
Chapter 5

Nanoparticle aggregation kinematics on

the quadratic convective MHD flow of

nanomaterial past an inclined flat plate

with sensitivity analysis ✯

5.1 Introduction

Ethylene glycol-based nanofluid containing titanium dioxide is frequently used in

cooling processes, solar collectors, and nuclear reactors. Oxides are chemically more

stable than metal nanoparticles as metals oxidise easily. Also, ethylene glycol is

more preferable since it can be used over a wide temperature range. Furthermore,

T iO2 is a harmless material and is widely available making the nanoparticle suitable

for various thermal applications. Motivated by experimental results and practical

applicability, a nanofluid prepared by dispersing T iO2 nanoparticles in ethylene

glycol is used for this theoretical study. The main objectives of the current study

are to:

❼ Study the quadratic convective flow of nanofluid over an inclined plate.

❼ Investigate the significance of aggregation of nanoparticles on the heat transfer.

❼ Compare the results for two different geometries, viz., vertical plate and

inclined plate.

❼ Analyze and optimize the heat transfer rate using the Response Surface

Methodology.

❼ Explore the sensitivity of heat transfer rate with respect to the governing

✯Published in: Proceedings of the Institution of Mechanical Engineers, Part E (Sage Publications
Ltd), 2021; 236 (3)
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CHAPTER 5

operational parameters.

5.2 Mathematical Formulation

The physical model of the present problem is described in Fig. 5.1. Consider a

two-dimensional steady flow of ethylene glycol-based titania nanofluid past a flat

plate at y = 0 with an angle of inclination α towards the vertical. The constant value

of temperature is chosen as Tw, at the plate (y = 0) and the ambient value is T∞, far

from the plate (y → ∞). The aggregation kinematics of the nanoparticles is included

in the model. A variable magnetic field of intensity Bx
2 = B2

0x
−0.5 (B0−uniform

magnetic field) is applied perpendicular to the fluid flow. An exponential space-based

heat source (Q1 = Qex
−0.5) and radiative heat flux are accounted in the system.

The viscous and Joule heating effects are negligible and hence are not considered.

Under nonlinear Boussinesq and boundary layer approximations, the flow can be

described by the following governing equations (Kuznetsov & Nield, 2014),(Acharya,

Das, & Kundu, 2017),(Goyal & Bhargava, 2018):

Figure 5.1: Physical configuration.
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Appropriate boundary conditions are

At y = 0 : u = 0, v = 0, T = Tw

As y → ∞ : u→ 0, T → T∞.
(5.2.4)

where, u, v are the velocity components in the x and y directions, T is the temperature

of the liquid. Tw, T∞- are the temperatures at the plate and ambient conditions, g

is the acceleration due to gravity, α is the inclination of the plate, B is the magnetic

flux, qR is the radiative heat flux, Q1 is the exponential heat source coefficient, m is

the exponential index, ρ, µ and k are respectively the density, dynamic viscosity and

thermal conductivity. β0 and β1 are the first and second order thermal expansion

coefficients, αf , Cp, and νf are respectively the thermal diffusivity, specific heat

and kinematic viscosity.

The radiative heat flux for the optically thick fluid in this study is approximated

using the Rosseland equation as follows:

qR = −
4σ∗

3k∗
∂T 4

∂y
, T 4 ≈ 4T 3

∞
T − 3T 4

∞
. (5.2.5)

Here σ∗ is the Stefan-Boltzmann constant and k∗ is the mean absorption factor. The

conventional Maxwell model for thermal conductivity and the Brinkman model for

viscosity deviate significantly from the experimental data and hence lack accuracy.

