
Chapter 6

MHD Darcy-Forchheimer hybrid

nanoliquid flow over an elongated

permeable sheet in a porous medium with

hydrodynamic slip constraint ✯

6.1 Introduction

Modified Buongiorno nanoliquid model (MBNM) extends the traditional Buongiorno

model by considering the effectual slip mechanisms along with the effective properties

of a nanofluid. The dynamics of hydromagnetic Darcy-Forchheimer hybrid nanoliq-

uid flow over an elongated permeable sheet with hydrodynamic slip constraint has

been studied. The passive control of nanoparticle volume fraction at the boundary

yields a realistic and practical model. In addition, the introduction of the modified

Buongiorno model makes the present work different from the existing literature. The

statistical scrutinization on the surface drag involving injection/suction effects, with

the aid of regression analysis, enhances the novelty and uniqueness of the current

exploration. The current study finds its applications in astronomical disciplines,

fuel injection, thermal protection, and aerodynamics . A comparative analysis of

the velocity profile on the two-dimensional and axisymmetric flows in the presence

of slip and no-slip constraints has also been presented. The main objectives of the

current study are to:

✯Published in: Waves in Random and Complex Media (Taylor & Francis), 2022; (early access)
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❼ Construct a mathematical model to study the dynamics of hydromagnetic

Darcy-Forchheimer hybrid nanoliquid flow over an elongated permeable sheet

in the presence of hydrodynamic slip using MBNM and passive control of

nanoparticles.

❼ Conduct a comparative analysis on the nanoliquid flow by examining the

injection and suction effect.

❼ Explore the influence of pertinent parameters on flow profiles.

❼ Utilize regression analysis to obtain a correlation between the influential

parameters and the drag coefficient.

6.2 Mathematical formulation

A three-dimensional steady laminar incompressible and electrically conducting vis-

cous nanofluid flow past a lengthening sheet in a Dacry-Forchheimer porous medium

is analyzed. Let (u, v, w) be the velocity components along (x, y, z) directions. The

sheet is stretched with velocities Uw = ax and Vw = by along x- and y- directions,

respectively. Partial velocity slip with slip coefficient N1 is considered at the

boundary. A permeable sheet with mass flux velocity w0 > 0 (for injection) and

w0 < 0 (for suction) is considered. A magnetic field of uniform strength B0 is

considered along the z-direction. The induced magnetic field was neglected due

to the small magnetic Reynolds number. The hybrid nanoliquid flow is modeled

using MBNM and a physically more realistic boundary condition that passively

controls the volume fraction of nanoparticles. The convective boundary constraint

that creates a significant relation between thermal difference and heat flux at the

surface (see (Zhao et al., 2022)) is also incorporated. The temperature at the sheet

is regulated with a convective heating condition by utilizing hot fluid. The physical

configuration of the model is illustrated in Fig 6.1.

The boundary layer equations describing the fluid flow are as follows (see (Kumar

et al., 2021), (Jusoh, Nazar, & Pop, 2018), (P. Rana, Mahanthesh, Mackolil, &

Al-Kouz, 2021), (Muhammad, Alsaedi, Hayat, & Shehzad, 2017)):

ux + vy + wz = 0 (6.2.1)
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Figure 6.1: Physical configuration.
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(6.2.3)

uTx + vTy + wTz =
khnf

(ρCp)hnf
Tzz +

(ρCp)p
(ρCp)hnf

{

DT

T∞
T 2
z +DBTzCZ

}

(6.2.4)

uCx + vCy + wCz = DBCzz +
DT

T∞
Tzz (6.2.5)

with the corresponding boundary conditions:

u = ax+N1uz , v = by +N1vz , w = w0 ,

−khnfTz = hf (Tf − T ) , DT

T∞

Tz +DBCz = 0 .







at z = 0 (6.2.6)

u→ 0 , v → 0 , T → T∞ , C → C∞ . as z → ∞. (6.2.7)
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The quantities of physical interest are the skin friction coefficients (Cfx and Cfy)

and the Nusselt number (Nux) quantifying the surface drag and rate of heat transfer

at the sheet, respectively are given by (see (Jusoh et al., 2018), (Yusuf, Mabood,

Khan, & Gbadeyan, 2020)):

Cfx =
τwx

ρfU2
w

=
µhnf

(

∂u
∂z

)

z=0

ρfU2
w

, (6.2.8)

Cfy =
τwy

ρfV 2
w

=
µhnf

(

∂v
∂z

)

z=0

ρfV 2
w

, (6.2.9)

Nux =
xqw

kf (Tf − T∞)
=

−x khnf
(

∂T
∂z

)

z=0

kf (Tf − T∞)
. (6.2.10)

where τwx , τwy , and qw are the shear stress along the x- and y- directions and the

heat flux from the surface, respectively.

