Chapter 6

MHD Darcy-Forchheimer hybrid
nanoliquid flow over an elongated
permeable sheet in a porous medium with

hydrodynamic slip constraint *

6.1 Introduction

Modified Buongiorno nanoliquid model (MBNM) extends the traditional Buongiorno
model by considering the effectual slip mechanisms along with the effective properties
of a nanofluid. The dynamics of hydromagnetic Darcy-Forchheimer hybrid nanolig-
uid flow over an elongated permeable sheet with hydrodynamic slip constraint has
been studied. The passive control of nanoparticle volume fraction at the boundary
yields a realistic and practical model. In addition, the introduction of the modified
Buongiorno model makes the present work different from the existing literature. The
statistical scrutinization on the surface drag involving injection/suction effects, with
the aid of regression analysis, enhances the novelty and uniqueness of the current
exploration. The current study finds its applications in astronomical disciplines,
fuel injection, thermal protection, and aerodynamics . A comparative analysis of
the velocity profile on the two-dimensional and axisymmetric flows in the presence
of slip and no-slip constraints has also been presented. The main objectives of the

current study are to:

*Published in: Waves in Random and Complex Media (Taylor & Francis), 2022; (early access)
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e Construct a mathematical model to study the dynamics of hydromagnetic
Darcy-Forchheimer hybrid nanoliquid flow over an elongated permeable sheet
in the presence of hydrodynamic slip using MBNM and passive control of

nanoparticles.

e Conduct a comparative analysis on the nanoliquid flow by examining the

injection and suction effect.
e Explore the influence of pertinent parameters on flow profiles.

e Utilize regression analysis to obtain a correlation between the influential

parameters and the drag coefficient.

6.2 Mathematical formulation

A three-dimensional steady laminar incompressible and electrically conducting vis-
cous nanofluid flow past a lengthening sheet in a Dacry-Forchheimer porous medium
is analyzed. Let (u,v,w) be the velocity components along (z,y, z) directions. The
sheet is stretched with velocities U,, = ax and V,, = by along x- and y- directions,
respectively. Partial velocity slip with slip coefficient N; is considered at the
boundary. A permeable sheet with mass flux velocity wy > 0 (for injection) and
wy < 0 (for suction) is considered. A magnetic field of uniform strength B is
considered along the z-direction. The induced magnetic field was neglected due
to the small magnetic Reynolds number. The hybrid nanoliquid flow is modeled
using MBNM and a physically more realistic boundary condition that passively
controls the volume fraction of nanoparticles. The convective boundary constraint
that creates a significant relation between thermal difference and heat flux at the
surface (see (Zhao et al., 2022)) is also incorporated. The temperature at the sheet
is regulated with a convective heating condition by utilizing hot fluid. The physical
configuration of the model is illustrated in Fig 6.1.

The boundary layer equations describing the fluid flow are as follows (see (Kumar
et al., 2021), (Jusoh, Nazar, & Pop, 2018), (P. Rana, Mahanthesh, Mackolil, &
Al-Kouz, 2021), (Muhammad, Alsaedi, Hayat, & Shehzad, 2017)):

Uy + vy +w, =0 (6.2.1)
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Figure 6.1: Physical configuration.
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The quantities of physical interest are the skin friction coefficients (C'f, and C'f,)
and the Nusselt number (Nu,) quantifying the surface drag and rate of heat transfer
at the sheet, respectively are given by (see (Jusoh et al., 2018), (Yusuf, Mabood,
Khan, & Gbadeyan, 2020)):

ou
Twz Mhnf(&) =0
Cf, = = z ) 6.2.8
d psU; psU; (6:28)
ov
Tw Fohn f (6_) =
cf — T _ z) z=0 6.2.9
o % % (6:2.9)
—x kpn, or
Nu, = Ll _ h f(az)z:O ] (6210)

k(T —Too)  kyp(Ty — Tos)
where 7,, , Twy , and g, are the shear stress along the z- and y- directions and the
heat flux from the surface, respectively.
The effective thermophysical properties of the hybrid nanoliquid (with alumina as

nanoparticle 1 and copper as nanoparticle 2) are given by table 6.1 (see (Mathew et

al., 2021), (Aladdin et al., 2020)):

Now consider the following similarity variables (see (Muhammad et al., 2017)):

u=azf (), v=ayg (), w= \/W(f(C)Jrg(C)) ;

