
Chapter 4

Effects of multi-slip and distinct heat

source on MHD Carreau nanofluid flow

past an elongating cylinder using

statistical method ✯

4.1 Introduction

Viscous fluid flow over an expanding cylinder has important applications in industry

and engineering fields. Production of plastic films, rubber, copper wires, and paper

are some industrial applications of viscous fluid flows. The heat transfer rate and

stretching determines the quality and finishing of a product. Slip flow plays a

significant role in engineering and medical field. Micro valves, hard disk drives,

internal cavities and nozzles are a few examples where the slip flow is utilized.

Carreau nanofluid fluid flow over an elongating cylinder with multiple slip effects

has been investigated in the chapter. ESHS and LHS effects are incorporated in the

current study. Numerical solutions of the problem are obtained by transforming the

system of PDEs into a system of ODEs and hence solving the transformed system

using fourth order Runge Kutta coupled with shooting. The consequence of various

parameters on heat transfer rate for pseudo-plastic and dilatant fluids are inspected

using multiple linear regression Furthermore, the response of different parameters

on drag coefficient and mass transfer is quantified using slope of linear regression

via data points.

✯Published in: Heat Transfer (Wiley), 2021; 50 (6) 5652-5673
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CHAPTER 4

4.2 Mathematical formulation

A steady, incompressible two-dimensional flow of an electrically conducting Carreau

nanofluid over an elongating cylinder with radius r = R is considered. A uniform

magnetic field (of strength B0) is administered along the r direction. Let the cylinder

be fixed at origin, O and stretched with a velocity avx
l

along the x direction (see

Figure 4.1). Simultaneous effects of LHS and ESHS are considered. Cw and Tw are

the constant values of concentration and temperature at the stretching cylinder

whereas the ambient values are denoted by T∞ and C∞ with r tending to infinity.

The governing equations take the form ( (I. Khan, Malik, Hussain, Khan, et al.,

2017)):

Figure 4.1: Figurative representation

∂

∂x
(ru) +

∂
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with
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The following similarity variables ((Salahuddin et al., 2017)) are implemented in

converting the above system of PDEs into a system of ODEs:

u = 1
r

∂ψ

∂r
, v = −1

r

∂ψ

∂x
, ψ =

√

avνf
l
xRf (ζ) ,

ζ =
(

r2−R
2

2R

)

√

av
lνf
, θ = T−T∞

Tw−T∞
, φ = C−C∞

Cw−C∞







(4.2.6)

The transformed equations are:
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(1 + 2κζ) θ′′ + 2κθ′ + Pr f θ′ + Pr (1 + 2κζ)
[

Nbφ′θ′ +Nt (θ′)2
]

+ Pr QT θ
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(4.2.8)
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(4.2.10)
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where the nondimensional parameters are taken as follows:
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Drag coefficient ( Cf ) , mass transfer rate (Sh) and heat transfer rate (Nu) are

defined as follows ((I. Khan et al., 2017)):
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The reduced physical quantities (using (4.2.6)) take the form:

Cf(Rex)
1
2

2
= f ′′ (0)

(

1 +We2(f ′′ (0))2
)

n−1

2 , Sh(Rex)
−( 1

2
) = −φ′ (0) ,
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−( 1

2
) = −θ′ (0)

(4.2.14)

4.3 Numerical solution

Table 4.1: Comparison of Nu(Rex)
−1

2 with We = κ = M = QT = QE =
Nt = b1 = γ = b3 = 0 and Nb→ 0

Pr
Nu(Rex)

− 1

2

(W. Khan & Pop,
2010)

RK4

0.7 0.4539 0.453932
2 0.9113 0.911359
7 1.8954 1.895428
20 3.3539 3.354174

The highly nonlinear coupled ODE (4.2.7) to (4.2.9) with corresponding bound-

ary conditions (4.2.10) are solved by engaging Runge-Kutta method of fourth order

together with shooting technique with an accuracy of 10−6. For the numerical

computation we have restricted infinity to 15 and a step size of 0.1 is chosen. The
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accuracy of the numerical method is guaranteed by performing a restrictive study

with the already published results of (W. Khan & Pop, 2010) and an excellent

agreement (discussed in Table 4.1) is noted. Additionally, the numerical values

computed using Runge-Kutta of fourth order (RK4) is compared with BVP5C and

RKF45 which are presented in Table 4.2 and four-digit accuracy is obtained. To

accomplish this, we assume:

f = h1, f ′ = h2, f ′′ = h3, θ = h4, θ′ = h5, φ = h6, φ′ = h7 (4.3.1)