The effective thermophysical properties of the hybrid nanoliquid (with alumina as

nanoparticle 1 and copper as nanoparticle 2) are given by table 6.1 (see (Mathew et

al., 2021), (Aladdin et al., 2020)):

Now consider the following similarity variables (see (Muhammad et al., 2017)):

u = axf ′ (ζ ) , v = ayg′ (ζ ) , w = −√
aνf (f (ζ ) + g (ζ)) ,

ζ =
√

a
νf
z , θ (ζ) = T−T∞

Tf−T∞

, φ (ζ) = C−C∞
C∞ .







(6.2.11)

In view of equation (6.2.11) and the thermophysical properties, one can get the

following from equations (6.2.1)-(6.2.10):

f ′′′ −
(

A2

A1

)

{

(1 + Fr) f ′2 − (f + g) f ′′
}

−
(

A3

A1

M +K1

)

f ′ = 0 (6.2.12)

g′′′ −
(

A2

A1

)

{

(1 + Fr) g′
2 − (f + g) g′′

}

−
(

A3

A1

M +K1

)

g′ = 0 (6.2.13)

θ′′ +
Pr

A4

{

A5 (f + g) θ′ +Nt θ′
2
+Nb θ′φ′

}

= 0 (6.2.14)

φ′′ +

{

Sc (f + g)φ′ +
Nt

Nb
θ′′
}

= 0 (6.2.15)
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Table 6.1: The effective thermophysical properties of the hybrid nanoliquid (with
alumina as nanoparticle 1 and copper as nanoparticle 2)

Effective Dynamic
Viscosity

µhnf

µf
= 1

(1−φAl2O3)
2.5

(1−φCu)
2.5

= A1.

Effective Density
ρhnf

ρf
= (1− φCu)

(

(1− φAl2O3
) + φAl2O3

ρs1
ρf

)

+ φCu
ρs2
ρf

= A2

Effective Electrical

Conductivity
σhnf

σf
= 1 +

3

(

φAl2O3
σs1

+φCuσs2
σf

−(φAl3O3
+φCu)

)

2+

(

φAl2O3
σs1

+φCuσs2

(φAl2O3
+φCu)σf

)

−
(

φAl2O3
σs1

+φCuσs2
σf

−(φAl2O3
+φCu)

)
= A3

Effective Thermal

Conductivity
khnf

kf
= A4, where

khnf

knf
=

ks2+2knf−2φCu(knf−ks2)
ks2+2knf+φCu(knf−ks2)

and
knf

kf
=

ks1+2kf−2φAl2O3(kf−ks1)
ks1+2kf+φAl2O3(kf−ks1)

Effective Specific

Heat
(ρCp)hnf

(ρCp)f
= (1− φCu)

(

1− φAl2O3
+ φAl2O3

(ρCp)s1
(ρCp)f

)

+ φCu

(ρCp)s2
(ρCp)f

= A5 .

with

f (0) + g (0) = λ , f
′

(0) = 1 + b1f
′′ (0) , g′ (0) = δ + b1g

′′ (0) ,

A4θ
′ (0) = Bi (θ (0)− 1) , φ′ (0) + Nt

Nb
θ′ (0) = 0.







(6.2.16)

f ′ (∞ ) → 0 , g′ (∞) → 0 , θ (∞) → 0 , φ (∞) → 0 (6.2.17)

The subsequent physical quantities are yielded as:

Re
1

2
x Cfx = A1f

′′ (0) ;where Rex =
Uw x

νf
.. (6.2.18)

Re
1

2
y Cfy = A1(δ)

− 3

2 g′′ (0) ;where Rey =
Vw y

νf
. (6.2.19)

Re
− 1

2
x Nux = −A4θ

′ (0) ; where Rex =
Uw x

νf
. (6.2.20)

whereM (Hartmann number)=
σfB

2
0

aρf
, K1 (porosity parameter)=

νf
aKp

, Nb (Brownian

motion parameter)= τDBC∞
νf

, P r (Prandtl number)=
(µC)f
kf

, Fr (Forchheimer parameter)=

137



CHAPTER 6

C∗

b√
Kp

, Sc (Schmidt number)=
νf
DB

, Nt (thermophoresis parameter)=
τDT (Tf−T∞)

T∞νf
,

τ (effective heat capacity ratio) =
(ρCp)p
(ρCp)f

,b1 (hydrodynamic slip parameter)=

N1

√

a
νf

,

δ (stretching ratio parameter)= b
a
, Bi (Biot number)= h

kf

√

νf
a
, and λ (suction/injection

parameter)= − w0√
aνf

are the non-dimensional parameters.

