
Chapter 7

Reiner-Rivlin nanoliquid flow past a

spinning disk with Joule heating and

non-uniform heat source using

Bulirsch-Stoer algorithm ✯

7.1 Introduction

The current study is conducted to investigate the hydromagnetic flow of Reiner-

Rivlin nanoliquids due to a rotating disk with non-uniform heat source and Joule

heating effects inorder to optimize the heat transfer rate through Response surface

methodology. The volume fraction of the nanoparticles on the disk surface is passively

controlled by a realistic boundary condition. Using numerical and statistical methods,

this work addresses the following research questions:

❼ How do the flow profiles vary due to the non-Newtonian nature?

❼ What effect does Joule heating have on the thermal boundary layer?

❼ How do temperature and space-dependent heat source parameters affect the

heat transport phenomenon?

❼ How can the heat transfer rate be regulated by varying the influential effects?

❼ What is the sensitivity of the heat transport against the key factors?

✯Published in: Waves in Random and Complex Media (Taylor & Francis), 2022; (early access)
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CHAPTER 7

7.2 Mathematical formulation

An electrically conducting non-transient Reiner-Rivlin nanofluid flow past a rotating

disk is considered (see Fig. 7.1). The nanoliquid is present in the region above z > 0

and is incompressible. The axisymmetric spinning of the disk about the vertical axis

ignores the derivatives along with tangential directions. The uniform spinning of the

disk (with an angular velocity Ω) in the plane z = 0 imparts a swirling flow in the

adjacent fluid layers. Here, (u, v, w) are respectively the components of velocity

vector projections along the radial (r) , azimuthal (ϕ) , and axial (z) directions. Let

the temperature at the surface of the disk be Tw. Furthermore, T∞ and C∞ represent

the ambient temperature and volume fraction of nanoparticles far from the disk. The

centrifugal fan-like behaviour of the disk preserves the mass conservation principle

by drawing the nanoliquid in the axial direction. The heterogeneous two-phase

model is utilized to model the nanoliquid. Also, the fluid properties are considered

to be constant in the system. The fluid is exposed to a uniform magnetic field of

intensity B0 along the axial direction and Joule heating effects are accounted. The

governing equations to model the above problem are given below (see (Tabassum

& Mustafa, 2018), (Imtiaz, Kiran, Hayat, & Alsaedi, 2019), (Lin, Ghaffari, et al.,

2021)):

Figure 7.1: Physical configuration
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q′′′ is the non-uniform heat generation /absorption term that is modeled as q′′′ =
kf Ω

νf

[

A(Tw−T∞)
Ωr

u+B (T − T∞)
]

, where A and B denote respectively the space-

dependent and temperature-dependent heat source/sink parameters. The internal

heat generation mechanism without an external heat source has a major role in

medical and industrial applications. Current flow in a conducting fluid augments

the temperature of the fluid and therefore, the Joule heating effect is incorporated

via the last term in Eqn. 7.2.5. The nanoparticle volume fraction at the surface

of the disk is passively controlled. The disk is rigid which does not allow fluid

penetration and viscous dissipative forces are ignored due to negligible effects. The

thermal disparity between the disk and the nanoliquid associated with the surface is

incorporated through the thermal jump condition.

Boundary conditions:

At z = 0 : u = 0, v = vw = rΩ, w = 0,

T = Tw +N2
∂T
∂z

, DB
∂C
∂z

+ DT

T∞

∂T
∂z

= 0 .







(7.2.7)

As z → ∞ : u → 0, v → 0, T → T∞, C → C∞, p → p∞. (7.2.8)

Due to the stress tensor symmetry, the second last term in Eqn. 7.2.3 is ignored.

The following constitutive relation is used to model the rheological properties of the

Reiner-Rivlin nanoliquid:

τij = −pδij + µfeij + µceikekj(ejj = 0).(see(Tabassum &Mustafa,2018)) : (7.2.9)
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The influence of stress across velocity gradients leads to cross-viscosity, a property

of the Reiner-Rivlin nanofluid considered in the study. Here, the rate of strain

(deformation) tensor is denoted by eij =
∂ui

∂xj
+

∂uj

∂xi
, Kronecker delta symbol is denoted

by δij , cross−viscosity coefficient is denoted by µc, coefficient of viscosity is denoted

by µf and pressure is denoted by p. The stress tensors (τij) of this liquid are given

as follows (see (Tabassum & Mustafa, 2018)):
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The axial, radial, and azimuthal velocity components rely upon radial and normal

spatial coordinates (r and z). Pressure along z-direction is considered in the

system. The well-known von-Karman similarity variables are adopted as follows (see

(Tabassum & Mustafa, 2018)):

(u, v, w) =
(

rΩF ′ (ζ) , rΩG (ζ) ,−2
√

νfΩ F (ζ)
)

, ζ =
z

r
Re1/2, (7.2.16)

(p, T, C) = (p∞ − ΩµfP (ζ) , T∞ + (Tw − T∞)θ (ζ) , C∞ + C∞φ (ζ)) (7.2.17)

Thereby, the following equations are obtained:

