Research \& PG Department of Chemistry ST.THOMAS COLLEGE
 (Autonomous)

THRISSUR - 680 001, KERALA, INDIA
Affiliated to the University of Calicut \& NAAC Accredited with CGPA 3.70/4 at 'A++' Grade-4th Cycle Web:- http://stthomas.ac.in Email:- stcthrissur@gmail.comPhone:+914872420435

Fax:- +91 4872421510

24-03-2023

CERTIFICATE

This is to certify that the thesis entitled "Self-Assembly of Cobalt, Copper and Molybdenum Based Hybrid Solids: Tuning Metal-Ligand Interactions Towards Properties" is an authentic record of research work carried out by Memsy C K under my supervision in partial fulfillment of the requirements for the degree of Doctor of Philosophy, in Chemistry of University of Calicut and further that no part thereof has been presented before for any other degree.

Dr. Jency Thomas

(Research Supervisor)

DECLARATION

I hereby declare that the thesis entitled "Self-Assembly of Cobalt, Copper and Molybdenum Based Hybrid Solids: Tuning Metal-Ligand Interactions Towards Properties", submitted to the University of Calicut in partial fulfillment of the requirements for the award of the Degree of Doctor of Philosophy in Chemistry is a bonafide research work done by me under the supervision and guidance of Dr. Jency Thomas, Assistant Professor, Research \& PG Department of Chemistry, St. Thomas College (Autonomous), Thrissur, Kerala.

I further declare that this thesis has not previously formed the basis of any degree, diploma or any other similar title.

ACKNOWLEDGEMENT

"When you want something, all the universe conspires in helping you to achieve it."

- Paulo Coelho

Praises and thanks to the Almighty God, the ultimate source of all knowledge and wisdom, for guiding me through this research journey and for granting me the strength and ability to complete it.

This work would not have been possible without the support, guidance, and encouragement of many individuals and organizations, and I am deeply grateful for their contributions.

I would like to express my heartfelt gratitude to my research guide, Dr. Jency Thomas, Assistant Professor, Research \& PG Department of Chemistry, St.Thomas College (Autonomous), Thrissur, for her guidance, support and mentorship throughout my research endeavor. Her expertise, creative thinking, insightful feedback, constructive criticism and patience have been critical to the successful completion of this work. I could not have accomplished this without her help and guidance, and I am forever grateful for her contributions to my research work.

I would like to thank our principal Rev. Dr. Martin Kolambrath, Head of the Department, Dr.Paulson Mathew and all the former HOD's who were instrumental in providing the working atmosphere and all basic instrumentation facilities for pursuing Ph.D. My heartfelt thanks to all other faculty members of the department. I also extend my sincere thanks to all the non teaching staffs of chemistry department.

With great appreciation, I would like to acknowledge the support and help extended by the Research Scholars of the Department. Many thanks and gratitude to my research group members, Dr. Sr. Jisha Joseph and Ms. Raji C R, for always being a helping hand in times of need.

I would like to extend my heartfelt gratitude to my alma mater, Mercy College, Palakkad for the support provided to me in pursuing my research goals. I greatly acknowledge Dr.

Sr. Gisala George, Principal, Mercy College, Palakkad, for her unwavering support and encouragement to accomplish my goal. I would also like to thank all our former Principals and the Management for their immense support. I am especially grateful to my colleagues and friends, for their assistance and encouragement. The knowledge and experience gained from this research will undoubtedly benefit me and contribute to the institution's research and development efforts.

I extend my profound thanks to STIC, Cochin and CSIF, Calicut University, for providing necessary instrumentation facilities. I also thank Mercy College, Palakkad for providing FTIR and UV-visible spectrometer facilities sponsored by DST-FIST and UGC. Special thanks to Dr. Sr. Sarupya, H.O.D, Department of Biotechnology, Mercy College, for helping me with the biological studies.