Table 6.2: Thermophysical properties of water, alumina, and copper (Aziz et al.,
2021), (Aaiza et al., 2015), (Hussanan et al., 2017)

Property Base fluid(H2O) Nanoparticle 1 (Al2O3) Nanoparticle 2(Cu)

ρ 997.1 3970 8933
Cp 4179 765 385
k 0.613 40 401
σ 0.05 3.5× 107 5.96× 107 .

6.3 Numerical solution

The highly nonlinear ODEs given in Eqns. (6.2.12)-(6.2.17) are reduced to a system

of single-order ODEs by setting:

f = y1, f
′ = y2, f

′′ = y3, g = y4, g
′ = y5, g

′′ = y6,

θ = y7, θ
′ = y8, ψ = y9, ψ

′ = y10 The subsequent system of first-order ODEs is

given by:

y
′

1 = y2 , y
′

2 = y3 , y
′

3 =
(

A2

A1

)

{(1 + Fr) y22 − (y1 + y4) y3}+
(

A3

A1
M +K1

)

y2 ,

y
′

4 = y5 , y
′

5 = y6 , y
′

6 =
(

A2

A1

)

{(1 + Fr) y25 − (y1 + y4) y6}+
(

A3

A1
M +K1

)

y5 ,

y
′

7 = y8 , y
′

8 = −Pr
A4

{A5 (y1 + y4) y8 +Nty28 +Nb y8y10} , y
′

9 = y10 ,

y
′

10 = −
{

Sc (y1 + y4) y10 −
(

Nt Pr
Nb A4

)

{A5 (y1 + y4) y8 +Nty28 +Nb y8y10}
}































(6.3.1)

with

y1 (0) + y4 (0) = λ , y2 (0) = 1 + b1 y3 (0) , y5 (0) = δ + b1 y6 (0) ,

A4 y8 (0) = Bi (y7 (0)− 1) , y10 (0) +
Nt
Nb

y8 (0) = 0 .







(6.3.2)

y2 (∞) → 0 , y5 (∞) → 0 , y7 (∞) → 0 , y9 (∞) → 0 (6.3.3)

The reduced system of first-order ODES is resolved using the bvp5c routine with

an error tolerance of 10−6. The bvp5c routine (an efficient built-in MATLAB code
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Table 6.3: Resemblance of −Re
1

2
x Cfx and −Re

1

2
y Cfy for differing values of

K1 , F r , and δ when M = Nt = λ = φAl2O3
= φCu = b1 = Bi =

0 , P r = Sc = 1 , and Nb→ 0.

K1 Fr δ
Present study (Muhammad et al., 2017)

−Re
1

2
xCfx −Re

1

2
yCfy −Re

1

2
xCfx −Re

1

2
yCfy

0 0.1 0.2 1.06954 1.67611 1.06945 1.67684
0.1 0.1 0.2 1.11475 1.81692 1.11471 1.81669
0.2 0.1 0.2 1.15832 1.94732 1.15830 1.94722
0.2 0 0.2 1.13043 1.93424 1.13041 1.93414
0.2 0.1 0.2 1.15832 1.94732 1.15830 1.94722
0.2 0.2 0.2 1.18563 1.96045 1.18561 1.96037
0.2 0.1 0.1 1.14163 2.5425 1.14160 2.54234
0.2 0.1 0.3 1.17451 1.7024 1.17449 1.70234
0.2 0.1 0.5 1.20565 1.47624 1.20563 1.47621

Table 6.4: Resemblance of Re
− 1

2
x Nux for differing values of K1 , F r , and

δ when M = λ = φAl2O3
= φCu = b1 = 0 , P r = Sc = 1 , Bi =

0.3 , Nt = 0.2 , and Nb = 0.5.

