
Chapter 3

Statistical analysis on MHD convective

Carreau nanofluid flow due to bilateral

non linear stretching sheet with zero mass

flux condition ✯

3.1 Introduction

Stretching surface has intrigued many researchers due to its diverse applications

in industrial and engineering fields like production of plastic and rubber plates,

cooling of metallic plate in a bath, metal extrusion, etc. Both Newtonian and Non-

Newtonian fluid flow over a bilateral non-linear stretching sheet has been studied by

many researchers. MHD Carreau nanofluid flow over a bilateral stretching non-linear

surface with zero mass flux condition has been studied in the chapter. Magnetic

and heat source effects are accounted to analyse the effects of velocity and heat

transport of Carreau nanofluid over a non linear stretching sheet. Effects of various

parameters on skin friction coefficients and heat transfer rate are scrutinized using

statistical techniques like slope of linear regression, correlation coefficient, probable

error and regression.

3.2 Mathematical formulation

Three dimensional steady MHD Carreau nanofluid flow due to a bilateral stretching

sheet with velocities uW = a(x+ y)m, vW = b(x+ y)m; a, b, m > 0 along the X

and Y directions respectively is considered. Velocity, temperature and concentration

equations are investigated with convective and zero mass flux condition at the

✯Published in: Heat Transfer (Wiley), 2021; 50 (4) 3641-3660
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surface. A non-uniform magnetic field B = B0(x+ y)
m−1

2 is applied along the Z

direction (see Figure 3.1). In addition, a non-uniform heat generation or absorption

Q = Q0(x+ y)m−1 is implemented. The boundary layer equations (J. A. Khan et

al., 2014), (Hayat, Aziz, et al., 2019) (M. Khan, Sardar, et al., 2018) are given by:

Figure 3.1: Geometry of the problem

ux + vy + wz = 0 (3.2.1)

uux + vuy + wuz = νfuzz

[

β∗ + (1− β∗)
{

1 + Γ2(uz)
2}

n−1

2

]

+νf (n− 1) (1− β∗) Γ2uzz(uz)
2{1 + Γ2(uz)

2}
n−3

2 − σB2u
ρ

(3.2.2)

uvx + vvy + wvz = νfvzz

[

β∗ + (1− β∗)
{

1 + Γ2(vz)
2}

n−1

2

]

+νf (n− 1) (1− β∗) Γ2vzz(vz)
2{1 + Γ2(vz)

2}
n−3

2 − σB2v
ρ

(3.2.3)

uTx + vTy + wTz = αfTzz +
Q

(ρc)f
(T − T∞) + τ

[

DBTzCz +
DT

T∞
(Tz)

2

]

(3.2.4)

uCx + vCy + wCz = DBCzz +
DT

T∞
Tzz (3.2.5)
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The respective boundary conditions are given as:

u = uW = a(x+ y)m, v = vW = b(x+ y)m, w = 0

−kfTz = hf (TW − T ) , DBCz +
DT

T∞

Tz = 0







at z = 0 (3.2.6)

u → 0, v → 0, T → T∞, C → C∞ at z → ∞ (3.2.7)

The following similarity variables are implemented in converting the above system

of partial differential equations into a system of ordinary differential equations:

u = a(x+ y)m f ′ (ζ)

v = a(x+ y)m g′ (ζ)

w = −
√
aνf (x+ y)

m−1

2

[

m+1
2

(f (ζ) + g (ζ)) + m−1
2

ζ (f ′ (ζ) + g′ (ζ))
]















(3.2.8)

θ (ζ) =
T − T∞

TW − T∞
, φ (ζ) =

C − C∞

C∞
, ζ =

√

a

νf
z (x+ y)

m−1

2 (3.2.9)

The transformed boundary layer equations are given below:

f ′′′

[

β∗ + (1− β∗)
(

1 +We2(f ′′)2
)

n−3

2
(

1 + nWe2(f ′′)2
)

]

−Mf ′

−m(f ′)2 −mf ′g′ + m+1
2

f ′′ (f + g) = 0

(3.2.10)

g′′′
[

β∗ + (1− β∗)
(

1 +We2(g′′)2
)

n−3

2
(

1 + nWe2(g′′)2
)

]