My warmest thanks to my husband Joseph, for his immense love and support. His willingness to lend a listening ear and words of encouragement when I needed them most has made it possible for me to achieve my goals. I also greatly adore the love and support shown by my in-laws and my dearest sister, Semsy.

Last but not the least, I express my sincere gratitude and love to my parents for their incredible support, prayers, love and understanding. Dear Pappa and Mummy, I cannot thank you enough for looking after my children while I was working on my research. Thank you from the bottom of my heart for always being there for me.

To all those who have supported me in this endeavor, I offer my deepest thanks.

Memsy C K

Dedicated to

My Family

LIST OF FIGURES

Figure No:	Title of Figure	Page No:
Chapter I: Introduction \& Literature Review		
I. 1	A few examples of hybrid materials used in ancient world; (a) Maya blue [10], (b) Chinese porcelain [2] and (c) pre-historic paintings [2].	4
I. 2	Structure of Keggin type POM.	7
I. 3	Structural unit of Anderson-Evans cluster anion.	8
Chapter II: Self-Assembly of Anderson Cluster Based Hybrid Solids: Synthesis, Structure and Application		
II. 1	ORTEP diagram of $\mathbf{1}$. Non hydrogen atoms are shown as 50% ellipsoids and hydrogen atoms as arbitrary spheres. Lattice water molecules have been omitted for clarity.	36
II. 2	1-D zig-zag chains in $\mathbf{1}$. H-bonding interactions are shown in dashed red lines. Each cluster anion is linked to lattice water molecules O1S, O2S, O5S and O6S through H-bonding. Lattice water molecule, O1S is linked to $\{\mathrm{N} 1 \mathrm{~N} 2\}$ moiety through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction.	37
II. 3	(a) O2S connecting two neighboring 1-D zig-zag chains (depicted in cyan and pink polyhedral) to form 2-D sheet in 1. Inter-chain Hbonding interactions are shown in solid red lines. (b) View along b axis showing two $1-\mathrm{D}$ chains forming a sheet.	38
II. 4	View along b axis showing O3S and O4S connecting two neighboring sheets (depicted in cyan and green) via H-bonding interactions mediated by \{N3N4\} moiety in $\mathbf{1}$.	39
II. 5	Asymmetric unit in 2. Lattice water molecules are omitted for clarity.	41
II. 6	Anderson clusters are connected by H-bonding interactions through chromium acetate complex to form 1-D chain.	42
II. 7	(a) View along a axis showing 2-D sheets in $\mathbf{2}$ formed by H-bonding interactions between Anderson cluster and chromium acetate species. (b) View along c axis showing 2-D sheets in 2.	42
II. 8	(a) Two neighboring sheets are connected via hydrogen bonded	43

	clusters to form 3-D supramolecular structure. Lattice water molecules are shown in pink color and $\mathrm{O} \cdots \mathrm{O}$ interactions are shown in solid pink lines.(b) Water-water interactions resulting in 1-D zigzag chain of water cluster in $\mathbf{2}$.	
II. 9	Two sodium centers (Na 2) connected by lattice water molecules forming 1-D chains propagating along c axis in 3 .	46
II. 10	Neighboring Na2 hydrate chains are connected by Anderson clusters to form 2-D sheets in 3 .	46
II. 11	2-D sheets are connected by sodium (Na) hydrate complexes to form 3-D structure.	47
II. 12	FTIR spectra of solids 1, 2 and $\mathbf{3}$.	48
II. 13	TG analysis plot of (a) 1, (b) 2 and (c) 3.	49
II. 14	(i) Simulated and (ii) experimental powder X-ray patterns of (a) 1, (b) 2 and (c) 3 .	49
II. 15	(a) FTIR spectrum and (b) PXRD pattern of Polypyrrole synthesized using APS and Solid 2.	53
II. 16	(a) PXRD pattern of product synthesized using APS and solid 3, (b) PXRD pattern of Anderson cluster, 3.	53
Chapter III: Crystallization Of Cobalt Based Hybrid Solids		
III. 1	ORTEP diagram of 4. Non hydrogen atoms are shown as 50% ellipsoids and hydrogen atoms as arbitrary spheres.	70
III. 2	(a) $\mathrm{H} \cdots \mathrm{Cl}$ interactions shown in dashed red lines link complex moieties to form 1-D chains propagating along a axis. (b) Inter-chain $\mathrm{H} \cdots \mathrm{Cl}$ interactions shown in solid red lines connect neighboring chains to form 2-D sheet.	71
III. 3	Figure showing three sheets (depicted in cyan, yellow and green colors) connected to each other through $\pi-\pi$ stacking.	71
III. 4	Crystal structure of 5.	72
III. 5	(a) $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions (shown in red dashed lines) leading to 1-D zig-zag chains in 5. (b) Intermolecular H-bonding interactions	73