K1 Fr δ
Re

− 1

2
x Nux

Present study (Muhammad et al., 2017)
0 0.1 0.2 0.2045108 0.20448
0.2 0.1 0.2 0.2025510 0.20248
0.2 0 0.2 0.2028408 0.20278
0.2 0.2 0.2 0.2022676 0.20220
0.2 0.1 0 0.1947498 0.19458
0.2 0.1 0.3 0.2056478 0.20560

used for numerical computation) is a finite-difference based code that implements

the Lobatto IIIa formula of sixth-order in four steps. ζ∞ has been restricted to 7

to get an asymptotic solution. The accuracy of the adopted numerical method has

been validated through a restrictive correspondence with the previously published

results by (Muhammad et al., 2017) and a commendable agreement is observed (see

Tables 6.3 and 6.4).

6.4 Results and discussion

The consequence of pertinent parameters on physical quantities, x-directional velocity

(f ′ (ζ)), y-directional velocity (g′ (ζ)), temperature (θ (ζ)), and concentration (φ (ζ))

profiles are illustrated with the aid of graphs (see Figs. 6.2-6.18) and tables (see

Tables 6.5 and 6.6). The Prandtl number (Pr) and Schmidt number (Sc) are set at
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6.2 and 2.4, respectively. The thermophysical properties of base fluid (water), Al2O3

(nanoparticle 1), and Cu (nanoparticle 2) are given in Table 6.2. The results are

presented to compare the flow phenomenon for injection (λ < 0) and suction (λ > 0)

cases. It is observed that the suction case exhibits lower temperature and velocity

profiles which are in perfect harmony with the findings of (Hussanan, Salleh, Khan,

& Shafie, 2018). By increasing λ values, the boundary layer thickness diminishes

thereby lowering the velocity. Furthermore, a progressive thinning of the thermal

boundary layer is noted with an increase in λ values due to the introduction of cold

ambient fluid near the sheet.

An increase in φCu escalates the viscosity of fluid that demotes the velocity profile

(see Fig. 6.2). Fig. 6.3 depicts the negative impact of M on f ′ (ζ), meaning an

increase in M descends the x-directional velocity. This decrease in velocity is due to

the generation of Lorentz force. The decreasing nature of f ′ (ζ) with Fr has been

elucidated in Fig. 6.4. Augmentation in Fr ascends the resistance experienced in

the fluid motion and hence f ′ (ζ) reduces. Fig. 6.5 describes the decreasing nature of

K1 on f ′ (ζ). Fig. 6.6 bespeaks the deviations in f ′ (ζ) with respect to b1. It can be

perceived that f ′ (ζ) decreases as b1 values increase. Physically, the hydrodynamic

slip parameter reduces the fluid movement due to the roughness of the sheet.

The generation of Lorentz force due to augmenting values of M reduces the y-

directional velocity (see Fig. 6.7). The influence of K1 on g
′ (ζ) is analyzed by means

of Fig. 6.8. K1 tends to decrease g′ (ζ) which can be physically attributed to the fact

that augmentation in the porosity parameter elevates the resistance of the porous

medium. Fig. 6.9 displays the positive impact of δ on g′ (ζ). Physically, increment

in the stretching rate enhances the momentum associated with the boundary layer

that swells the y-directional velocity.

Fig. 6.10 reflects the rise in θ (ζ) due to mounting φCu values. This is because

an increase in φCu improves the thermal conductivity of the hybrid nanoliquid

which triggers an improvement in θ (ζ). Fig. 6.11 describes the deviations in θ (ζ)

concerning M . The applied magnetic field generates a Lorentz force that ascends

the temperature profile. The increase in θ (ζ) with respect to augmentation in Bi

values is described in Fig. 6.12. Physically, augmentation in the Biot number implies

increased convection which enhances the hybrid nanoliquid temperature.

Fig. 6.13 elucidates the consequence of M on φ (ζ). An increase in M tends to
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increase φ (ζ). The enhancement in φ (ζ) due to an increase in K1 has been graphed

in Fig. 6.14. Furthermore, a dual nature is observed for augmenting λ values. For

larger values of ζ, a decrease in φ (ζ) is noted.

Figure 6.2: Change in f ′ (ζ) for differing φCu values.