F ′′′ − F ′2 + 2FF ′′ +G2 −K
[

2F ′F ′′′ − F ′′2 +G′2
]

−MF ′ = 0, (7.2.18)
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G′′ − 2F ′G+ 2G′F − 2K
[

F ′G′′ − F
′′

G′

]

−MG = 0, (7.2.19)

P ′ − 2F ′′ − 4FF ′ + 28 KF ′F ′′ + 2Re K {F ′′F ′′′ +G′G′′} = 0 (7.2.20)

θ′′+Prf

[

2θ′F +Nb θ′φ′ +Nt θ′
2
+ Ec M

(

F
′2 +G2

)]

+A F ′+B θ = 0, (7.2.21)

φ′′ +
Nt

Nb
θ′′ + 2Sc Fφ′ = 0. (7.2.22)

With the following conditions:

At ζ = 0 : F = 0, F ′ = 0, G = 1,

θ = 1 + γθ′, φ′ + Nt
Nb

θ′ = 0.







(7.2.23)

As ζ → ∞ : F ′ → 0, G → 0, θ → 0, φ → 0, P → 0. (7.2.24)

It can be noted that Eqn. 7.2.1 describes a self-satisfying continuity equation and

Eqn. 7.2.20 can be used to analyze the pressure distribution, but this is beyond the

scope of the current study. The following are the dimensionless parameters of the

current study:

Sc =
νf

DB
(Schmidt number), Prf =

νf
αm

(Prandtl number), K = µcΩ
µf

(Reiner-Rivlin

material parameter), γ =
(

Ω
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)
1

2

N2 (Thermal slip parameter), M =
σfB

2

0

ρfΩ
(Hartmann

number), Ec = v2w
cf (Tw−T∞)
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(ρc)pDBC∞

(ρc)fνf
(Brownian motion pa-

rameter), Nt =
(ρc)pDT (Tw−T∞)

(ρc)fT∞νf
(Thermophoresis parameter), and Re = Ωr2

νf
(Local

Reynolds number).

Nur indicates the reduced Nusselt number which measures the convective to conduc-

tive heat transfer ratio. Also, a resistive force (friction) by the relative movement of

fluid layers at the rotating disk causes surface drag which is measured using skin

friction coefficient (Cf ). The Nusselt number (Nu) and skin friction given as follows

((Tabassum & Mustafa, 2018)):

Nu = rqw
kf (Tw−T∞)

,

Cf =

√
τ2r+τ2ϕ
ρfv2w

.







(7.2.25)

where heat flux is denoted by qw, radial wall stress by τr, and azimuthal wall stress

by τϕ. Using the Eqns. (7.2.16-7.2.17), Eqn. (7.2.25) yields the reduced Nusselt

number (Nur) and skin friction coefficient (Cfr) as follows:
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Nur = Re−
1

2Nu = −θ′ (0) ,

Cfr = Re
1

2Cf =
√

(F ′′ (0))2 + (G′ (0))2.







(7.2.26)

7.3 Numerical solution

The equations (7.2.18)-(7.2.19) and (7.2.21)-(7.2.22) is a boundary value problem

(BVP) which does not possess an analytical solution. So, the Bulirsch-Stoer algorithm

and Newton-Raphson method are employed. By substituting y1 = F, y2 = F ′, y3 =

F ′′, y4 = G, y5 = G′, y6 = θ, y7 = θ′, y8 = φ, y9 = φ′, one can get the following

equations:
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(7.3.1)

The following initial conditions are considered:

y1 (0) = 0, y2 (0) = 0, y3 (0) = h1, y4 (0) = 1, y5 (0) = h2,

y6 (0) = 1 + γ h3, y7 (0) = h3, y8 (0) = h4, y9 (0) = −Nt
Nb

h3.







(7.3.2)

where h1, h2, h3, and h4 are calculated by utilizing the Newton-Raphson method

by using suitable guess values. Numerical solutions are generated with an error

tolerance of 10−6 and step size of 0.01. ζ∞ has been restricted to 15 as the further

increment of the domain has a negligible effect. The accuracy of the adopted

numerical method has been validated by comparing the limiting case of the present

problem (see Table 7.1) with the previously published results by Turkyilmazoglu

and Senel (Turkyilmazoglu & Senel, 2013).
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Table 7.1: Comparison of F ′′ (0) , G′ (0) , F (∞), and−θ′ (0) with K = 0, M =
0, Ec = 0, A = 0, B = 0, Nt = 0, Sc = 0, Nb → 0 , P rf = 0.72a,
and Prf = 6b.

Runge-Kutta-4 method
(Turkyilmazoglu & Senel,
2013)

Bulirsch-Stoer algorithm

F
′′

(0) 0.51023262 0.51023239

G
′

(0) -0.61592201 -0.61592187

F (∞) 0.44223705 0.44221609

−θ
′

(0)a 0.3285701 0.32861104

−θ
′

(0)b 0.92118503 0.92123523

7.4 Results and Discussion

The impact of the Reiner-Rivlin material parameter (K), Hartmann number(M),

Schmidt number (Sc), thermophoresis parameter (Nt), Space-dependent heat source

parameter (A), Eckert number (Ec), thermal slip parameter (γ), and temperature-

dependent heat source parameter (B) is studied on the radial velocity (F ′ (ζ)),

azimuthal velocity (G (ζ)), temperature (θ (ζ)) and volume fraction of nanoparticles

(φ (ζ)) profiles respectively. The Prandtl number is chosen as 7 throughout the

analysis.