	connect neighboring chains to form 2-D sheets.	
III. 6	Inter and intra molecular H-bonding further connects the sheets to form 3-D network. Intramolecular H-bonding is shown in solid red lines.	73
III. 7	FTIR spectrum of (a) 4 and (b) 5.	75
III. 8	TG plots of 4 (black) and 5 (blue).	75
III. 9	Hirshfeld surfaces for visualizing the intermolecular contacts in 4 (a) $\mathrm{d}_{\text {norm }}$ highlighting the regions of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, (b) d_{e}, (c) d_{i}, (d) shape index and (e) curvedness.	76
III. 10	Hirshfeld surfaces for visualizing the intermolecular contacts in $\mathbf{5}$ (a) dnorm highlighting the regions of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, (b) de, (c) di, (d) shape index and (e) curvedness (along b axis).	77
III. 11	Electrostatic potential mapped on the Hirshfeld surface of (a) 4 and (b) 5 .	78
III. 12	2-D finger print plots of solid 4 showing the contributions of different types of interactions: (a) all intermolecular contacts, (b) $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$ contacts, (c) $\mathrm{H} \cdots \mathrm{H}$ contacts, (d) $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ contacts, (e) $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ contacts and (f) $\mathrm{C} \cdots \mathrm{C}$ contacts. The outline of the full finger print is shown in grey.	79
III. 13	2-D finger print plots of solid 5 showing the contributions of different types of interactions: (a) all intermolecular contacts, (b) $\mathrm{H} \cdots \mathrm{H}$ contacts, (c) $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$ contacts, (d) $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ contacts, (e) $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ contacts and (f) $\mathrm{C} \cdots \mathrm{C}$ contacts. The outline of the full finger print is shown in grey.	80
III. 14	Graphical representation of the contribution of interatomic contacts in the crystal packing of (a) 4 and (b) 5 .	80
III. 15	Molecular pairs involved in the interaction of (a) 4 and (b) 5.	81
III. 16	Energy framework diagrams for a cluster of molecules in 4: (a) electrostatic or Coulomb energy, $\mathrm{E}_{\text {ele }}$; (b) dispersion energy, $\mathrm{E}_{\text {dis }}$ (c) total energy, $\mathrm{E}_{\text {tot }}$. The cylindrical radius was adjusted to the scale factor of $80 \mathrm{~kJ} \mathrm{~mol}^{-1}$ with a cut-off value of $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Weak molecular interactions below threshold energy value of $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$	82