The simultaneous effect of two parameters on Nux(Rex)
− 1

2 is analysed with the

aid of three-dimensional surface plots which have been graphed in Figs. 6.15 to

6.18. A comparative study between the suction and injection cases is also carried

out. It can be perceived that the heat transfer rate is higher for the suction case in

comparison with the injection case. From Figs. 6.15 to 6.18, it is seen that φCu and

Bi ascends Nux(Rex)
− 1

2 whereas Nt and M demotes the heat transfer rate. The

key observations drawn from Tables 6.5 and 6.6 are:

❼ The drag coefficients
(

Re
1

2
x Cfx and Re

1

2
y Cfy

)

are directly proportional to

b1 and inversely proportional to M,K1, and φCu.

❼ Re
1

2
x Cfx is a decreasing function of Fr whereas Re

1

2
y Cfy is an increasing
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Figure 6.3: Change in f ′ (ζ) for differing M values.

Figure 6.4: Change in f ′ (ζ) for differing Fr values.
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Figure 6.5: Change in f ′ (ζ) for differing K1 values.

Figure 6.6: Change in f ′ (ζ) for differing b1 values.
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Figure 6.7: Change in g′ (ζ) for differing M values.

Figure 6.8: Change in g′ (ζ) for differing K1 values.
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Figure 6.9: Change in g′ (ζ) for differing δ values.

Figure 6.10: Change in θ (ζ) for differing φCu values.
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Figure 6.11: Change in θ (ζ) for differing M values.

Figure 6.12: Change in θ (ζ) for differing Bi values.
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Figure 6.13: Change in φ (ζ) for differing M values.

Figure 6.14: Change in φ (ζ) for differing K1 values.
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Table 6.5: Comparison on Re
1

2
x Cfx for differing values of Fr, M, K1, φCu,

and b1 when Nt = 0.5, Nb = 0.5, δ = 0.1, Bi = 0.5, φAl2O3
= 0.02

Fr M K1 φCu b1

Re
1

2
x Cfx

λ = −0.1 λ = 0.1
0.5 0.5 0.1 0.02 0.5 -0.82645 -0.86720
0.6 0.5 0.1 0.02 0.5 -0.83347 -0.87355
0.7 0.5 0.1 0.02 0.5 -0.84029 -0.87972
0.8 0.5 0.1 0.02 0.5 -0.84691 -0.88573
0.9 0.5 0.1 0.02 0.5 -0.85335 -0.89159
0.5 0.1 0.1 0.02 0.5 -0.75660 -0.80000
0.5 0.3 0.1 0.02 0.5 -0.79327 -0.83533
0.5 0.5 0.1 0.02 0.5 -0.82645 -0.86720
0.5 0.7 0.1 0.02 0.5 -0.85668 -0.89618
0.5 0.9 0.1 0.02 0.5 -0.88442 -0.92272
0.5 0.5 0.1 0.02 0.5 -0.82645 -0.86720
0.5 0.5 0.3 0.02 0.5 -0.85620 -0.89572
0.5 0.5 0.5 0.02 0.5 -0.88353 -0.92188
0.5 0.5 0.7 0.02 0.5 -0.90878 -0.94602
0.5 0.5 0.9 0.02 0.5 -0.93223 -0.96842
0.5 0.5 0.1 0.02 0.5 -0.82645 -0.86720
0.5 0.5 0.1 0.035 0.5 -0.86654 -0.91058
0.5 0.5 0.1 0.05 0.5 -0.90787 -0.95520
0.5 0.5 0.1 0.065 0.5 -0.95063 -1.00126
0.5 0.5 0.1 0.08 0.5 -0.99499 -1.04893
0.5 0.5 0.1 0.02 0.5 -0.82645 -0.86720
0.5 0.5 0.1 0.02 0.6 -0.76009 -0.79558
0.5 0.5 0.1 0.02 0.7 -0.70426 -0.73557
0.5 0.5 0.1 0.02 0.8 -0.65655 -0.68446
0.5 0.5 0.1 0.02 0.9 -0.61526 -0.64036

function of δ.

❼ Similar results are obtained for suction and injection cases.

❼ Higher drag coefficients are observed in the injection case when compared with

the suction case.

6.5 Special Cases

In this section, a restrictive analysis on the velocity profile has been elucidated. The

heat and concentration equations have been ignored for this purpose. A comparative

analysis on the two-dimensional and axisymmetric flows considering slip and no-slip
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Table 6.6: Comparison on Re
1

2
y Cfy for differing values of M, K1, φCu, b1 and

δ when Nt = 0.5, Nb = 0.5, F r = 0.5, Bi = 0.5, φAl2O3
= 0.02 .