−Mg′ −m(g′)2 −mf ′g′ + m+1
2

g′′ (f + g) = 0

(3.2.11)

θ′′ + Pr

[

Sθ +Nbφ′θ′ +Nt(θ′)
2
+

(

m+ 1

2

)

(f + g) θ′
]

= 0 (3.2.12)

φ′′ +
Nt

Nb
θ′′ + Scφ′

(

m+ 1

2

)

(f + g) = 0 (3.2.13)

The corresponding boundary conditions are given by:

f (0) = 0, g (0) = 0, f ′ (0) = 1, g′ (0) = δ

θ′ (0) = −Bi (1− θ (0)) , φ′ (0) + Nt
Nb

θ′ (0) = 0







at z = 0 (3.2.14)

f ′ (∞) → 0, g′ (∞) → 0, θ (∞) → 0, φ (∞) → 0 (3.2.15)
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where the non-dimensional parameters are taken as following:

We =
√

Γ2a3(x+y)3m−1

γ
, M = σB2

o

ρfa
, P r =

νf
αf
, Sc =

νf
DB

, δ = b
a

Nt = τDT (TW−T∞)
T∞νf

, Nb = τDBC∞

νf
, τ =

(ρc)p
(ρc)f

, S = Q0

a(ρc)f







(3.2.16)

Skin friction coefficients, local Nusselt number and local Sherwood number measures

the surface drag, heat transfer rate and mass transfer rate, respectively. They are

defined (M. Khan et al., 2018), (Mahanthesh, Gireesha, & Gorla, 2017) as given

below:(see Table 3.1)

3.3 Numerical solution

The equations (3.2.10) – (3.2.13) with boundary conditions (3.2.14)-(3.2.15) are

solved numerically using bvp5c solver, a MATLAB built in function. To accomplish

this, we choose:

f = y1, f ′ = y2, f ′′ = y3, g = y4, g′ = y5,

g′′ = y6, θ = y7, θ′ = y8, φ = y9, φ′ = y10

Accordingly, the equations (3.2.10) – (3.2.15) takes the form:

y
′

1 = y2, y
′

2 = y3, y
′

3 =
my2

2
+my2y5−(m+1

2 )y3(y1+y4)+My2

β∗+(1−β∗)(1+We2y2
3)

n−3
2 (1+nWe2y2

3)

y
′

4 = y5, y
′

5 = y6, y
′

6 =
my2

5
+my2y5−(m+1

2 )y6(y1+y4)+My5

β∗+(1−β∗)(1+We2y2
6)

n−3
2 (1+nWe2y2

6)

y
′

7 = y8, y
′

8 = −Pr
[

Sy7 +Nby8y10 +Nt(y8)
2 +

(

m+1
2

)

(y1 + y4) y8
]

, y
′

9 = y10

y
′

10 =
{

Nt
Nb

Pr
[

Sy7 +Nby8y10 +Nt(y8)
2 +

(

m+1
2

)

(y1 + y4) y8
]

− Scy10
(

m+1
2

)

(y1 + y4)
}

y1 (0) = 0, y2 (0) = 1, y2 (∞) = 0, y4 (0) = 0, y5 (0) = δ, y5 (∞) = 0

y7 (∞) = 0, y8 (0) = −Bi (1− y7 (0)) , y9 (∞) = 0, y10 (0) +
Nt
Nb

y8 (0) = 0

(3.3.1)

Accuracy of the code and the validation of the current problem have been accounted

through a restrictive comparison of the present work with prior published (J. A. Khan

et al., 2014) results and is found to be in good agreement (described in Table 3.2).

3.4 Result and discussion

The impact of viscosity ratio parameter (β∗), Weisssenberg number (We), Hartmann

number (M), heat generation/absorption parameter (S), power law index (n), Biot

number (Bi), stretching ratio parameter (δ), Brownian motion parameter (Nb),
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Table 3.1: Skin friction coefficients, local Nusselt number and local Sherwood

number are defined as given below:

Local Nusselt number
Nu = (x+y)qw

kf (Tw−T∞)
where qw = −kf

(

∂T
∂z

)

z=0

Reduced form of Nusselt number
Re

− 1

2
x Nu = −θ′ (0)

where Rex = uw(x+y)
νf

is the local Reynolds number along

the x direction

Local Sherwood Number Sh = (x+y)mw

DB(Cw−C∞)
where mw = −DB

(

∂C
∂z

)

z=0

Reduced form of Sherwood number Re
− 1

2
x Sh = −φ′ (0)