	were omitted for clarity.	
III. 17	Energy framework diagrams for a cluster of molecules in 5: (a) electrostatic or Coulomb energy, $\mathrm{E}_{\text {ele }}$; (b) dispersion energy, $\mathrm{E}_{\text {dis }}$ (c) total energy, $\mathrm{E}_{\text {tot }}$. The cylindrical radius was adjusted to the scale factor of $80 \mathrm{~kJ} \mathrm{~mol}^{-1}$ with a cut-off value of $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Weak molecular interactions below threshold energy value of $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$ were omitted for clarity.	84
III. 18	Anti bacterial activity of solids 4 and 5 compared with 2-ampz, cobalt chloride and standard antibiotic Gentamycin (S-solvent, L-2ampz, M-cobalt chloride, G-Gentamycin); (a) E.Coli, (b) Staphylococcus saprophyticus, (c) Bacillus subtilis and (d) Pseudomonas fluorescence.	86
III. 19	Molecular docking of (a) 2-ampz, (b) 4 and (c) 5 with the target protein PDB ID: 1AJ6. Left and right hand images represent 2-D and 3-D interaction diagrams respectively.	89
III. 20	Molecular docking of (a) 2-ampz, (b) 4 and (c) 5 with the target protein PDB ID: 4DDQ. Left and right hand images represent 2-D and 3-D interaction diagrams respectively.	90
Chapter IV: Tetrachlorocuprate(II) hybrid solids templated by aminopyridines		
IV. 1	Figure showing the percentage of tetrachlorocuprate(II) anion based solids exhibiting thermo-, photo- and piezochromism.	97
IV. 2	Asymmetric unit of (a) 6 and (b) 7.	107
IV. 3	1-D chains formed via H -bonding interactions mediated by protonated aminopyridine moieties in (a) 6 and (b) 7. Intra-chain Hbonding interactions are shown as red lines.	107
IV. 4	Through H-bonding interactions each 1-D chain is further extended into 3-D framework. Figure showing one chain (cyan) connected to four others (green, blue, orange, yellow). Inter-chain H-bonding interactions are shown in red dashed lines. Crystal packing in 6 and 7 is also facilitated by $\pi \cdots \pi$ interactions (3.767(31) and 3.779(1) \AA respectively). $\pi \cdots \pi$ interactions are shown as black lines.	108

IV. 5	(a) Asymmetric unit in (4-Hampy) $2\left[\mathrm{CuCl}_{4}\right] . \mathrm{H}_{2} \mathrm{O}, 8$. (b) 1-D chains formed via H -bonding interactions mediated by protonated aminopyridine moieties and water molecule. H-bonding interactions mediated by lattice water molecule and $\left[\mathrm{CuCl}_{4}\right]^{2-}$ are shown in red solid and dashed lines respectively. (c) View along a axis	109
IV. 6	Through H-bonding interactions each 1-D chain is further extended into 3-D framework. Figure showing one chain (cyan) connected to four others (green, blue, orange, yellow). Inter-chain H-bonding interactions are shown in red dashed lines.	110
IV. 7	Rietveld refinement plot of $\mathbf{6}$.	110
IV. 8	Rietveld refinement plot of 7.	111
IV. 9	Rietveld refinement plot of $\mathbf{8}$.	111
IV. 10	FTIR spectra of solids 6-8.	112
IV. 11	TGA curves of 6 and 7.	113
IV. 12	TGA-DTA curve of $\mathbf{8}$.	113
IV. 13	Hirshfeld surfaces for visualizing the intermolecular contacts in [(2Hampy) $\left.{ }_{2} \mathrm{CuCl}_{4}\right]$, 6. (a) dnorm highlighting the regions of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, (b) de, (c) di, (d) shape index and (e) curvedness	115
IV. 14	Hirshfeld surfaces for visualizing the intermolecular contacts in [(3Hampy) $\left.{ }_{2} \mathrm{CuCl}_{4}\right], 7$: (a) dnorm highlighting the regions of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, (b) de, (c) di, (d) shape index and (e) curvedness	116
IV. 15	Hirshfeld surfaces for visualizing the intermolecular contacts in (4Hampy $)_{2}\left[\mathrm{CuCl}_{4}\right] . \mathrm{H}_{2} \mathrm{O}, 8$: (a) dnorm highlighting the regions of N $\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, (b) de, (c) di, (d) shape index and (e) curvedness	117
IV. 16	2-D finger print plots for $\mathbf{6}$ showing the contributions of different types of interactions: (a) all intermolecular contacts, (b) $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$ contacts, (c) $\mathrm{H} \cdots \mathrm{H}$ contacts, (d) $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ contacts, (e) $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ contacts and (f) $\mathrm{C} \cdots \mathrm{C}$ contacts. The outline of the full fingerprint is shown in grey.	118
IV. 17	2-D finger print plots for 7 showing the contributions of different	119