Therefore, thermophysical properties of nanofluid with the influence of nanopar-

ticle aggregation are used as described in Table 5.1 and thereafter. Nanofluids

are characterized by higher viscosity and thermal conductivity which is due to

the aggregation kinematics of nanoparticles. A more suitable and realistic model

including aggregation effects for the viscosity of EG−T iO2 nanofluid is the modified
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Table 5.1: Thermophysical properties of the nanofluid with aggregation (Mackolil
& Mahanthesh, 2021b)

Effective density
ρnf

ρf
= (1− φa) + φa

ρs
ρf

= A1

Effective heat capacity
(ρCp)nf

(ρCp)f
= (1− φa) + φa

(ρCp)s
(ρCp)f

= A2

Effective thermal ex-
pansion

(ρβ0)nf

(ρβ0)f
= (1− φa) + φa

(ρβ0)s
(ρβ0)f

= A3

Effective electrical con-
ductivity

σnf

σf
= 1 +

3

(

σs
σf

−1

)

φa
(

σs
σf

+2

)

−

(

σs
σf

−1

)

φa

= A4

Krieger-Dougherty model (Chen et al., 2007) as given below:

µnf
µf

=

(

1−
φa
φm

)[η]φm

= A5, φa = φ

(

ra
rp

)3−D

, (5.2.6)

An experimentally agreed value of the relative radii of the aggregates to the individ-

ual nanoparticle, ra
rp

is 3.34 by assuming the shape of the aggregate as spherical and

D is 1.8. The value of φm is 0.605 and [η] is 2.5 (see (Chen et al., 2007)).

The effective thermal conductivity is modeled by combining the Maxwell and Brugge-

man models to incorporate the aggregation aspect for EG− T iO2 nanofluid (Chen

et al., 2007). The model is given below:

knf
kf

=
(ka + 2kf )− 2φa (kf − ka)

(ka + 2kf ) + φa (kf − ka)
= A6, (5.2.7)

ka
kf

= 1
4

{

(3φin − 1) ks
kf

+ (3 (1− φin)− 1) +

[

(

(3φin − 1) ks
kf

+ (3 (1− φin)− 1)
)2

+ 8 ks
kf

]
1

2

}

(5.2.8)

, φin =
(

ra
rp

)D−3

,where φin denotes the solid volume fraction of aggregates.

Thermophysical properties of nanoparticles and base fluid at 300 K are shown in

the table 5.2

The following similarity variables (Kuznetsov & Nield, 2010) are used in the compu-

tation procedure:

ζ = y

x
Ra

1

4

x , Rax =
(β0)f g(Tw−T∞)x3

νfαf
,

S (ζ) = ψ

αfRa
1
4
x

, θ (ζ) = T−T∞
Tw−T∞

.







(5.2.9)
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Table 5.2: Thermo physical properties of base fluid and nanoparticles at 300K
(Mackolil & Mahanthesh, 2021b)

Model ρ (kgm−3) Cp (Jkg
−1K−1) k (Wm−1K−1) β× 10−5 (K−1) σ (s/m)

T iO2 4250 686.2 8.9538 0.9 2.38 ×106

EG 1114 2415 0.252 57 1.07 ×10−6

Here, ψ is the stream function with

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (5.2.10)

Using the similarity variables, Eqns. (5.2.1) to (5.2.3) become,

S ′′′−
1

4Prf

A1

A5

(

2(S ′)
2
− 3SS ′′

)

+
1

A5

{

A3θ + A1α1θ
2
}

cosα−
A4

A5

MS
′

= 0, (5.2.11)

θ′′
(

1 +
4

3

R

A6

)

+
QE

A6

exp (−mζ) +
3

4

A2

A6

Sθ′ = 0, (5.2.12)

The reduced boundary conditions are

S ′ (0) = 0, S (0) = 0, θ (0) = 1.

S ′ (∞) → 0, θ (∞) → 0.







(5.2.13)

The non-dimensional parameters are given below:

α1 =
β1f
β0f

(Tw − T∞) , P rf =
νf
αf
, R = 4σ∗T 3

∞

k∗kf
,

M =
σfB

2

0(νfαf)
0.5

µf(g(β0 )f (Tw−T∞))
0.5 , QE =

Qe(νfαf)
0.5

kf(g(β0 )f (Tw−T∞))
0.5 .