Skin Friction Coefficients

Cfx = τzx
ρfu2

w

where τzx = µf

(

∂u
∂z

)

[

β∗ + (1− β∗)
(

1 + Γ2
(

∂u
∂z

)2
)

n−1

2

]

Cfy =
τzy
ρfv2w

where τzy = µf

(

∂v
∂z

)

[

β∗ + (1− β∗)
(

1 + Γ2
(

∂v
∂z

)2
)

n−1

2

]

Reduced form of Skin Friction

Re
1

2
xCfx = f ′′ (0)

[

β∗ + (1− β∗)
(

1 +We2(f ′′ (0))2
)

n−1

2

]

Re
1

2
yCfy = δ−1.5 g

′′

(0)×

[

β∗ + (1− β∗)
(

1 +We2(g′′ (0))2
)

n−1

2

]

where Rey =
vw(x+y)

νf
is the local Reynolds number along

y direction

thermophoresis parameter (Nt) on the X direction velocity (f ′ (ζ)), Y direction

velocity (g′ (ζ)), temperature (θ (ζ)) and concentration (φ (ζ)) profiles are carefully

analysed through Figs. 3.2 - 3.13. The Prandtl number (Pr) and Schmidt numbers

(Sc) are fixed at 5 and 2 respectively.
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Table 3.2: Comparison of f ′′ (0) and g′′ (0) when β∗ = 1 and M = 0

m δ f ′′ (0) f ′′ (0) g′′ (0) g′′ (0)
[Present paper] (J. A. Khan et al., 2014) [Present paper] (J. A. Khan et al., 2014)

1 0 -1.000172394 -1 0 0
1 0.5 -1.22478775 -1.224745 -0.612393875 -0.612372
1 1 -1.414226121 -1.414214 -1.414226121 -1.414214
3 0 -1.624368157 -1.624356 0 0
3 0.5 -1.989423631 -1.989422 -0.994711816 -0.994711
3 1 -2.297186414 -2.297186 -2.297186414 -2.297186

Figs. 3.2 and 3.3 depict the variation of f ′ (ζ) and g′ (ζ) due to the increment

in β∗. The analysis has been carried out for shear-thinning n (n < 1) and shear

thickening n (n > 1) cases. Both f ′ (ζ) and g′ (ζ) exhibit an increase (shear-thinning

case) with an increase in β∗ whereas the results are reversed for the shear thickening

case. The effect of We on f ′ (ζ) and g′ (ζ) are elucidated in Figs. 3.4 and 3.5. A

contrasting behaviour is observed on the velocity profiles for different values of

n. An increase in We improves the elastic forces which hence causes a reduction

in the velocity profiles in a shear-thinning fluid. Fig. 3.6 and 3.7 illustrates the

variation of M on f ′ (ζ) and g′ (ζ). An increment in M generates Lorentz force

which retards f ′ (ζ) and g′ (ζ) profiles. Fig. 3.8 exhibits the influence of δ on g′ (ζ).

As δ increases, g′ (ζ) also increases since the vertical downward flow is accelerated

due to the bi-directional stretching of the sheet.

With a rise in the magnitude of Bi, temperature profile is enhanced, shown

in Fig. 3.9. Physically, this can be attributed to the fact that increase in Biot

number enhances the heat transfer coefficient which in turn increases θ. Fig. 3.10

displays the effect of S on θ (ζ). θ (ζ) is observed to increase as S is increased. Fig.

3.11 reveals the change in θ (ζ) with increasing Nt. Nt is found to have a positive

effect. The mounting of Nt promotes an increment in the thermophoresis force

which enforces the movement of nanoparticles from a hot region to a cold region

and hence θ (ζ) is increased. Fig. 3.12 describes the variation of φ (ζ) with Nb.