	types of interactions: (a) all intermolecular contacts, (b) $\mathrm{H} \cdots \mathrm{Cl}$ contacts, (c) $\mathrm{H} \cdots \mathrm{H}$ contacts, (d) $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ contacts, (e) $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ contacts and (f) $\mathrm{C} \cdots \mathrm{C}$ contacts. The outline of the full finger print is shown in grey.	
IV. 18	2-D finger print plots for $\mathbf{8}$ showing the contributions of different types of interactions: (a) all intermolecular contacts, (b) $\mathrm{H} \cdots \mathrm{Cl}$ contacts, (c) $\mathrm{H} \cdots \mathrm{H}$ contacts, (d) $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ contacts, (e) $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ contacts and (f) $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ contacts. The outline of the full finger print is shown in grey.	119
IV. 19	Graphical representation of the contribution of interatomic contacts in the crystal packing of (a) 6, (b) 7 and (c) 8.	120
IV. 20	Graphical representation of void analysis along a crystallographic axis for solids (a) 6, (b) 7 and (c) 8.	121
IV. 21	Absorption spectra of solids (a) 6, (b) $\mathbf{7}$ and (c) $\mathbf{8}$ in different solvents. The image in the bottom right shows the color of the solids in solvents (i) DMF (ii) Acetone (iii) $\mathrm{H}_{2} \mathrm{O}$ and (iv) Ethanol	122
IV. 22	Vapochromic response of (a) 6 and (b) 8 to vapors of (i) H 2 O and (ii) NH 3 ; (iia) shows the color change upon heating (ii).	124
IV. 23	PXRD patterns of (a) 8, (b) after exposing to NH_{3} and (c) after heating.	125
IV. 24	Solid state UV-Visible absorption spectra of (i) Solid 8, (ii) 8 exposed to NH_{3} and (iii) after heating.	126
IV. 25	TGA curves of solid $\mathbf{8}$ exposed to NH_{3} vapors.	126
IV. 26	Thermochromism exhibited by 8.	127
Chapter V: Surfactant templated nanostructured phosphomolybdates		
V. 1	(a) PXRD and (b) FTIR of solid 9.	143
V. 2	(a) FESEM and (b) EDAX spectrum of solid 9.	143
V. 3	TGA plot of solid 9 .	143
V. 4	UV-Visible spectra of (a) solution of 5ppm MB and (b) MB solution obtained after treatment with 9 for 1 hour. Figures in the inset represent (i) the original solution of MB and (ii) MB solution obtained after treatment with $\mathbf{9}$ for 1 hour.	145