(5.2.14)

where, α1 (quadratic thermal convection parameter), Prf (Prandtl number), R

(radiation parameter), M (Hartmann number), and QE (exponential heat source

parameter).

Thermal nanofluidic devices depend on the physical quantities such as skin friction

and the rate of heat transfer. The information regarding these physical quantities

plays a crucial part for designing highly efficient nanofluidic devices. The local
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skin friction coefficient and local Nusselt number is defined as follows (Kandasamy,

Dharmalingam, & Prabhu, 2018),(Kuznetsov & Nield, 2010),(Aladdin, Bachok, &

Pop, 2020):

Cf =
τw
ρfu2w

, Nu =
xqw

kf (Tw − T∞)
. (5.2.15)

where τw and qw are the wall shear stress and the heat flux respectively which are

defined as follows:

τw = µnf

(

∂u

∂y

)

y=0

, qw = −

(

knf
∂T

∂y
− qR

)

y=0

. (5.2.16)

The reduced skin friction coefficient (CfX) and local Nusselt number (NuX) are

respectively:

CfX = Cf(Rax)
1

4 = A5PrfS
′′ (0) , NuX = NuRa

−( 1

4
)

x = −

(

A6 +
4R

3

)

θ′ (0) .

(5.2.17)

5.3 Numerical solution

The nonlinear ordinary differential system in Eqns. (5.2.11)-(5.2.12) with corre-

sponding boundary conditions (5.2.13) are solved by employing the Runge-Kutta

method of fourth-order with shooting technique. Refined values of initial guesses are

found by the Newton-Raphson method with an accuracy of 10−6. The domain of

the present study is fixed to [0, 20] as a larger value for ∞ had no significant effect.

Numerical values of the present study are compared with previously published results

of (Kuznetsov & Nield, 2010) and (Mahanthesh & Mackolil, 2021) as described

in Table 5.3. Furthermore, in Table 5.3, the results are also validated with the

numerical results obtained by Fehlberg method and the bvp5c routine, a built-in

solver in MATLAB. A commendable agreement of the present results with previously

published results and the results from the bvp5c routine is noted. In addition, the

numerical values of wall shear stress for various values of angle of inclination show an

excellent agreement with bvp5c (see Table 5.4). To arrive at the numerical solutions,

the following substitution is made:

S = y1, S
′ = y2, S

′′ = y3, θ = y4, θ
′ = y5. (5.3.1)
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Accordingly, the equations (5.2.11)-(5.2.12) with boundary condition (5.2.13) takes

the form as given below:

y
′

1 = y2,

y
′

2 = y3,

y
′

3 =
1

4Prf

A1

A5

(

2(y2)
2 − 3y1y3

)

− 1
A5

{A3y4 + A1α1y
2
4} cosα + A4

A5

My2,

y
′

4 = y5,

y
′

5 =
−

QE
A6

exp(−mζ)− 3

4

A2

A6
y1y5

(

1+ 4

3

R
A6

) , .

(5.3.2)

with

y1 (0) = 0, y2 (0) = 0, y3 (0) = K1, y4 (0) = 1, y5 (0) = K2.

where, K1 and K2 are estimated using the Newton-Raphson method, a numerical

procedure that aids in computing the roots of a real valued function. This method is

governed by the idea that an analytic function can be estimated by approximating

a straight-line tangent to it.

Table 5.3: Comparison of −θ
′

(0) values and when α1 = α = M = QE = R =
0 and φ = 0 with the results of (Kuznetsov & Nield, 2010) and
(Mahanthesh & Mackolil, 2021)

Pr Kuznetsov & Nield Mahanthesh & Mackolil
Present study
RK4 RKF45 Bvp5c

1 0.401 0.401 0.4010118 0.4010117 0.4010118
10 0.463 0.4633 0.4632903 0.4632903 0.4632903
100 0.481 0.4811 0.4810727 0.4810727 0.4810727
1000 0.484 0.4836 0.4836079 0.4836078 0.4836079