Nb shows a negative influence with φ (ζ). Physically, an increase in Nb improves

the random motion of nanoparticles which in return lowers the concentration of

nanofluid. Fig. 3.13 shows that φ (ζ) increases when Nt is increased.
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Figure 3.2: Variation of f ′ (ζ) for various values of β∗

Figure 3.3: Variation of g′ (ζ) for various values of β∗
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Figure 3.4: Variation of f ′ (ζ) for various values of We

Figure 3.5: Variation of g′ (ζ) for various values of We
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Figure 3.6: Variation of f ′ (ζ) for various values of M

Figure 3.7: Variation of g′ (ζ) for various values of M

79



CHAPTER 3

Figure 3.8: Variation of g′ (ζ) for various values of δ

Figure 3.9: Variation of θ (ζ) for various values of Bi
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Figure 3.10: Variation of θ (ζ) for various values of S

Figure 3.11: Variation of θ (ζ) for various values of Nt
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Figure 3.12: Variation of φ (ζ) for various values of Nb

Figure 3.13: Variation of φ (ζ) for various values of Nt
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The effect of various parameters on local Nusselt number for n = 0.7 and 1.7 is

studied using table 3.3. Increment/decrement rate denotes the percentage change of

current value with respect to the previous value of local Nusselt number. A positive

sign represents an increment while a negative sign represents decrement in heat

transfer rate. From table 3.3, it is deduced that Re
− 1

2
x Nu (both cases) increases

with δ and decreases for Nt, S & M . It is further noted that Re
− 1

2
x Nu (n = 0.7)

increases with β∗ and decreases with We whereas the results are reversed for

Re
− 1

2
x Nu (n = 1.7). Slope of linear regression is used to study the trend of varia-

tion in skin friction coefficient. A negative slope with respect to a parameter indicates

that the parameter has a negative effect on skin friction meaning, an increase in that

parameter will diminish the surface drag. Magnitude of slope represents the rate

of change of skin friction coefficient per unit value of the corresponding parameter.

The impact of various parameters on skin friction coefficients for m = 1 & 3 at

n = 0.7 & 1.7 is illustrated in table 3.4 and 3.5.

From tables 3.4 and 3.5, it is inferred that We has a positive and negative im-

pact on both skin friction coefficients
{

Re
1

2
xCfx & Re

1

2
yCfy

}

(m = 1 & m = 3)

when n = 0.7 & 1.7, respectively and β∗ has a reversed impact on skin friction

coefficients when compared with We. It is observed that M has a reducing effect

on the surface drag. It is also observed that the skin friction coefficient decreases

with increasing δ (for Re
1

2
xCfx) and increases with increasing δ (for Re

1

2
yCfy). The

respective rate of change (slope) for each parameters are shown in tables 3.4 and

3.5.

3.5 Statistical Analysis

Statistical techniques like correlation and regression are widely used by researchers

to identify the nature of impact of independent variables (various parameters) on

the dependent variable (physical quantities like Nusselt number, drag coefficient

or Sherwood number). Regression analysis helps in quantifying the variation of

dependent variable due to the change in independent variables. Regression analysis

eliminates the need for solving the problem repeatedly and thereby simplifying the

calculation process. An approximate value of dependent variable can be faultlessly

predicted for the chosen range of independent variables.
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Table 3.3: Variation in local Nusselt number at ζ = 0 when m = 1 , Nt =
1 , S = 0.2 , M = 0.5 , We = 3 , δ = 0.8 , β∗ = 0.1 , Nb =
0.5 and Bi = 0.4

Nt S M δ We β∗
Re

− 1

2
x Nu Increment Rate

n = 0.7. n = 1.7 n = 0.7 n = 1.7.
0.5 0.3220801 0.3299969
0.875 0.3199708 0.3286018 -0.655% -0.423%
1.25 0.3175703 0.3270705 -0.750% -0.466%
1.625 0.3147927 0.325376 -0.875% -0.518%
2 0.3115088 0.3234827 -1.043% -0.582%

0.08 0.326205 0.3327401
0.14 0.32297 0.3305449 -0.992% -0.660%
0.2 0.3192066 0.3281077 -1.165% -0.737%
0.26 0.3147406 0.3253792 -1.399% -0.832%
0.32 0.3092984 0.3222934 -1.729% -0.948%

0.4 0.319804 0.3282712
0.7 0.3180105 0.3277891 -0.561% -0.147%
1 0.3162062 0.3273291 -0.567% -0.140%
1.3 0.3143798 0.3268877 -0.578% -0.135%
1.6 0.3125207 0.3264619 -0.591% -0.130%