Accordingly, equation (4.2.7)-(4.2.10) takes the form:
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The following initial conditions are considered:

h1 (0) = 0, h2 (0) = 1 + b1 s1[1 +We2 s1
2]

n−1

2 , h3 (0) = s1

h4 (0) = 1 + γ s2, h5 (0) = s2, h6 (0) = 1 + b3 s3, h7 (0) = s3
(4.3.3)

where s1, s2, s3 are unknowns and are found using Newton-Raphson method with

a suitable initial guess.

4.4 Result and discussion

The impact of velocity slip (b1) , thermal slip (γ) , concentration slip (b3) ,Weissenberg

number (We) , linear heat source parameter (QT ) , thermophoresis parameter (Nt) ,

Hartmann number (M) , exponential heat source parameter (QE) , curvature parameter (κ) ,

Brownian motion parameter (Nb) on concentration (φ (ζ)) , temperature (θ (ζ)) and

velocity
(

f
′

(ζ)
)

profiles are carefully studied through Figures 4.2 - 4.13. The

Schmidt number (Sc) and Prandtl number (Pr) are fixed at 1 and 3 respectively.

The discrepancy in f ′ ( ζ) due to an increase in b1 is depicted in Figure 4.2.

Augmentation in b1 shows a reduction in f ′ (ζ) for both dilatant and pseudo-plastic
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Table 4.2: Comparison of −1
2
Cf(Rex)

1

2 with M = QT = QE = Nt = b1 = γ =
b3 = 0 and Nb→ 0

n We κ
−1

2
Cf(Rex)

1

2

BVP5C RKF45 RK4

0.5

1 0.2 0.989702 0.989709 0.989709
1 0.4 1.03995 1.039965 1.039965
1 0.6 1.088334 1.088361 1.088361
2 0.2 0.867191 0.867198 0.867198
2 0.4 0.901331 0.901343 0.901343
2 0.6 0.934526 0.934545 0.934545
3 0.2 0.777193 0.777201 0.777201
3 0.4 0.80436 0.804374 0.804374
3 0.6 0.830948 0.830972 0.830972

1.5

1 0.2 1.145708 1.145708 1.145708
1 0.4 1.239624 1.239625 1.239625
1 0.6 1.332933 1.332936 1.332936
2 0.2 1.247964 1.247965 1.247965
2 0.4 1.367059 1.367061 1.367061
2 0.6 1.485123 1.485127 1.485127
3 0.2 1.335538 1.335539 1.335539
3 0.4 1.474373 1.474375 1.474375
3 0.6 1.61158 1.611585 1.611585

fluids. Mounting values of b1 causes a reduction in the movement of fluid particles and

hence f ′ ( ζ) decreases. Figure 4.3 delineates the decrease in θ (ζ) with increasing

γ values. Physically, augmenting thermal slip parameter minimises the sensitivity

of the fluid flow within the boundary layer which diminishes the amount of heat

produced and thus reduces the temperature. It is further noted that the thermal

boundary layer thickness of pseudo-plastic fluid is greater than dilatant fluid.

Figure 4.4 depicts the variation of f ′ ( ζ) due to the enhancement in M . An

augmentation in M produces Lorentz force and hence a resistance force acts in the

direction opposite to the fluid flow which retards the velocity of both fluids. An

increase in We escalates the relaxation time of Carreau nanofluid and the fluid

thickness grows which implies that the velocity profile of shear thinning fluid reduces

whereas f ′ ( ζ) enhances in the case of shear-thickening fluid (shown in Figure 4.5).

Figure 4.6 depicts the effect of We on θ (ζ). An opposite nature is observed on

θ (ζ) for shear thinning and thickening fluid. Variation in θ (ζ) concerning κ is

described in Figure 4.7. Physically, an increase in κ reduces the cylinder’s radius
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and surface area associated with the fluid which declines the heat transfer rates and

hence θ (ζ) rises. Figure 4.8 elucidates the consequence of Nb on θ (ζ). An increase

in Nb promotes the random motion of nanoparticles which enhances the temperature

profile. Growing Nt values causes the hot fluid particles to move towards the cold

region increasing θ (ζ) (illustrated in Figure 4.9).