M K1 φCu b1 δ
Re

1

2
y Cfy

λ = -0.1 λ = 0.1.
0.1 0.1 0.02 0.5 0.1 -1.77802 -1.99400
0.3 0.1 0.02 0.5 0.1 -2.00464 -2.19939
0.5 0.1 0.02 0.5 0.1 -2.18844 -2.36760
0.7 0.1 0.02 0.5 0.1 -2.34321 -2.51015
0.9 0.1 0.02 0.5 0.1 -2.47692 -2.63389
0.5 0.1 0.02 0.5 0.1 -2.18844 -2.36760
0.5 0.3 0.02 0.5 0.1 -2.34083 -2.50795
0.5 0.5 0.02 0.5 0.1 -2.47276 -2.63003
0.5 0.7 0.02 0.5 0.1 -2.58907 -2.73804
0.5 0.9 0.02 0.5 0.1 -2.69305 -2.83487
0.5 0.1 0.02 0.5 0.1 -2.18844 -2.36760
0.5 0.1 0.035 0.5 0.1 -2.28573 -2.48110
0.5 0.1 0.05 0.5 0.1 -2.38688 -2.59846
0.5 0.1 0.065 0.5 0.1 -2.49229 -2.72008
0.5 0.1 0.08 0.5 0.1 -2.60233 -2.84636
0.5 0.1 0.02 0.5 0.1 -2.18844 -2.36760
0.5 0.1 0.02 0.6 0.1 -2.04495 -2.20318

0.5 0.1 0.02 0.7 0.1 -1.92046 -2.06148
0.5 0.1 0.02 0.8 0.1 -1.81124 -1.93790
0.5 0.1 0.02 0.9 0.1 -1.71453 -1.82904

0.5 0.1 0.02 0.5 0.1 -2.18844 -2.36760
0.5 0.1 0.02 0.5 0.3 -1.35288 -1.44597
0.5 0.1 0.02 0.5 0.5 -1.10429 -1.17061
0.5 0.1 0.02 0.5 0.7 -0.97353 -1.02581
0.5 0.1 0.02 0.5 0.9 -0.88932 -0.93275

constraints is presented through Figs. 6.19 and 6.20.

6.5.1 Two-dimensional flow

The momentum equation of a two-dimensional flow (g = 0 and δ = 0) is given by:

f ′′′ −
(

A2

A1

)

{

(1 + Fr) f ′2 − ff ′′}−
(

A3

A1
M + λ

)

f ′ = 0.

f ′ (0) = 1, f (0) = λ, f ′ (∞) → 0 (no slip condition)

f ′ (0) = 1 + b1f
′′ (0) , f (0) = λ, f ′ (∞) → 0 ( slip condition)



















(6.5.1)
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Figure 6.15: Change in Nux(Rex)
− 1

2 for differing Nt and Bi with λ = −0.1 .

Figure 6.16: Change in Nux(Rex)
− 1

2 for differing Nt and Bi with λ = 0.1.
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Figure 6.17: Change in Nux(Rex)
− 1

2 for differing φCu and M with λ = −0.1.

Figure 6.18: Change in Nux(Rex)
− 1

2 for differing φCu and M with λ = 0.1.
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Figure 6.19: Change in f ′ (ζ) of the two-dimensional flow for differing b1 values.

6.5.2 Axisymmetric flow

The momentum equation of an axisymmetric flow (f = g and δ = 1) is given by:

f ′′′ −
(

A2

A1

)

{

(1 + Fr) f ′2 − 2ff ′′}−
(

A3

A1
M + λ

)

f ′ = 0.

f ′ (0) = 1, f (0) = λ, f ′ (∞) → 0 (no slip condition)

f ′ (0) = 1 + b1f
′′ (0) , f (0) = λ, f ′ (∞) → 0 ( slip condition)



















(6.5.2)

Fig. 6.19 depicts the effect of b1 and λ on the two-dimensional flow. A higher velocity

profile is observed in the case of injection and no-slip conditions. The impact of

b1 and λ on the axisymmetric flow have been illustrated using Fig. 6.20. A lower

velocity profile is observed in the case of suction and slip conditions.

6.6 Regression Analysis

Regression analysis helps in establishing the relationship between a dependent and

one or more independent variables . In this study, the relationship between the

drag coefficients and the pertinent parameters for suction (λ = 0.1) and injection
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Figure 6.20: Change in f ′ (ζ) of the axisymmetric flow for differing b1 values.