0.25 0.2972953 0.3094536
0.4375 0.3071497 0.3172612 3.315% 2.523%
0.625 0.3141479 0.3234272 2.278% 1.944%
0.8125 0.3195285 0.3284102 1.713% 1.541%

1 0.3238713 0.3325305 1.359% 1.255%
2 0.320498 0.3271069
3.5 0.3186733 0.3284715 -0.569% 0.417%
5 0.3173661 0.3292629 -0.410% 0.241%
6.5 0.3163448 0.3297959 -0.322% 0.162%
8 0.3155017 0.3301881 -0.266% 0.119%

0.1 0.3192066 0.3281077
0.3 0.3205573 0.3276043 0.423% -0.153%
0.5 0.3216038 0.3269473 0.326% -0.201%
0.7 0.3224475 0.3260304 0.262% -0.280%
0.9 0.3231473 0.3245935 0.217% -0.441%

3.5.1 Correlation and Probable Error

Correlation is a statistical technique which helps in determining the degree of rela-

tionship between two variables. The sign of correlation coefficient (rc) determines

the nature of relationship while magnitude of rc indicates the magnitude of the

relationship. Positive value of correlation coefficient implies that an increase in

independent variable will fuel an increase in the dependent variable and negative

value of correlation coefficient indicates that an increase in independent variable
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Table 3.4: Variation in Skin Friction Coefficients at ζ = 0 when m = 1 , Nt =
1 , S = 0.2 , M = 0.5 , We = 3 , δ = 0.8 , β∗ = 0.1 , Nb =
0.5 and Bi = 0.4

We β∗ M δ
−Re

1

2
xCfx −Re

1

2
yCfy

n = 0.7 n = 1.7 n = 0.7 n = 1.7

2 1.33511 1.86889 1.52449 2.02782

4 1.22088 2.15347 1.39943 2.32086

6 1.1555 2.36256 1.32533 2.54024

8 1.11123 2.52993 1.2746 2.71707

Slope -0.03685 0.10961 -0.04119 0.11436

0.2 1.30295 1.98544 1.48571 2.14815

0.4 1.365 1.90031 1.54612 2.06399

0.6 1.42028 1.80114 1.60037 1.9667

0.8 1.47045 1.67999 1.64987 1.84939

Slope 0.27889 -0.50776 0.27337 -0.49678

0.4 1.24376 1.97236 1.42361 2.13213

0.8 1.33935 2.17465 1.53495 2.34492

1.2 1.42665 2.3659 1.63649 2.54627

1.6 1.50737 2.54804 1.73028 2.73812

Slope 0.21953 0.47958 0.25539 0.50483

0.25 1.12977 1.70474 2.51655 2.89424

0.5 1.19716 1.84841 1.81195 2.36941

0.75 1.25722 1.99478 1.49662 2.20445

1 1.31215 2.14103 1.31215 2.14103

Slope 0.24288 0.58209 -1.57142 -0.96983

will reduce the dependent variable. The reliability of the calculated correlation

coefficient values is guaranteed using probable error (PE). Correlation is said to be

significant (Fisher et al., 1921) if
∣

∣

rc
PE

∣

∣ > 6; where PE =
(

1−rc
2

√
ñ

)

0.6745 and ñ is

the number of observations.

From table 3.6, it is inferred that Re
− 1

2
x Nu (both cases) is positively correlated

with δ and negatively correlated with S , M and Nt. It is observed that We exhibits

negative and β∗ exhibits positive correlation for Re
− 1

2
x Nu (n = 0.7). It is also noted

that the nature of correlation for We and β∗ is reversed when Re
− 1

2
x Nu (n = 1.7).

