in this instance.
Using this method, we put more stress than usual on promoting early failures. It
lowers the price and enhances the quality of the product.

A type of ALT called step-stress life testing allows the experimenter to gradually
increase the stress levels at predetermined intervals throughout the test. ’n’ identical
units are placed on a life-testing experiment at a starting stress level in a set-up for
a multiple-step stress model. The stress level then continued to rise at pre-defined
intervals. If there are only two degrees of stress, the model is known as the simple
step-stress model.
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A model that links the distributions under various stress levels is needed
to analyze failure time data from any SSALT experiment. The cumulative
exposure model (Sedyakin (1966)), its generalizations (Bagdonavičius (1978)), the
proportional hazard model (Cox (1992)), tampered random variable model (Goel
(1972)), tampered failure rate model (Bhattacharyya and Soejoeti (1989)), and
Khamis-Higgins model (Khamis and Higgins (1998)) are the most frequently used
models in the literature.

Here, a failure rate-based model with pre-fixed but arbitrarily chosen failure
rates at various stress levels is used (see Kateri and Kamps (2015, 2017)). It is
assumed that the HRF of the distribution for the step stress approach is as follows,
where S1 and S2 denote the stress levels and T denotes the time at which the stress
changes.

h(x) =


h1(x) if 0 < x ≤ T

h2(x) if T < x < ∞ .

(6.1.1)

The corresponding CDF is,

F (x) =


F1(x) if 0 < x ≤ T

1 − 1 − F1(T )
1 − F2(T )(1 − F2(x)) if T < x < ∞ .

(6.1.2)

SSALT setups with type II Gumbel lifetime distributions are rarely examined
with regard to inference procedures. Dutta et al. (2023) used Gumbel type II
distribution for the simple step-stress life test based on a tampered random variable
model under type-II censoring.
This chapter discusses the estimation problem for the Type-II Gumbel distribution
utilizing Type-II censoring in the failure rate-based SSALT model. The SSALT
model with Type II Gumbel distribution under Type II censoring has been developed
to comprehensively assess the reliability and failure characteristics of products or
systems exposed to stress testing, which is seldom explored. A type II Gumbel
distribution is selected as it is capable of modeling rare but catastrophic failures.
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In addition to exploring how increasing stress levels affect the failure rate of a
product, the step-stress approach also assists in understanding how the product
performs under various environmental conditions. The use of type II censoring, with
its periodic inspections and data collection, is an effective and efficient way to conduct
long-term tests. As a result of this combination of techniques, organizations can make
informed decisions regarding product design, warranty policies, and maintenance
strategies by gaining insight into how stress and aging can affect failure behavior
and the life expectancy of products.
The baseline lifetime X is distributed according to the Type II Gumbel distribution,
whose PDF and CDF are, respectively,

f ∗
i (x; β, θ) =


βiθix

−(βi+1)e−(θix
−βi ) if x > 0, β > 0, θ > 0

0 otherwise ,

(6.1.3)

and

F ∗
i (x; β, θ) =


e−(θix

−βi ) if x > 0, β > 0, θ > 0

0 otherwise ,

(6.1.4)

where β, θ are the shape and scale parameters, respectively. The HRF is given by

h∗
i (x; β, θ) =



βiθix
−(βi+1)e−(θix

−βi )

1 − e−(θix(−βi))
if x > 0, β > 0, θ > 0

0 otherwise .

(6.1.5)

Depending on the parameter values, the Type-II Gumbel distribution’s HRF
decreases or takes the shape of a UBFR. The Type-II Gumbel distribution is highly
adaptable to represent meteorological occurrences, reliability analysis, and life testing,
as well as in medical and epidemiological applications because of these shapes of
HRF.
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6.2 Model Description

Under a Type-II censoring scheme, a simple SSALT model with two stress levels,
S1, and S2, is analyzed. In the life testing experiment, n identical units are first
placed at the stress level S1. At the pre-determined time T (0 < T < ∞), the stress
level is increased to a higher level S2, and the experiment ends when the rth failure
occurs (r is a pre-determined integer ≤ n).

Let ni be the number of units that fail at Si(i = 1, 2). The following
ordered failure time data given below are observed using this notation.

ℑ = {x1:n < ... < xn1:n < T < xn1+1:n < ... < xr:n}, (6.2.1)

where r = n1 + n2.

Assume that the lifetime distributions of the experimental units at stress levels
S1 and S2 are Type-II Gumbel distributions, with differences in both the shape and
scale parameters. To relate the CDFs of lifetime distributions at two successive
stress levels to the CDFs of the lifetime under the used conditions, the assumptions
from the SSALT model based on failure rate are used.