V. 5	UV-visible absorption spectra of MB ($5 \mathrm{ppm}, 25 \mathrm{~mL}$) solution showing the effect of dose on dye removal upon stirring for 20 minutes.	145
V. 6	Effect of contact time on MB dye removal by 9 .	146
V. 7	Effect of initial concentration of MB on the adsorption process.	147
V. 8	UV-Visible spectra of 5ppm dye solutions (a) MB, (b) MG, (c) MO and (d) EY before (colored curve) and after (black curve) treating with 0.1 g of 9 . Image in the inset represents (i) the original dye solution and (ii) dye solution obtained after treatment with $\mathbf{9}$ for 40 minutes.	149
V. 9	Reusability of $\mathbf{9}$ on MB removal (25 mL , 5 ppm MB solution with 0.1 g 9 , stirred for 40 minutes).	150
V. 10	Langmuir isotherm plot of dye adsorption on 9 at room temperature (adsorbent dosage $=0.1 \mathrm{~g}$, stirring time $=40$ minutes).	151
V. 11	Freundlich isotherm plot of dye adsorption on $\mathbf{9}$ at room temperature (adsorbent dosage $=0.1 \mathrm{~g}$, stirring time $=40$ minutes).	152
V. 12	The pseudo-first order kinetic model for MB adsorption by 9 (25 mL of 5 ppm MB , adsorbent dosage $=0.1 \mathrm{~g}$, stirring time $=40$ minutes).	153
V. 13	The pseudo- second order kinetic model for MB adsorption by PMO solid (25 mL of 5 ppm MB and PMO dosage $=0.1 \mathrm{~g}$).	154
V. 14	The intra-particle diffusion model for MB adsorption by PMO solid $(25 \mathrm{~mL}$ of 5 ppm MB and PMO dosage $=0.1 \mathrm{~g})$.	155
V. 15	Mechanism of dye adsorption.	156
Chapter VI: Synthesis and characterization of phosphomolybdate-polypyrrole composites		
VI. 1	(a) PXRD of (i) APM (ii) APM-Ppy (iii) Polypyrrole and (b) FTIR of APM-Ppy composite.	168
VI. 2	(a) FESEM image and (b) EDAX of APM-Ppy composite.	169
VI. 3	TG plot of APM-Ppy composite.	170
VI. 4	PXRD patterns of solids obtained at various concentrations of pyrrole.	171
VI. 5	PXRD patterns of solids obtained at different stirring times.	172

VI. 6	(a) PXRD and (b) FTIR patterns of solids obtained at different temperatures.	172
VI. 7	Color displayed by (a) Ppy and (b) APM-Ppy in (i) water, (ii) HCl (0.1 N), (iii) Oxalic acid (0.1 N), (iv) $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.1 \mathrm{~N})$ and (v) NaOH (0.1 N).	174
VI. 8	Colors of solution before and after end point in using Ppy indicator solution in (a) HCl versus NaOH (b) Oxalic acid versus NaOH (c) HCl versus $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (d) Oxalic acid versus $\mathrm{Na}_{2} \mathrm{CO}_{3}$ titration.	176
VI. 9	Colors of solution before and after end point in using APM-Ppy indicator solution in (a) HCl versus NaOH (b) Oxalic acid versus NaOH (c) HCl versus $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (d) Oxalic acid versus $\mathrm{Na}_{2} \mathrm{CO}_{3}$ titration.	177
VI. 10	Reversible colour change of solution indicating the utility of APMPpy indicator solution for double burette titration as well.	177
VI. 11	UV-visible spectra of APM-Ppy composite in acidic, neutral and basic solutions.	178

LIST OF TABLES

Table No.	Title of table	Page No.
Chapter II: Self-Assembly of Anderson Cluster Based Hybrid Solids: Synthesis, Structure and Application		
II. 1	Organically templated Anderson-Evans cluster based solids reported in literature.	29
II. 2	Crystal data and structure refinement parameters for 1-3.	34
II. 3	Mo-O distances in 1.	36
II. 4	H -bonding interactions in 1.	39
II. 5	$\mathrm{O} \cdots \mathrm{O}$ interactions in 1.	40
II. 6	Mo-O distances in $\mathbf{2}$.	41
II. 7	H -bonding interactions in 2.	44
II. 8	$\mathrm{O} \cdots \mathrm{O}$ interactions in 2.	44
II. 9	Mo-O distances in 3.	45
Chapter III: Crystallization Of Cobalt Based Hybrid Solids		
III. 1	Crystal data and structure refinement parameters for $\mathbf{4}$ and 5.	61
III. 2	H -bonding interactions in 4.	70
III. 3	H -bonding interactions in 5.	74
III. 4	Interaction Energies (kJ/mol) in component form of 4.	83
III. 5	Interaction Energies (kJ/mol) in component form of 5.	85
III. 6	Anti bacterial activity (zone of inhibition) against clinical pathogens.	87
III. 7	Interaction of 2-ampz, $\mathbf{4}$ and $\mathbf{5}$ with protein targets, 1AJ6 and 4DDQ.	88
Chapter IV: Tetrachlorocuprate(II) hybrid solids templated by aminopyridines		
IV. 1	Literature review of Tetrachlorocuprate(II) solids exhibiting chromotropism.	98
IV. 2	Crystallographic details of solids 6-8.	106
IV. 3	H-bonding interactions in 6.	107
IV. 4	H -bonding interactions in 7.	108
IV. 5	H -bonding interactions in 8.	109
IV. 6	Magnetic susceptibility measurements.	114
Chapter V: Surfactant templated nanostructured phosphomolybdates		