(λ = −0.1) cases has been statistically modelled. The general form for the estimated

model is given by:

Re
1

2
x Cfx = rFrFr + rMM + rK1

K1 + rφCu
φCu + rb1b1 + c (6.6.1)

Re
1

2
y Cfy = rMM + rK1

K1 + rφCu
φCu + rb1b1 + rδδ + c (6.6.2)

where rFr, rM , rK1
, rφCu

, rb1 , rδ and c are the estimated regression coefficients.

The drag coefficients are estimated using the 25 sets of values chosen in the range

[0.1, 0.9] for δ, [0.5, 0.9] for b1 , [0.1, 0.9] for K1, [0.02, 0.08] for φCu , [0.5, 0.9] for Fr,

and [0.1, 0.9] for M and the regression coefficients are found using the MATLAB

software. The estimated regression models are given by:

Re
1

2
x Cfx

λ=−0.1 = −0.07585 Fr − 0.15952 M − 0.13964 K1 − 2.82993 φCu

+0.547116 b1 − 0.90938

(6.6.3)

153



CHAPTER 6

Re
1

2
y Cfy

λ=−0.1 = −0.86819 M − 0.74863 K1 − 8.02595 φCu + 1.052088 b1

+1.882442 δ − 2.17821

(6.6.4)

Re
1

2
x Cfx

λ=0.1 = −0.06984 Fr − 0.15314 M − 0.13403 K1 − 3.05209 φCu

+0.588495 b1 − 0.97302
(6.6.5)

Re
1

2
y Cfy

λ=0.1 = −0.79527 M − 0.70502 K1 − 9.18266 φCu + 1.211844 b1

+ 2.082646 δ − 2.47155

(6.6.6)

The sign of the estimated regression coefficient denotes the nature of the relationship

for the corresponding parameter on the dependent variable and the magnitude of

the estimated regression coefficient corresponds to the intensity of this relationship.

From the estimated models it is conclusive that the relationship experienced by

the influential parameters on the drag coefficients are in present harmony with

the observations derived from Tables 6.5 and 6.6. Figs. 6.21 to 6.24 illustrate the

accuracy of the regression model for the chosen sample. A commendable agreement

is noted between the actual and estimated values.

Figure 6.21: Actual Re
1

2
xCfx versus Estimated Re

1

2
xCfx with λ = −0.1.
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Figure 6.22: Actual Re
1

2
xCfx versus Estimated Re

1

2
xCfx with λ = 0.1.

Figure 6.23: Actual Re
1

2
yCfy versus Estimated Re

1

2
yCfy with λ = −0.1.
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Figure 6.24: Actual Re
1

2
yCfy versus Estimated Re

1

2
yCfy with λ = 0.1.

6.7 Conclusions

For its applications in astronomical disciplines, fuel injection, solar collector plate,

thermal protection, and aerodynamics; the MHD Darcy-Forchheimer hybrid nanoliq-

uid flow over an elongated permeable sheet in a porous medium with hydrodynamic

slip and Newtonian boundary constraints have been examined. A realistic model is

used by considering the passive control of nanoparticles and the modified Buongiorno

nanoliquid model. The consequence of effectual parameters on the flow profiles has

been numerically investigated using the bvp5c routine. A comparative analysis of

the velocity profile on the two-dimensional and axisymmetric flows in the presence

of slip and no-slip constraints has also been presented. Further, the relationship

between the pertinent parameters and the drag coefficients has been statistically

scrutinized utilizing regression analysis. The major conclusions drawn from the

study are:

❼ The x-directional velocity descends with the Forchheimer number and hydro-

dynamic slip parameter.
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❼ The y-directional velocity ascends with the stretching parameter.

❼ The suction case exhibits lowered temperature and velocity profiles in corre-

spondence with the injection case.

❼ The Biot number and the volume fraction of copper nanoparticles have a

constructive effect on the hybrid nanoliquid temperature.

❼ The heat transfer rate is higher for the suction case in comparison with the

injection case.

❼ The heat transfer rate is higher for lower values of magnetic field parameter

and higher values of Biot number and volume fraction of copper nanoparticles.

❼ The drag coefficients increase with hydrodynamic slip parameter and decrease

for higher values of magnetic field and porosity parameters.

❼ Higher drag coefficients are observed in the case of injection when compared

with the suction case.

❼ A commendable agreement is noted between the numerical and statistical

results.
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