(= T2 000 = 2T, ()= & . (0210

OO

In view of equation (6.2.11) and the thermophysical properties, one can get the

following from equations (6.2.1)-(6.2.10):

- (jﬁ) {(1 +Fr) P~ (f+g9) f”} — (i—jM'f‘Kl) ff=0  (6.2.12)

- () oo - (B ) =0 wan

9”+P—{A5 (f+¢)0 + Nt 9’2+Nb9¢} (6.2.14)
Ay
"1 1s Negrl _ g 6.2.15
¢+{C(f+g)¢+m }— (6.2.15)
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Table 6.1: The effective thermophysical properties of the hybrid nanoliquid (with
alumina as nanoparticle 1 and copper as nanoparticle 2)

Effective Dynamic

Viscosit Bhnf — L =A,.
Y = (1_¢Al203)2.5(1_¢0u)2'5

Effective Density "Z?;f =(1—dcu) (( — PA1,05) T PALOS ppf ) + (bcu = Ay

Effective Electrical
s < ¢A1203 Tt - (¢Al303 +¢Cu)>

Conductivity Thnf — 1+ i = A
of P Aly03%51 FPCuT sy P Al,03%51 FPCuso
2+< (¢A1203+¢Cu)0f >*< or *(¢Az203+¢cu)>
Effective Thermal
o khn khn k-92+2kn —2¢Cu kn _ksg
Conductivity kff = A, where knff _ ksz+2knff+¢0u S(]wfks2))
knp k‘91+2k‘f—2¢Al203(kf—ksl
and Tf a ks +2kf+daiy04 (kffkﬂ)
Effective Specific
: (*p
Heat Goemnt — (1= gcu) (1= Ganos + danos i) + dou' ooy = As
with
FO+9O) =X, FO) =140/ 0) g O)=+hg"©0) | oo o
A0 (0) = Bi (0(0) — 1) , ¢/ (0) + X6 (0) = 0.
f(0)—=0, g (0)—=0,0(0)—=>0, ¢(c0)—0 (6.2.17)
The subsequent physical quantities are yielded as:
3 " Uy x
Re: Cf, = A f"(0) ;where Re, = —— .. (6.2.18)
vy
% -3 Vw Yy
Re; Cf, = A1(6) 2¢" (0) ;where Re, = - (6.2.19)
f
-1 , Uy @
Re, ? Nu, = —A40' (0) ; where Re, = : (6.2.20)
Ve

2 14 .
where M (Hartmann number)= 220 K, (porosity parameter)= ——, Nb (Brownian
P

apys
motion parameter)= ™2 BC°° , Pr (Prandtl number)= W),

, F'r (Forchheimer parameter)=
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\/c};;_ , Sc (Schmidt number)= DV—; , Nt (thermophoresis parameter)= % ’
7 (effective heat capacity ratio) = EZS:?; ,b1 (hydrodynamic slip parameter)=
N

vy
§ (stretching ratio parameter)= 2 | Bi (Biot number)= %@ /=L and A (suction/injection
wo

Vavy

parameter)= — are the non-dimensional parameters.

Table 6.2: Thermophysical properties of water, alumina, and copper (Aziz et al.,
2021), (Aaiza et al., 2015), (Hussanan et al., 2017)

Property | Base fluid(H20) | Nanoparticle 1 (Al;O3) | Nanoparticle 2(Cu)

0 997.1 3970 8933
C, 4179 765 385

k 0.613 40 401

o 0.05 3.5 x 107 5.96 x 107

6.3 Numerical solution

The highly nonlinear ODEs given in Eqns. (6.2.12)-(6.2.17) are reduced to a system
of single-order ODEs by setting:

f=v. /" =y /" =uys, g=v1,9" =5, 9" = vs,

0 =uyr, 0 =ys, ¥ =19, =1y The subsequent system of first-order ODEs is
given by:

)

Vi =Y2, Ys=Ys, Y3 = ( ) {1+ Fr)ys — (yi +ya) ys} + (ﬁ—jMJrKl) Yo |

Ys =5 Ys = Yo » Yo = (A1> {1+ Fr)ys — (y1 +ya) yo} + (ﬁ—j’MJrKl) Ys
vr=s » Ys = —55{As (y1 +ya) ys + Nty + Nb ysyio} o = Y10