Figures 4.10 and 4.11 describe the variation of φ (ζ) due to a rise in Nb and Nt,

respectively. An increase in Nb reduces the concentration profile whereas an increase

in Nt increases φ (ζ). Figures 4.12 and 4.13 illustrate the variation in θ (ζ) with

increasing QT and QE values. Both parameters enhance θ (ζ). It is also noted

that temperature profile due to variation in QE has faster convergence than the

temperature profile due to varying QT . The simultaneous impact of differing

Figure 4.2: f ′ (ζ) for differing b1 values

parameters on Nu(Rex)
−1

2 is studied using surface plots which have been graphed

in Figures 4.14− 4.19. The 4.14, 4.16, and 4.18 figures analyses the effects in case

of shear thinning fluids while 4.15,4.17 and 4.19 figures examines the effects for
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Figure 4.3: θ (ζ) for differing γ values

Figure 4.4: f ′ (ζ) for differing M values
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Figure 4.5: f ′ (ζ) for differing We values

Figure 4.6: θ (ζ) for differing We values
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Figure 4.7: θ (ζ) for differing κ values

Figure 4.8: θ (ζ) for differing Nb values
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Figure 4.9: θ (ζ) for differing Nt values

Figure 4.10: φ (ζ) for differing Nb values
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Figure 4.11: φ (ζ) for differing Nt values

Figure 4.12: θ (ζ) for differing QT values
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Figure 4.13: θ (ζ) for differing QE values

shear thickening fluids. The impact of Nt and Nb on the heat transfer rate is

described in Figures 4.14 and 4.15 with κ = 0.2, We = 2, M = 1, m = 0.5, QE =

0.04, QT = 0.02 and b1 = γ = b3 = 0.2. Nu(Rex)
−1

2 diminishes for greater values

of Nb and Nt in both cases (n = 0.5 and n = 1.5).

Nu(Rex)
−1

2 is elevated with lower QT and QE values as shown in Figures 4.16 and

4.17 with κ = 0.2, We = 2, M = 1, m = 0.5, Nb = 0.4, Nt = 0.1 and b1 = γ =

b3 = 0.2. The parallel effect of γ and κ on the heat transfer coefficient with We =

2, M = 1, m = 0.5, QE = 0.04, QT = 0.02, Nb = 0.4, Nt = 0.1 and b1 = b3 = 0.2 is

explained in Figures 4.18 and 4.19. A rise in κ values enhances Nu(Rex)
−1

2 whereas

the heat transfer rate diminishes due to high thermal slip values. Hence, it can be

concluded that Nu(Rex)
−1

2 is directly proportional to κ and inversely proportional

to Nt , Nb , QT , QE and γ. The consequence of different parameters on drag

coefficient and Sherwood number when n = 0.5 and n = 1.5 is described in the

table 4.3 and 4.4. Increment/decrement rate indicates the percentage change in the

current value with respect to the previous value (preceding entry in the table). A

positive sign denotes an increment while a negative sign indicates a decrement.

From table 4.3, it is understood that −1
2
Cf(Rex)

1

2 {for both cases} increases with
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Figure 4.14: Parallel effect of Nb and Nt on Nu(Rex)
−1

2 when n = 0.5

Figure 4.15: Parallel effect of Nb and Nt on Nu(Rex)
−1

2 when n = 1.5
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Figure 4.16: Parallel effect of QT and QE on Nu(Rex)
−1

2 when n = 0.5

Figure 4.17: Parallel effect of QT and QE on Nu(Rex)
−1

2 when n = 1.5
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Figure 4.18: Parallel effect of γ and κ on Nu(Rex)
−1

2 when n = 0.5

Figure 4.19: Parallel effect of γ and κ on Nu(Rex)
−1

2 when n = 1.5
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increase in κ and M values and decreases for increasing values of b1. It is also seen

that We has a negative response on −1
2
Cf(Rex)

1

2 (when n = 0.5) and it is also

seen that the result is reversed for −1
2
Cf(Rex)

1

2 (when n = 1.5). From table 4.4, it

is understood that κ and Nb enhances and Nt and b3 diminishes the mass transfer

rate.