To peruse the failure time data, the HRF h(t), the CDF G(t), and the
associated PDF g(t) of the lifetime of an experimental unit under the assumption of
the failure rate-based SSALT model are respectively given by

h(x) =



β1θ1x
−(β1+1)e−(θ1x−β1 )

1 − e−(θ1x(−β1))
if 0 < x ≤ T

β2θ2x
−(β2+1)e−(θ2x−β2 )

1 − e−(θ2x(−β2))
if T < x < ∞,

(6.2.2)

G(x) =


e−(θ1x−β1 ) if 0 < x ≤ T

1 − e−θ1T −β1

e−θ2T −β2
e−(θ2x−β2 ) if T < x < ∞,

(6.2.3)
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g(x) =


β1θ1x

−(β1+1)e−(θ1x−β1 ) if 0 < x ≤ T

β2θ2e
−θ1T −β1

e−θ2T −β2
x−(β2+1)e−(θ2x−β2 ) if T < x < ∞.

(6.2.4)

6.3 Maximum Likelihood Estimation

The MLEs of the unknown parameters β1, θ1, β2, and θ2 are determined here using
the likelihood function based on the observed type-II censored data in Eq.(6.2.1).

If X1:n < · · · < Xr:n denotes the ordered Type-II censored sample from any
continuous CDF F ∗(.), PDF f ∗(.), then the likelihood function of this censored
sample can be stated as follows:

L(θ) = n!
(n− r)!

{
n∏

k=1
fX(xk:n)

}
{1 − FX(xr:n)}n−r, 0 < x1:n < ... < xr:n < ∞,

where θ is the vector representing model’s parameters.
Let θ = (β1, θ1, β2, θ2) denotes the set of unknown parameters. Using the type-II

censored data in Eq.(6.2.1) of failure time from the Type II Gumbel distribution
with differences in the shape and scale parameters at each of the two stress levels
and assuming a failure rate based simple SSALT model, the likelihood function is
obtained as

L(θ|ℑ) = n!
(n− r)!β

n1
1 θn1

1 βn2
2 θn2

2

n1∏
k=1

x
−(β1+1)
k:n

r∏
k=n1+1

x
−(β2+1)
k:n

n1∏
k=1

e−θ1x
−β1
k:n

r∏
k=n1+1

e−θ2x
−β2
k:n

(
eθ1T −β1

e−θ2T −β2

)n−n1

(e−θ1x
−β2
r:n )n−r. (6.3.1)

The associated log-likelihood function ℓ(θ) of the observed data is given by

ℓ(θ) = ψ1(β1, θ1) + ψ2(β2, θ2), (6.3.2)

where
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ψ1(β1, θ1) = lnn! + ln(n− r)! + n1 ln β1 + n1 ln θ1 − (β1 + 1)
n1∑

k=1
ln xk:n

− θ1

n1∑
k=1

x−β1
k:n + (n− n1) ln[1 − e−θ1T −β1 ], (6.3.3)

and

ψ2(β2, θ2) = n2 ln β2 + n2 ln θ2 − (β2 + 1)
r∑

k=n1+1
ln x− θ2

r∑
k=n1+1

x−β2
k:n

− (n− n1) ln[1 − e−θ2T −β2 ] + (n− r) ln[1 − e−θ2x
−β2
r:n ]. (6.3.4)

Hence, θ̂ can be obtained by maximizing the log-likelihood function Eq.(6.3.2)
over the region Θ. The Eq.(6.3.2) can be written as the sum of two equations
Eq.(6.3.3) and Eq.(6.3.4). Differentiating Eq.(6.3.2) with respect to β1, θ1, β2, θ2

respectively and equating them to zero, the normal equations are obtained as

∂ℓ

∂β1
= n1

β1
−

n1∑
k=1

ln xk:n + θ1

n1∑
k=1

x−β1
k:n ln xk:n + (n− n1)

θ1T
−β1 lnTe−θ1T −β1

1 − e−θ1T −β1
, (6.3.5)

∂ℓ

∂θ1
= n1

θ1
−

n1∑
k=1

x−β1
k:n + (n− n1)

T−β1e−θ1T −β

1 − e−θ1T −β1
, (6.3.6)

∂ℓ

∂β2
= n2

β2
−

r∑
k=n1+1

ln xk:n − θ2Σr
k=n1+1x

−β2
k:n ln xk:n − (n− n1)

θ2 lnTe−θ2T −β2

1 − e−θ2T −β2

+ (n− r)θ2 ln xr:ne
−θ2x

−β2
r:n

1 − e−θ2x
−β2
r:n

, (6.3.7)

and

∂ℓ

∂θ2
= n2

θ2
−

r∑
k=n1+1

x−β2
k:n − (n − n1)