Yip = — {50(3/1 + Ya) Y10 — (%é ZZ) {As (y1 +ya) ys + Ntyg + Nb ygym}}

|D> D>|D>

o =

(6.3.1)
with
Y1 (0) +94(0) =X, 42(0) =1+b1 y3(0) , y5(0) =0+ b1 y6 (0) , (6.3.2)
A1 ys (0) = Bi(yr (0) = 1) , 10 (0) + 37 vs (0) = 0.
Y2 (00) = 0, ys(00) =0, yr(00) =0, yg(c0) =0 (6.3.3)

The reduced system of first-order ODES is resolved using the bvp5c routine with
an error tolerance of 107%. The bvp5c routine (an efficient built-in MATLAB code
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1 1
Table 6.3: Resemblance of —Rei Cf, and —Re; Cf, for differing values of
Ky, Fr , and 6 when M = Nt = X\ = ¢a,0, = ¢pcu = by = Bi =
0, Pr=5Sc=1, and Nb— 0.

Present study (Muhammad et al., 2017)
Ky | Frio | _percy | —Re2Cf, | —Re2Cf, | —ReiCy,
0 0.1 | 0.2 1.06954 1.67611 1.06945 1.67684
0.1 ] 01102 1.11475 1.81692 1.11471 1.81669
0210102 1.15832 1.94732 1.15830 1.94722
0.2 0 0.2 1.13043 1.93424 1.13041 1.93414
0210102 1.15832 1.94732 1.15830 1.94722
02 02]02] 1.18563 1.96045 1.18561 1.96037
0.2 1] 0.1 ]01 1.14163 2.5425 1.14160 2.54234
0.2 10103 1.17451 1.7024 1.17449 1.70234
0.2 ] 0.1 0.5 1.20565 1.47624 1.20563 1.47621

1
Table 6.4: Resemblance of Re, *> Nu, for differing values of Ky , Fr | and
o when M = X\ = ¢a,0, = ¢cu = b1 =0, Pr=S8Sc=1, Bi =

0.3, Nt=0.2, and Nb=0.5.

Re, 2 Nu,
Ky | Fr | ¢ | Present study (Muhammad et al., 2017)
0 0102 0.2045108 0.20448
0.210.11]0.2 0.2025510 0.20248
02| 0 0.2 0.2028408 0.20278
0.2]1021]0.2 0.2022676 0.20220
021011] 0 0.1947498 0.19458
0.210.11]0.3 0.2056478 0.20560

used for numerical computation) is a finite-difference based code that implements
the Lobatto IIla formula of sixth-order in four steps. (. has been restricted to 7
to get an asymptotic solution. The accuracy of the adopted numerical method has
been validated through a restrictive correspondence with the previously published
results by (Muhammad et al., 2017) and a commendable agreement is observed (see

Tables 6.3 and 6.4).

6.4 Results and discussion

The consequence of pertinent parameters on physical quantities, z-directional velocity
(f"({)), y-directional velocity (¢’ (¢)), temperature (6 (¢)), and concentration (¢ (¢))
profiles are illustrated with the aid of graphs (see Figs. 6.2-6.18) and tables (see
Tables 6.5 and 6.6). The Prandtl number (Pr) and Schmidt number (Sc) are set at
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6.2 and 2.4, respectively. The thermophysical properties of base fluid (water), Al,O3
(nanoparticle 1), and C'u (nanoparticle 2) are given in Table 6.2. The results are
presented to compare the flow phenomenon for injection (A < 0) and suction (A > 0)
cases. It is observed that the suction case exhibits lower temperature and velocity
profiles which are in perfect harmony with the findings of (Hussanan, Salleh, Khan,
& Shafie, 2018). By increasing A values, the boundary layer thickness diminishes
thereby lowering the velocity. Furthermore, a progressive thinning of the thermal
boundary layer is noted with an increase in A\ values due to the introduction of cold
ambient fluid near the sheet.

An increase in ¢, escalates the viscosity of fluid that demotes the velocity profile
(see Fig. 6.2). Fig. 6.3 depicts the negative impact of M on f’((), meaning an
increase in M descends the z-directional velocity. This decrease in velocity is due to
the generation of Lorentz force. The decreasing nature of f’({) with Fr has been
elucidated in Fig. 6.4. Augmentation in F'r ascends the resistance experienced in
the fluid motion and hence f’ (¢) reduces. Fig. 6.5 describes the decreasing nature of
Kj on f'(¢). Fig. 6.6 bespeaks the deviations in f’ (¢) with respect to b;. It can be
perceived that f’(¢) decreases as by values increase. Physically, the hydrodynamic
slip parameter reduces the fluid movement due to the roughness of the sheet.