The nature of variation in Sherwood number and skin friction coefficients due to

different parameters has been quantified in table 4.3 and 4.4 using slope of linear

regression. Positive slope implies that the corresponding parameter enhances the

Sherwood number/drag coefficient. The magnitude of slope represents the rate

of increase/decrease of drag coefficient/Sherwood number per unit value of the

corresponding parameters.

Table 4.3: Variation in −1
2
Cf(Rex)

1

2 {at ζ = 0 } when κ = 0.2, We =
2, M = 1, m = 0.5, QT = 0.02, QE = 0.04, Nt = 0.1, Nb =
0.4, b1 = 0.2 , γ = 0.2 and b3 = 0.2

We κ M b1

−1
2
Cf(Rex)

1

2 Increment(%)
n = 0.5 n = 1.5 n = 0.5 n = 1.5

2 0.93454 1.225294
4 0.789978 1.323258 -15.469 7.995
6 0.705486 1.391796 -10.695 5.18
8 0.648771 1.444318 -8.039 3.774

Slope -0.04709 0.03628
0.2 0.93454 1.225294
0.4 0.960097 1.29569 2.735 5.745
0.6 0.984375 1.361064 2.529 5.045
0.8 1.007556 1.422289 2.355 4.498

Slope 0.121664 0.328178
0.5 0.845765 1.082917
1 0.93454 1.225294 10.496 13.148
1.5 1.00619 1.342749 7.667 9.586
2 1.066699 1.443231 6.014 7.483

Slope 0.146891 0.239679
0.2 0.93454 1.225294
0.4 0.795551 0.944656 -14.872 -22.904
0.6 0.690287 0.775479 -13.232 -17.909
0.8 0.608344 0.660741 -11.871 -14.796

Slope -0.54193 -0.93142
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Table 4.4: Variation in Sh(Rex)
− 1

2 {at ζ = 0 } when κ = 0.2 , We =
2 , M = 1 , m = 0.5, QT = 0.02 , Nt = 0.1 QE = 0.04, Nb =
0.4 , bi = 0.2 , γ = 0.2 and b3 = 0.2

κ Nt Nb b3

Sh(Rex)
− 1

2 Increment(%)
n = 0.5 n = 1.5 n = 0.5 n = 1.5

0.2 0.371478 0.396258
0.4 0.459318 0.472917 23.646 19.346
0.6 0.541304 0.549809 17.849 16.259
0.8 0.616713 0.622549 13.931 13.23
Slope 0.408845 0.377883

0.1 0.371478 0.396258
0.2 0.339432 0.352109 -8.627 -11.142
0.3 0.320597 0.320201 -5.549 -9.062
0.4 0.314358 0.299672 -1.946 -6.411

Slope -0.190197 -0.321665
0.2 0.28382 0.296854
0.4 0.371478 0.396258 30.885 33.486
0.6 0.399384 0.428064 7.512 8.027
0.8 0.412213 0.442835 3.212 3.451

Slope 0.206541 0.234875
0.2 0.371478 0.396258
0.4 0.340335 0.360624 -8.384 -8.993
0.6 0.313986 0.330844 -7.742 -8.258
0.8 0.291408 0.305591 -7.191 -7.633

Slope -0.133281 -0.150891

4.5 Statistical Analysis

4.5.1 Correlation and Probable Error

A statistical technique which helps in predicting the nature and quantity of relation-

ship between two variables is known as correlation coefficient (rc). The nature of

relationship is elucidated using sign of rc and its magnitude predicts the quantity

of relationship. Nature of relationship is identified as positive or negative based

on the relation. A positive value in rc reflects that an increase in one variable

correspondingly increases the other variable and a reverse nature is observed for a

negative rc value. Probable error (PE) guarantees the reliability of rc and correlation

is ought to be important ((Fisher et al., 1921)) when
∣

∣

rc
PE

∣

∣ > 6; where ñ denotes the

number of observations and PE =
(

1−rc2√
ñ

)

0.6745.