Table 5.4: Comparison of S ′′ (0) when α1 = 0.1,m = 0.5,M = 0.1, QE =
0.2, R = 1 and φ = 1%

α
Runge-Kutta method bvp5c algorithm

Increment rate (%)S ′′ (0) S ′′ (0)
00 1.3974581543 1.3974581546 –
150 1.3597001912 1.3597001914 -2.7019
300 1.2472074728 1.2472074729 -8.2733
450 1.0619645094 1.0619645094 -14.8526
600 0.8056606724 0.8056606723 -24.1349
750 0.4742217598 0.4742217598 -41.1388
900 0.0000000000 0.0000000000 -100
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5.4 Results and discussion

The impact of different parameters namely volume fraction of nanoparticles (φ),

Hartmann number (M), quadratic thermal convection parameter (α1), exponential

heat source parameter (QE), radiation parameter (R), and exponential index (m)

on velocity profile (S ′ (ζ)), and temperature profile (θ (ζ)) of an inclined plate is

explored through Figs. 5.2-5.9. The blue and red lines delineate the fluid flow past

vertical and inclined plates respectively. A medium angle of inclination (α = 450)

has been chosen for the inclined plate case. The calculated value of the Prandtl

number (Prf ) for ethylene glycol (EG) at 300 K is 150.4583. The effect of differing

inclination angles on drag force is tabulated in Table 5.4. It can be noticed that

an increase in the angle of inclination exhibits a negative impact on the physical

quantity. Further the rate (%) of decrements in wall shear stress is shown in Table

5.4. A decrement rate of 41.1388 % in wall shear stress is observed when the plate

is inclined from 600 to 750. Physically, this occurs due to a depreciation in the fluid

velocity (see (Goyal & Bhargava, 2018)).

Figs. 5.2-5.3 delineate the impact of the parameter φ on S ′ (ζ) , and θ (ζ) respectively.

The liquid velocity retards by the augmented values of φ. The velocity profile starts

from zero and attains a maximum peak then asymptotically converges to zero

satisfying the conditions at the boundaries (see (Aziz & Khan, 2012)). Nanofluid flow

past a vertical and an inclined plate cases are compared in this study. Nanoparticles

tend to form aggregates (see (Chen et al., 2007)). Augmentation in the volume

fraction of nanoparticles promotes more aggregation and enhances the viscosity of

nanofluid which in turn depreciates the velocity profile. The temperature profile

enhances by incremented values of φ. The addition of nanoparticles enhances the

thermal conductivity of nanofluid (see (Chen et al., 2007),(Acharya, Das, & Kundu,

2019)) which raises the temperature profile. Figs. 5.4-5.5 display the variation of

S ′ (ζ) , and θ (ζ) profiles with M . The distance covered by the nanofluid per unit

time decreases when M is incremented. An increment in M induces a drag force

(namely Lorentz force) against the fluid flow which decelerates the velocity profile

(see (Goyal & Bhargava, 2018)). The temperature profile increases as shown in Fig.

5.5. This is due to an increase in friction. This is in agreement with findings of

(Goyal & Bhargava, 2018). Figs 5.6-5.7 display the effect of α1 on S ′ (ζ) and θ (ζ)
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profiles. An increment in α1 heightens the S
′ (ζ) profile. Physically, the enhancement

in α1 exhibits a force on the fluid due to a boost in the temperature gradient at the

wall which accelerates fluid flow as a result of which the velocity increases and the

temperature decreases.

Fig. 5.8 shows the influence of θ (ζ) with increment in QE. θ (ζ) rise with enhance

in QE due to the presence of an additional heat source. Fig. 5.9 illustrates the trend

of θ (ζ) with R. θ (ζ) improves with an increase in R. An increment in R applies

more heat flux on the fluid and therefore, the temperature of the fluid enhances

(see (L. Zhang et al., 2021)). The trend of fluid flow over both vertical and inclined

plates is qualitatively similar but a greater velocity profile is observed in the case

of the fluid flow over a vertical plate. It is because the buoyancy force exerted on

the fluid past an inclined plate is much higher than that on the vertical plate. It is

also inferred from these figures that, the temperature of the nanofluid is increasing

functions of α.