The generation of Lorentz force due to augmenting values of M reduces the y-
directional velocity (see Fig. 6.7). The influence of K7 on ¢’ (¢) is analyzed by means
of Fig. 6.8. K tends to decrease ¢’ (¢) which can be physically attributed to the fact
that augmentation in the porosity parameter elevates the resistance of the porous
medium. Fig. 6.9 displays the positive impact of § on ¢’ (). Physically, increment
in the stretching rate enhances the momentum associated with the boundary layer
that swells the y-directional velocity.

Fig. 6.10 reflects the rise in 6 (¢) due to mounting ¢¢, values. This is because
an increase in ¢¢, improves the thermal conductivity of the hybrid nanoliquid
which triggers an improvement in 6 (). Fig. 6.11 describes the deviations in 6 (()
concerning M. The applied magnetic field generates a Lorentz force that ascends
the temperature profile. The increase in 6 (¢) with respect to augmentation in Bi
values is described in Fig. 6.12. Physically, augmentation in the Biot number implies
increased convection which enhances the hybrid nanoliquid temperature.

Fig. 6.13 elucidates the consequence of M on ¢ ((). An increase in M tends to
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increase ¢ (¢). The enhancement in ¢ (¢) due to an increase in K; has been graphed
in Fig. 6.14. Furthermore, a dual nature is observed for augmenting A values. For

larger values of (, a decrease in ¢ (() is noted.

0.7

Fr=0.5 M= 05K, = 0.1, Nt =05 85 = 05, b= 4.5,
d=00. 2, o =002 5= 05

0.6
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________

o[

........

Fi¢)

Wy = P02, 004, 0.06

0.2

- = S{Elian

6.1 irpaction

Figure 6.2: Change in f'(¢) for differing ¢cy values.

The simultaneous effect of two parameters on Nu,(Re,) 7 s analysed with the
aid of three-dimensional surface plots which have been graphed in Figs. 6.15 to
6.18. A comparative study between the suction and injection cases is also carried
out. It can be perceived that the heat transfer rate is higher for the suction case in
comparison with the injection case. From Figs. 6.15 to 6.18, it is seen that ¢¢, and
Bi ascends Nu,(Re,)” 7 whereas Nt and M demotes the heat transfer rate.  The

key observations drawn from Tables 6.5 and 6.6 are:

e The drag coefficients (Re% Cf, and Re; C fy> are directly proportional to

by and inversely proportional to M, K7, and ¢¢,,.
1 1
o Rei Cf, is a decreasing function of F'r whereas Re; C'f, is an increasing
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Table 6.5: Comparison on Re2 Cf, for differing values of Fr, M, Ky, ¢cu,
and by when Nt =0.5, Nb=0.5,0 = 0.1, Bi = 0.5, ¢pa,0, = 0.02

Re: CF,
Fr| M| K| ¢cu | b1 |A=-01| A=0.1
0510501 0.02 |05 -0.82645 | -0.86720
060501 0.02 |05 -0.83347 | -0.87355
0.7 0501 0.02 |05 -0.84029 | -0.87972
080501 0.02 |05 -0.84691 | -0.88573
09105 0.1 0.02 | 0.5 -0.85335 | -0.89159
050101 0.02 |05 -0.75660 | -0.80000
0510301 0.02 |05 -0.79327 | -0.83533
0510501 0.02 |05 -0.82645 | -0.86720
0510701 0.02 |05 -0.85668 | -0.89618
0510901 0.02 |05 -0.88442 | -0.92272
0510501 0.02 | 0.5] -0.82645 | -0.86720
05|05 03] 0.02 | 0.5 -0.85620 | -0.89572
0510505 0.02 |05 -0.88353 | -0.92188
0510507 0.02 |05 -0.90878 | -0.94602
0510509 0.02 |05 -0.93223 | -0.96842
0510501 0.02 |05 -0.82645 | -0.86720
050501003505 | -0.86654 | -0.91058
0510501 0.05 | 0.5] -0.90787 | -0.95520
05105010065 |05 ]| -0.95063 | -1.00126
0510501 0.08 |05 -0.99499 | -1.04893
0510501 0.02 |05 -0.82645 | -0.86720
0510501 0.02 | 0.6] -0.76009 | -0.79558
0510501 0.02 | 0.7 -0.70426 | -0.73557
0510501 0.02 | 0.8] -0.65655 | -0.68446
0510501 0.02 |09 -0.61526 | -0.64036

function of §.

e Similar results are obtained for suction and injection cases.

e Higher drag coefficients are observed in the injection case when compared with

the suction case.