T−β2e−θ2T −β2

1 − e−θ2T −β2
+ (n − r)x

−β2
r:n e

−θ2x
−β2
r:n

1 − e−θ2x
−β2
r:n

. (6.3.8)
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Multiplying Eq.(6.3.6) with θ1 lnT , we get

n1 lnT − n1 lnT
n1∑

k=1
x−β1

k:n + (n− n1)
θ1 lnT T−β1e−θ1T −β

1 − e−θ1T −β1
= 0 (6.3.9)

Substracting Eq.(6.3.9) from Eq.(6.3.5) and simplifying, we get

θ1 =
n1
β1

− n1 lnT + n1 lnT ∑n1
k=1 x

−β1
k:n −∑n1

k=1 ln xk:n∑n1
k=1 x

−β1
k:n ln xk:n

(6.3.10)

6.4 Interval Estimation

In this section, a method for constructing CIs for the unknown parameters β1, θ1, β2,

and θ2 are presented. The exact CIs of the unknown parameters cannot be obtained
because the closed forms of the MLEs do not exist. The asymptotic CIs are provided,
assuming the MLEs are asymptotically normal.

6.4.1 Asymptotic Confidence Intervals

Using the observed Fisher information matrix, a method is presented that assumes
asymptotic normality of the MLEs to obtain the CIs for β1, θ1, β2, and θ2. For large
sample sizes, this method is useful due to its simplicity in computation.

To begin with, we need to obtain explicit expressions for the elements of the
Fisher information matrix I(θ). The elements of I(θ) are

∂2ℓ

∂β2
1

= −n1

β2
1

− θ1

n1∑
k=1

x−β1
k:n (ln xk:n)2 − (n− n1)θ1(lnT )2T−β1 [(1 − θ1T

−β1)eθ1T −β1 − 1]
(eθ1T −β1 − 1)2

∂2ℓ

∂θ1∂β1
=

n1∑
k=1

x−β1
k:n ln xk:n − (n− n1) lnT T−β1 [(θ1T

−β1 − 1)eθ1T −β1 + 1]
(eθ1T −β1 − 1)2

∂2ℓ

∂θ2
1

= −n1

θ2
1

− (n− n1)T−2β1
eθ1T −β1

(eθ1T −β1 − 1)2

∂2ℓ

∂β1∂θ1
= −

n1∑
k=1

x−β1
k:n ln xk:n + (n− n1) lnT T

−β1 [(1 − θ1T
−β1)eθ1T −β1 − 1]

(eθ1T −β1 − 1)2
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∂2ℓ

∂β2
2

= −n2

β2
2

+ θ2

r∑
k=n1+1

x−β2
k:n (ln xk:n)2 − (n− n1) θ2

2 (lnT )2 T−β2eθ2T −β2

(eθ2T −β2 − 1)2

+ (n− r)θ2
2 (ln xr:n)2 eθ2x

−β2
r:n

xβ2
r:n(eθ2x

−β2
r:n − 1)2

∂2ℓ

∂θ2∂β2
= −

r∑
k=n1+1

x−β2
k:n ln xk:n + (n− n1) lnT [(θ2T

−β2 − 1)eθ2T −β2 + 1]
(eθ2T −β2 − 1)2

− (n− r) ln xr:n [(θ2x
−β2
r:n − 1)eθ2x

−β2
r:n + 1]

(eθ2x
−β2
r:n − 1)2

∂2ℓ

∂θ2
2

= −n2

θ2
2

+ (n − n1)
T−2β2eθ2T −β2

(eθ2T −β2 − 1)2 − (n − r) x
−2β2
r:n eθ2x

−β2
r:n

(eθ2x
−β2
r:n − 1)2

∂2ℓ

∂β2∂θ2
=

r∑
k=n1+1

x−β2
k:n ln xk:n − (n− n1)θ2

2
(lnT )2 T−β2eθ2T −β2

(eθ2T −β2 − 1)2

+ (n− r)θ2
2
(ln xr:n)2 x−β2

r:n e
θ2x

−β2
r:n

(eθ2x
−β2
r:n − 1)2

.

Then, the 100(1 − α)% asymptotic CIs for β1, θ1, β2, and θ2 are, respectively
(β̂1 ± z1− α

2

√
V11), (θ̂1 ± z1− α

2

√
V22), (β̂2 ± z1− α

2

√
V33), and (θ̂2 ± z1− α

2

√
V44),

where Vij represents the (i, j)th element in the inverse of the Fisher information
matrix I and zp is the p-th upper percentile of a standard normal distribution.

6.5 Summary

This study introduces a simple step stress life testing model with type-II Gumbel
lifetime distribution. A flexible failure-rate based SSALT model is considered based
on type-II censoring. The point estimate of parameters using the maximum likelihood
method is described under the notion of a failure rate-based model.
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