Figure 5.2: Variation of S ′ (ζ) for distinct values of φ.

Figs. 5.10 to 5.13 illustrate the simultaneous effects of pertinent parameters on the

dependent variable studied. The change in the skin friction coefficient CfX with

variations in α1 and φ is described in Fig. 5.10. It can be observed that CfX is
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Figure 5.3: Variation of θ (ζ) for distinct values of φ.

Figure 5.4: Variation of S ′ (ζ) for distinct values of M .
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Figure 5.5: Variation of θ (ζ) for distinct values of M .

Figure 5.6: Variation of S ′ (ζ) for distinct values of α1.
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Figure 5.7: Variation of θ (ζ) for distinct values of α1.

Figure 5.8: Variation of θ (ζ) for distinct values of QE.
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Figure 5.9: Variation of θ (ζ) for distinct values of R.

an increasing function of α1 and a decreasing function of φ. Maximum drag force

is obtained at minimum α and M values as shown in Fig. 5.11. Physically, this

is due to the effect of Lorentz and buoyancy forces near the surface. Fig. 5.12

delineates the influence of α and M on the heat transfer coefficient. It can be seen

that the heat flux has a relatively small change by the increase in α and M . The

heat transfer attains maximum for low values of α and M . (see (Acharya, Das, &

Kundu, 2018)).Fig. 5.13 shows the variation in heat transfer with an increase in α1

and φ. Maximum heat flux is observed for high α1 and φ values.

5.5 Response Surface Methodology (RSM)

The RSM is a statistical and mathematical design-based tool to explore the interactive

impact of pertinent parameters on a response variable of interest and to optimize it.

Here, a full quadratic model is considered as follows:

Response = χ1X1 + χ2X2 + χ3X3 + χ4X1X2 + χ5X1X3 + χ6X2X3

+χ7X
2
1 + χ8X

2
2 + χ9X

2
3 + χ10.

(5.5.1)
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Figure 5.10: Surface plot of CfX for variation of α1 and φ .

Figure 5.11: Surface plot of CfX for variation of α and M
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Figure 5.12: Surface plot of NuX for variation of α and M .

Figure 5.13: Surface plot of NuX for variation of α1 and φ .
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Table 5.5: The effective levels of parameters

Parameters Coded Symbols

Levels
-1 0 1

(Low) (Medium) (High)
α X1 300 450 600

QE X2 0.15 0.2 0.25
R X3 0.8 1 1.2

Here, χi denotes the regression coefficients. The parameters α
(

300 ≤ α ≤ 600
)

,

QE (0.15 ≤ QE ≤ 0.25 ) and R (0.8 ≤ R ≤ 1.2) are inducted for the analysis. Heat

transfer coefficient (NuX) is the response variable. Here, a face-centered central

composite design (CCD) is adopted for interpreting the influence of parameters on

the response variable. The statistical technique involves 20 runs based on the face

(P)- factor (F) relation (2F + 2F + P ). It contains 8 factorial, 6 axial, and 6 centre

points. The parameters α,QE and R are coded as X1, X2, and X3 respectively. The

effective levels of parameters are described in Table 5.5. Fig. 5.14 shows the precision

Table 5.6: ANOVA table

Source Deg. of
Free-
dom

Adj. Sum of
Squares

Adj. Mean
Squares

F-value p-value

Model 9 0.107255 0.011917 46593.65 < 0.001
Linear
terms

3 0.10564 0.035213 137676.2 < 0.001

α 1 0.047442 0.047442 185487.28 < 0.001
QE 1 0.026774 0.026774 104680.6 < 0.001
R 1 0.031424 0.031424 122860.73 < 0.001

Square
terms

3 0.00137 0.000457 1784.96 < 0.001

α2 1 0.000712 0.000712 2781.96 < 0.001
Q2
E 1 0 0 0.14 0.713
R2 1 0.000002 0.000002 8.11 0.017