6.5 Special Cases

In this section, a restrictive analysis on the velocity profile has been elucidated. The
heat and concentration equations have been ignored for this purpose. A comparative

analysis on the two-dimensional and axisymmetric flows considering slip and no-slip
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Table 6.6: Comparison on Rei C'f, for differing values of M, Ky, ¢cu, by and
0 when Nt = 0.5, Nb=0.5,Fr =0.5,B1 = 0.5, p4,0, = 0.02 .

Re; Cf,
M|Ki| ¢cu | b1 | 6 [X=-01 A=0.1.
0.1/011] 0.02 |0.5]0.1 -1.77802 -1.99400
0.3]0.1] 0.02 |0.5]0.1 -2.00464 -2.19939
0.5]0.1] 0.02 |0.5]0.1 -2.18844 -2.36760
0.7]10.1] 0.02 |0.5]0.1 -2.34321 -2.51015
09]0.1] 002 |0.5]0.1 -2.47692 -2.63389
0.5]0.1] 0.02 |0.5]0.1 -2.18844 -2.36760
0.5]03] 0.02 |0.5]0.1 -2.34083 -2.50795
0.5]051] 002 |0.5]0.1 -2.47276 -2.63003
0.5]0.71] 002 |0.5]0.1 -2.58907 -2.73804
0.5]109] 002 |0.5]0.1 -2.69305 -2.83487
0.5]0.1] 0.02 |0.5]0.1 -2.18844 -2.36760
0.5]0.1]0.035]0.5]0.1 -2.28573 -2.48110
0.5]0.1] 0.05 |0.5]0.1 -2.38688 -2.59846
0.5]0.1]0.065|0.5]0.1 -2.49229 -2.72008
0.5]0.1] 0.08 |0.5]0.1 -2.60233 -2.84636
0.5]0.1] 0.02 |0.5]0.1 -2.18844 -2.36760
0.5]0.1] 0.02 |0.6]0.1 -2.04495 -2.20318
0.5]0.1] 0.02 |0.7]0.1 -1.92046 -2.06148
0.51011] 0.02 |0.8]0.1 -1.81124 -1.93790
0.5]0.1] 002 [09]0.1 -1.71453 -1.82904
0.5]0.1] 0.02 |0.5]0.1 -2.18844 -2.36760
0.5]0.1] 002 |0510.3 -1.35288 -1.44597
0.5]0.1] 0.02 |0.5]0.5 -1.10429 -1.17061
0.5]0.1] 0.02 |0.5]0.7 -0.97353 -1.02581
0.5]0.1] 002 |05(0.9 -0.88932 -0.93275
constraints is presented through Figs. 6.19 and 6.20.

6.5.1 Two-dimensional flow

The momentum equation of a two-dimensional flow (¢ =0 and § = 0) is given by:

= (42) L+ P 2= ) = (M4 2) £ =0,

f1(0) =1,7(0) = A, f (o0
JH0) =1+ 0f"(0), f(0) = A, f" (o0

) — 0 ( slip condition)
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) — 0 (no slip condition)
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CHAPTER 6

s
o4
0.4 .
&35
"ﬁr " a.3.
h
143
®, 52
=

&2

{15

e 0.8
PR

Q.2 0.4
Nt " 0.2 Ej-

.1
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6.5.2 Axisymmetric flow

The momentum equation of an axisymmetric flow (f = ¢ and 6 = 1) is given by:

= (2) {2 =2} = (M4 0) £ =0,
f(0)=1,f(0)=A, f'(c0) = 0 (no slip condition) (6.5.2)
f(0)=1+b,f"(0),f(0) =\, f' (c0) = 0 ( slip condition)

Fig. 6.19 depicts the effect of b; and A on the two-dimensional flow. A higher velocity
profile is observed in the case of injection and no-slip conditions. The impact of
by and A on the axisymmetric flow have been illustrated using Fig. 6.20. A lower

velocity profile is observed in the case of suction and slip conditions.