It is evident from table 4.5 that b1, γ, M, Nb, Nt, QT and QE are negatively corre-
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lated while κ exhibits a positive correlation with Nu(Rex)
−1

2 {both cases}. It is also

noted that We shows a differing nature on the heat transfer rate, i.e., rc is positive

in case of Nu(Rex)
−1

2 {n = 1.5} and negative for Nu(Rex)
−1

2 {0.5}. From
∣

∣

rc
PE

∣

∣

values, it can be concluded that all the parameter of Nu(Rex)
−1

2 {both cases} are

significant.

Table 4.5: Probable error (PE) and correlation coefficient (rc) of Nu(Rex)
−1

2

Nu(Rex)
−1

2 (n = 0.5) Nu(Rex)
−1

2 (n = 1.5)

Parameter rc PE
∣

∣

rc
PE

∣

∣ rc PE
∣

∣

rc
PE

∣

∣

QE -1 0 2350568 -1 0 2572632.69
b1 -0.99878 0.00073 1361.92 -0.99527 0.00284 349.98
γ -0.99756 0.00147 678.85 -0.99705 0.00178 560.3
M -0.99953 0.00028 3516.14 -0.99971 0.00017 5789.53
We -0.99382 0.00372 267.47 0.96969 0.01801 53.85
κ 0.93349 0.03879 24.06 0.99667 0.002 497.15

Nb -0.99886 0.00069 1453.69 -0.99903 0.00058 1712.46
Nt -0.99948 0.00031 3183.46 -0.99918 0.0005 2012.09
QT -0.97908 0.01249 78.41 -0.99531 0.00282 352.67

4.5.2 Regression Analysis

Multiple linear regression model of heat transfer rate (for n =0.5 and 1.5) is estimated

using 45 set of values within the range [0.2, 0.8] for b1, γ, Nb, κ and Nt, [0.02, 0.08]

for QT and QE, [0.5, 2] for M and [2, 8] for We. The estimated model is given by:

Nuest (n) = c+aM M+aWe We+aκ κ+aNb Nb+aNt Nt+ab1 b1+aγ γ+aQT
QT+aQE

QE

(4.5.1)

where c, ab1 , aγ, aM , aWe, aκ, aNb, aNt, aQT
and aQE

are the estimated regression

coefficients. Nusselt number is estimated individually for n = 0.5 and n = 1.5 with

the aid of MATLAB software. The estimated regression models are:

Nuest (0.5) = 1.03641− 0.26072 b1 − 0.14210 γ − 0.12386 M − 0.02418 We

+0.04218 κ− 0.42863 Nb− 0.29557 Nt− 4.69465 QT − 3.20600 QE

(4.5.2)
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Figure 4.20: Estimated versus actual Nu(Rex)
−1

2 when n = 0.5

Figure 4.21: Estimated versus actual Nu(Rex)
−1

2 when n = 1.5
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Nuest (1.5) = 0.99305− 0.35222 b1 − 0.17913 γ − 0.08699 M + 0.00446 We

+0.01121κ− 0.44799 Nb− 0.28786 Nt− 2.79750 QT − 2.86966 QE

(4.5.3)

The estimated regression coefficients are significant; since all p-values < 0.05. The

accuracy of estimated regression models is described in Figure 4.20 and 4.21. It

is understood that b1, γ, Nb, Nt, QT , QE and M have a negative response on

the estimated Nu {both cases}. The estimated regression model predicts that

the corresponding parameter induces a decreasing effect on Nu meaning that Nu

decreases upon increasing parameter values. An increase in κ enhances the heat

transfer coefficient {for both cases} . A reverse nature is observed due to increasing

values of We for n = 0.5 and n = 1.5. These results are in perfect synchronisation

with the results discussed in table 4.5.

4.6 Conclusions

The key results of the current study are listed below:

❼ Hartmann number has a destructive effect on the velocity profile.

❼ Exponential space-based heat source (ESHS) and linear heat source (LHS)

parameters exhibit a constructive behaviour on the temperature profile.

❼ Slip effect decreases the velocity and temperature profiles.

❼ Weissenberg number exhibits a differing nature on the velocity profile based on

the nature of fluid; velocity is reduced when n < 1 and increased when n > 1.

❼ Velocity slip increases the drag coefficient whereas Hartmann number decreases

the drag coefficient.

❼ Heat transfer rate lowers with ESHS, LHS and temperature slip parameters.

❼ Mass transfer rate is inversely proportional to concentration slip parameter.

❼ Nusselt number has been faultlessly estimated using multiple linear regression.
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