V. 1	Langmuir isotherm parameters of dye adsorption on 9	151
V. 2	Freundlich isotherm parameters of dye adsorption on 9.	152
V.3	Kinetics constants and parameters determined using pseudo first-order model for the adsorption process.	153
V.4	Kinetics constants and parameters determined using pseudo-second order model for the adsorption process.	154
V.5	Kinetics constants and parameters determined using intra-particle diffusion model for the adsorption process.	155
Chapter VI: Synthesis and characterization of phosphomolybdate-polypyrrole		
composites		

LIST OF SCHEMES

Scheme No.	Title of scheme	Page No.
I.1	Different types of class A and class B hybrid solids.	5
II.1	Scheme showing the synthetic pathway for the crystallization of solids 1-3.	32
II.2	Formation of Polypyrrole using APS and solid 2.	52
II.3	Formation of Anderson-Polypyrrole composite using APS and solid 3.	52
III.1	Scheme showing the synthetic pathway for the crystallization of 4 and 5.	59
IV.1	Scheme showing the synthetic protocol.	104
IV.2	Structural changes in solid 8 when exposed to NH3.	127
V.1	Synthetic procedure for preparing CTAB templated phosphomolybdates.	136
VI.1	Synthetic procedure for preparing APM-Ppy composite.	165
VI.2	Formation of APM-Ppy composite via oxidative polymerization.	169

List of Abbreviations

APM	Ammonium phosphomolybdate
APS	Ammonium persulphate
ATR	Attenuated total reflection
CP	Coordination polymers
CTAB	Cetyltrimethylammonium bromide
de	Distance from a point on the surface to the nearest nucleus outside the
di	Disface
Disce from a point on the surface to the nearest nucleus inside the	

FESEM	Field emission scanning electron microscope
FTIR	Fourier Transform Infrared
HS	Hirshfeld surface
LMCT	Ligand to metal charge transfer
LBL	Layer by layer
MB	Methylene blue
MC	Metal complex
MEP	Molecular electrostatic potentials
MG	Malachite green
MO	Methyl orange
ORTEP	Oak ridge thermal ellipsoid plot
PMO	Phosphomolybdates
POM	Polyoxometalates
PXRD	Powder X-ray diffraction
$\mathrm{r}^{\text {vdw }}$	Van der Waals radii of atoms present inside the 3-D Hirshfeld surface
$\mathrm{r}_{\mathrm{e}}{ }^{\text {ddw }}$	Van der Waals radii of atoms present outside the 3-D Hirshfeld surface
SCXRD	Single crystal X-ray diffraction
TGA	Thermogravimetric analysis
TMC	Transition metal complex
UV-Vis	Ultraviolet-visible
UV-DRS	Ultraviolet-Diffuse reflectance spectroscopy
ZOI	Zone of inhibition
2-ampz	2-aminopyrazine

2-ampy	2-aminopyridine
3-ampy	3-aminopyridine
4-ampy	4-aminopyridine
ampy	aminopyridine
Ppy	Polypyrrole
$p z$	Pyrazole
1-D	One dimensional
2-D	Two dimensional
3-D	Three dimensional