6.6 Regression Analysis

Regression analysis helps in establishing the relationship between a dependent and
one or more independent variables . In this study, the relationship between the

drag coefficients and the pertinent parameters for suction (A = 0.1) and injection
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Figure 6.20: Change in f'(¢) of the azisymmetric flow for differing by values.

(A = —0.1) cases has been statistically modelled. The general form for the estimated

model is given by:
1
Re; Cfy =rpEr+ryM +rg, Ki + 140, 0cu + 15,01 + (6.6.1)

1
Re; Cf, =ruM +r, Ky + 140, Ocu + 1p,b1 + 750 + ¢ (6.6.2)

where 7p,, Tar, Tiy, Téo,, Th, To and c are the estimated regression coefficients.

The drag coefficients are estimated using the 25 sets of values chosen in the range
[0.1,0.9] for 4, [0.5,0.9] for by , [0.1,0.9] for K7, [0.02,0.08] for ¢, , [0.5,0.9] for Frr,
and [0.1,0.9] for M and the regression coefficients are found using the MATLAB

software. The estimated regression models are given by:

Rez Cf "% = —0.07585 Fr — 0.15952 M — 0.13964 K; — 2.82993 ¢cv,

+0.547116 b, — 0.90938
(6.6.3)
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Re; Cf =01

1
Re% Cfx)\zo.l —

Reg ny)x:OAI

= —0.86819 M — 0.74863 K; — 8.02595 ¢, + 1.052088 by

+1.882442 5 — 2.17821
(6.6.4)

—0.06984 F'r —0.15314 M — 0.13403 K7 — 3.05209 ¢c,
+0.588495 b; — 0.97302

(6.6.5)

= —0.79527 M — 0.70502 K; — 9.18266 ¢c,, + 1.211844 by

+ 2.082646 § — 2.47155
(6.6.6)

The sign of the estimated regression coefficient denotes the nature of the relationship

for the corresponding parameter on the dependent variable and the magnitude of

the estimated regression coefficient corresponds to the intensity of this relationship.

From the estimated models it is conclusive that the relationship experienced by

the influential parameters on the drag coefficients are in present harmony with

the observations derived from Tables 6.5 and 6.6. Figs. 6.21 to 6.24 illustrate the

accuracy of the regression model for the chosen sample. A commendable agreement

is noted between the actual and estimated values.
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Figure 6.21: Actual Re2C'f, versus Estimated ReZC'f, with A = —0.1.
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6.7 Conclusions

For its applications in astronomical disciplines, fuel injection, solar collector plate,
thermal protection, and aerodynamics; the MHD Darcy-Forchheimer hybrid nanolig-
uid flow over an elongated permeable sheet in a porous medium with hydrodynamic
slip and Newtonian boundary constraints have been examined. A realistic model is
used by considering the passive control of nanoparticles and the modified Buongiorno
nanoliquid model. The consequence of effectual parameters on the flow profiles has
been numerically investigated using the bvpbc routine. A comparative analysis of
the velocity profile on the two-dimensional and axisymmetric flows in the presence
of slip and no-slip constraints has also been presented. Further, the relationship
between the pertinent parameters and the drag coefficients has been statistically
scrutinized utilizing regression analysis. The major conclusions drawn from the

study are:

e The x-directional velocity descends with the Forchheimer number and hydro-

dynamic slip parameter.

156



Section 6.7

The y-directional velocity ascends with the stretching parameter.

The suction case exhibits lowered temperature and velocity profiles in corre-

spondence with the injection case.

The Biot number and the volume fraction of copper nanoparticles have a

constructive effect on the hybrid nanoliquid temperature.

The heat transfer rate is higher for the suction case in comparison with the

injection case.

The heat transfer rate is higher for lower values of magnetic field parameter

and higher values of Biot number and volume fraction of copper nanoparticles.

The drag coefficients increase with hydrodynamic slip parameter and decrease

for higher values of magnetic field and porosity parameters.

Higher drag coefficients are observed in the case of injection when compared

with the suction case.

A commendable agreement is noted between the numerical and statistical

results.
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