Interaction
terms

3 0.000245 0.000082 319.77 < 0.001

α.QE 1 0.000031 0.000031 120.82 < 0.001
α.R 1 0.000208 0.000208 811.71 < 0.001

QE.R 1 0.000007 0.000007 26.79 < 0.001
Errors 10 0.000003 0
Lack-of-Fit 5 0.000003 0.000001 * *
Pure Error 5 0 0
Total 19 0.107258
Coefficient of determination R2 = 99.98%
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of the model. It is observed from the normal probability plot that data points are

aligned along a straight line. The bell-shaped residual histogram concludes that

residuals follow a normal distribution. The magnitude of residual against the fitted

value and the residual against observation order plots are less than 0.001. It can

be observed from the ANOVA table in Table 5.6 that the square term of QE is not

significant as the p value is greater than 0.05. The coefficient of determination (R2)

computes the variation in the response variable as explained by the independent

variables taken in the model. It also explains the accuracy of the model. Here, R2

is found to be 99.98% and it guarantees the accuracy of the model.

Figure 5.14: Residual plots for NuX .

5.5.1 Statistical Analysis

The full quadratic model for the wall heat flux by considering uncoded parameter

values are

NuX = 0.41028 + 0.004064 α− 0.8429 QE + 0.4186 R− 0.000071 α2 − 0.02171 R2−

0.002621 αQE − 0.001698 αR− 0.0925 QER

(5.5.2)
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The above relation can be used to estimate NuX accurately for the parameters in

the given ranges. Fig. 5.15 (a) to (f) display the simultaneous impact of parameters

on the heat transfer coefficient utilizing contour and surface plots. Variation in heat

transfer coefficient with two parameters is considered by holding the third parameter

at the medium level. It can be inferred from Fig. 5.15 (a)-5.15(b) that an increment

in α reduces NuX also, Nusselt number is maximum for low values of α and QE. The

Nusselt number with variation in R and α and R and QE is described in Figs. 5.15

(c) to 5.15 (f) respectively. These figures illustrate that the heat transfer coefficient

is a decreasing function of α and an increasing function of R and similar trends are

observed for QE and R. The interactive effects on the heat transfer coefficient can

also be observed from Fig. 5.15.

5.6 Sensitivity analysis

The sensitivity of the heat flux is computed by using the coded coefficients of the

full quadratic model as given below.

NuX = 0.560098− 0.068878 X1 − 0.051744 X2 + 0.056057 X3 − 0.016085 X2
1−

0.000868 X2
3 − 0.001965 X1X2 − 0.005094 X1X3 − 0.000925 X2X3

(5.6.1)

Sensitivity functions are estimated by computing the partial derivatives in a full

quadratic model concerning the coded variables as follows:

∂NuX
∂X1

= −0.068878− 0.03217 X1 − 0.001965 X2 − 0.005094 X3, (5.6.2)

∂NuX
∂X2

= −0.051744− 0.001965 X1 − 0.000925 X3, (5.6.3)

∂NuX
∂X3

= 0.056057− 0.001736 X3 − 0.005094 X1 − 0.000925 X2. (5.6.4)

The sensitivity of the heat transfer coefficient is visualized using bar chart (see

Figure 5.16). The nature of the sensitivity is indicated by a positive or negative

sign which means that the response term is positively or negatively correlated with

the change in the effective parameter values. The magnitude of sensitivity indicates

the intensity of this relationship. Here, the sensitivity of heat transfer coefficient

(NuX) is computed by assuming a medium inclination angle (α = 45◦). Table 5.7

and Fig. 5.16 explains the sensitivities of NuX at different effective parameter levels.
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(a) Contour plot of NuX for variation

of α and QE

(b) Response surface plot of NuX for

variation of α and QE

(c) Contour plot of NuX for variation

of α and R

(d) Response surface plot of NuX for

variation of α and R

Figure 5.15: Contour plots and Response surface plots of NuX for all combina-
tions of α, QE and R.