Using
∣

∣

r
PE

∣

∣ values, it can be concluded that all parameters of Re
− 1

2
x Nu (both cases)

are significant.
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Table 3.5: Variation in Skin Friction Coefficients at ζ = 0 when m = 3 , Nt =
1 , S = 0.2 , M = 0.5 , We = 3 , δ = 0.8 , β∗ = 0.1 , Nb =
0.5 and Bi = 0.4

We β∗ M δ
−Re

1

2
xCfx −Re

1

2
yCfy

n = 0.7 n = 1.7 n = 0.7 n = 1.7
2 1.91894 3.054 2.1954 3.30479
4 1.74778 3.56384 2.00299 3.83948
6 1.65419 3.92644 1.89571 4.2241
8 1.59169 4.21322 1.82361 4.52954

Slope -0.05377 0.19201 -0.06113 0.20294
0.2 1.88497 3.25976 2.14958 3.52184
0.4 2.00493 3.09201 2.2704 3.35199
0.6 2.11052 2.89401 2.37747 3.15268
0.8 2.20561 2.64641 2.47432 2.9061

Slope 0.53376 -1.01903 0.54065 -1.02327
0.4 1.80207 3.29733 2.06412 3.55888
0.8 1.86302 3.44808 2.13524 3.7165
1.2 1.9213 3.59477 2.20316 3.87005
1.6 1.97723 3.73779 2.26826 4.01989

Slope 0.14593 0.36702 0.17009 0.38415
0.25 1.58658 2.71252 3.59345 4.50058
0.5 1.69935 2.9938 2.58371 3.81117
0.75 1.79885 3.27865 2.14315 3.61699
1 1.88932 3.56095 1.88932 3.56095

Slope 0.40309 1.13206 -2.22118 -1.20522

Table 3.6: Correlation Coefficient (rc), Probable Error (PE) and
∣

∣

rc
PE

∣

∣ of reduced

Nusselt number at ζ = 0 when Bi = 0.4 and Nb = 0.5

Parameter
Re

− 1

2
x Nu when n = 0.7 Re

− 1

2
x Nu when n = 1.7

rc PE
∣

∣

rc
PE

∣

∣ rc PE
∣

∣

rc
PE

∣

∣

S -0.9947 0.0032 311.6281 -0.9977 0.0014 732.2152
M -1 0 63550.21 -0.9997 0.0002 5508.991
δ 0.9866 0.008 122.7986 0.992 0.0048 207.3562
We -0.9879 0.0072 136.5306 0.9689 0.0185 52.4026
β∗ 0.9915 0.0051 194.3342 -0.978 0.0131 74.4632
Nt -0.9962 0.0023 430.4705 -0.9982 0.0011 909.9878
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3.5.2 Multiple Linear Regression

Regression analysis is a statistical modelling technique used to establish a relation-

ship between a dependent (Nusselt number) and one or more independent (various

parameters considered) variables. Local Nusselt number for n = 0.7 and 1.7 is

estimated using multiple linear regression models (as all correlations are significant).

The estimated models are:

Nun=0.7
est = −0.07007S − 0.00566M + 0.03556δ − 0.00072We+ 0.00583β∗

−0.00697Nt+ 0.31579
(3.5.1)

Nun=1.7
est = −0.04343S − 0.00128M + 0.03116δ + 0.00051We− 0.00352β∗

−0.00428Nt+ 0.31540
(3.5.2)

The accuracy of the estimated regression model is illustrated using Fig. 3.14 and 3.15.

It is conclusive that δ and β∗ have a positive impact whereas S, M, We and Nt

have negative impact on Nusselt number when n = 0.7. It can also be concluded

that δ and We have a positive impact while S, M, β∗ and Nt have negative impact

on Nusselt number when n = 1.7. This is in agreement with the results seen in table

3.3.

Figure 3.14: Actual and estimated values Re
− 1

2
x Nu of when n = 0.7
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Figure 3.15: Actual and estimated values Re
− 1

2
x Nu of when n = 1.7

3.6 Conclusions

The major conclusions drawn from the current analysis are given below:

❼ The velocity profiles are directly proportional to the viscosity ratio parameter

in shear thinning case and inversely proportional in shear thickening case.

❼ Weissenberg number enhances the velocity profiles in case of shear thickening

fluids and retards the velocity profiles for shear thinning fluids.

❼ An exponential increase is observed in the temperature profile due to an increase

in Biot number, heat generation/absorption and thermophoresis parameters.

❼ Hartmann number has a destructive effect on surface drag and the velocity

profiles.

❼ Increase in the stretching ratio parameter improves the Y directional velocity

profile.

❼ The concentration profile is enhanced and depleted with increasing ther-

mophoresis and Brownian motion effects, respectively.

❼ The regression models are found to be in synchronization with the numerical

results for the chosen values of parameters.
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