NuX is negative sensitive towards α,QE and positive sensitive towards R. For a

fixed value of QE at the low level (X2 = −1) the magnitude of the sensitivity of

Nusselt number enhances towards α and QE with an increment in the level of R

whereas the sensitivity magnitude towards R reduces. A similar trend is noted for

the medium and high levels of X2. Further, the sensitivity towards α is more when

compared to QE and R (due to the highest sensitivity magnitude). Additionally,

the augmentation rate of the sensitivity magnitude for incrementing the levels of R

are tabulated in the Table 5.7. This provides the rate at which the sensitivity is

augmented for varying the levels of R which led to the following results:
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(e) Contour plot of NuX for variation

of QE and R

(f) Response surface plot of NuX for

variation of QE and R

Figure 5.15: Contour plots and Response surface plots of NuX for all combina-
tions of α, QE and R.

Table 5.7: The sensitivity values of the response NuX when X1 = 0

B C
Sensitivity values

∂NuX
∂X1

∂NuX
∂X2

∂NuX
∂X3

-1

-1 -0.061819 -0.050819 0.058718
0 -0.066913 -0.051744 0.056982
1 -0.072007 -0.052669 0.055246

Rate of change 0.005094 0.000925 -0.001736

0

-1 -0.063784 -0.050819 0.057793
0 -0.068878 -0.051744 0.056057
1 -0.073972 -0.052669 0.054321

Rate of change 0.005094 0.000925 -0.001736

1

-1 -0.065749 -0.050819 0.056868
0 -0.070843 -0.051744 0.055132
1 -0.075937 -0.052669 0.053396

Rate of change 0.005094 0.000925 -0.001736
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Section 5.7

(a) Bar charts depicting the sensitivity

of NuX with X2 = −1
(b) Bar charts depicting the sensitivity

of NuX with X2 = 0

(c) Bar charts depicting the sensitivity

of NuX with X2 = 1

Figure 5.16: Bar charts depicting the sensitivity of NuX with X2 = −1,X2 =
0,and X2 = 1

❼ The sensitivity towards α changes at the rate 0.5094

❼ The sensitivity towards QE changes at the rate 0.0925

❼ The sensitivity towards R changes at the rate -0.1736

This implies that the interactive effect on heat flux by the angle of inclination is

predominant.

5.7 Conclusions

The hydromagnetic nanofluid flow past an inclined plate is explored with aggregation

kinematics and significant buoyancy forces. The Runge-Kutta-based shooting method

is adopted for the numerical computations. The limiting case of the present problem

was found to be in good agreement with the literature. Sensitivity analysis based

on the Response Surface model was conducted for a detailed study of the wall heat
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CHAPTER 5

flux. The present study includes potential applications in flat plate solar collectors

and heat exchangers. The major conclusions of the present work are as given below:

❼ The aggregation kinematic aspect enhances the temperature field due to the

improved thermal conductivity of the nanofluid.

❼ The velocity retards due to variation in Hartmann number and an opposite

trend is exhibited for temperature. It is due to the generated opposing force,

namely the Lorentz force.

❼ The temperature profile enhances with more thermal radiation and exponential

heat source effects. Physically, these parameters contribute more energy to

the fluid

❼ The surface drag force is an increasing function of quadratic thermal convection

aspect.

❼ Maximum heat transfer occurs at the highest level of quadratic thermal

convection and nanoparticle volume fraction parameters.

❼ The heat flux is more sensitive to the inclination angle when compared to

other parameter values. This sensitivity augments at a rate 0.5094% for the

increment in R.

❼ An accurate quadratic model is estimated for the wall heat flux with R2 =

99.98%.

❼ The wall shear stress decrements by 41.1388 % when the inclination of the

plate is changed from 600 to 750.

This work can be further explored by the inclusion of dissipation effects and the

utilization of a suitable non-Newtonian fluid model, based on the practical applica-

bility.
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