Fig. 7.2-7.5 depicts the impression of M on F ′ (ζ) , G (ζ) , θ (ζ) and φ (ζ) profiles.

An increase in M generates a Lorentz force, a resistive force against the fluid flow

that retards the nanoliquid flow in radial and azimuthal directions. The drag coeffi-

cient at the surface of the disk grows due to the opposing force that enhances the

fluid temperature (see Fig. 7.4). Fig. 7.5 displays a mixed response in nanoparticle

volume fraction with magnification in M .

Fig. 7.6-7.9 reveals the response in F ′ (ζ) , G (ζ) , θ (ζ) , and φ (ζ) profiles concerning

K. Viscoelastic nature of the nanoliquid enhances with increment in K. Fig. 7.6

depicts a negative impact in radial velocity profile with growing values of K and

the trend reverses far from the disk. The peak in the velocity curve is due to weak

non-Newtonian characteristics. Axial flow reduces due to the viscoelastic nature of
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the nanoliquid and a small amount of fluid is drawn in the radial direction even

though centrifugal force works. Rotation inertial effects get stronger with mounting

values of K that elevate the azimuthal velocity profile (See Fig. 7.7). Fig. 7.8

delineates an increase in temperature with augmenting values of K. Less amount of

cold ambient fluid is drawn towards the disk which rises the nanoliquid temperature.

The nanoparticle volume fraction of the nanoliquid shows a dual nature as shown in

Fig. 7.9. Maximum nanoparticle volume fraction is noticed far from the disk.

Fig. 7.10 shows a positive impact of Ec on θ (ζ). Joule heating has a predom-

Figure 7.2: Response in F ′ (ζ) for distinct M .

inant impact on the thermal boundary layer thickness. Kinetic energy enhances

with Ec that fuels the internal friction of nanoparticles followed by a rise in the

temperature profile. Fig. 7.11 explains a mixed impact of Sc with φ (η) . Nanopar-

ticle volume fraction profile decreases with Sc far from the disk and it depicts an

increasing functional relationship near the disk. Physically, it is due to depletion in

molecular diffusion and migration of nanoparticles with magnification in Sc. Fig.

7.12 delineates a positive response of A & B on θ (ζ). Temperature profile enhances

with augmentation in A & B. An increase in the space and temperature-dependent

heat source (A & B) produces additional heat energy to the nano liquid flow which
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Figure 7.3: Response in G (ζ) for distinct M .

Figure 7.4: Response in θ (ζ) for distinct M .
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Figure 7.5: Response in φ (ζ) for distinct M .

Figure 7.6: Response in F ′ (ζ) for distinct K.
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Figure 7.7: Response in G (ζ) for distinct K.

Figure 7.8: Response in θ (ζ) for distinct K.
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Figure 7.9: Response in φ (ζ) for distinct K.

escalates the thermal boundary layer thickness.

Fig. 7.13-7.14 discloses the influence of Nt on θ (ζ) and φ (ζ) profiles. Augmen-

tation in Nt elevates the temperature whereas the nanoparticle volume fraction

profile shows a mixed character with Nt. A negative impact of nanoparticle volume

fraction with Nt is observed near the disk and the nature reverses far from the disk.

Physically, an increment in Nt produces thermophoresis force which moves the hot

fluid particles to the colder ambient region. Fig. 7.15 juxtaposes the consequence

of θ (ζ) with variation in γ. An increase in thermal slip parameter extrapolates

interfacial fluid temperature followed by a thermal resistance which depreciates

further thermal transport in fluids and hence θ (ζ) lowers.

Three-dimensional plots are used to examine the simultaneous impact of two

parameters on the frictional drag and heat transfer rate as depicted in Figs. 7.16-7.19.

A maximum frictional drag was observed for low K and high M values. Physically, it

is due to high Lorentz force and minimum cross-viscosity. The highest heat transfer

rate occurs at low A and B parameter values (see Fig. 7.17). Augmentation in A

& B supplements additional heat energy to the nanoliquid that in turn minimizes

the thermal difference. Fig. 7.18 delineates the discrepancy of Nusselt number with
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Figure 7.10: Response in θ (ζ) for distinct Ec.

Figure 7.11: Response in φ (ζ) for distinct Sc.
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Figure 7.12: Response in θ (ζ) for distinct A & B.

Figure 7.13: Response in θ (ζ) for distinct Nt.
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Figure 7.14: Response in φ (ζ) for distinct Nt.

Figure 7.15: Response in θ (ζ) for distinct γ.
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Ec & Sc. Heat transfer rate is maximum for low Ec values. An increment in Ec

escalates the temperature of the nanoliquid near the disk and hence it lowers the heat

transfer rate. Heat transfer rate decreases with larger Nt (see Fig. 7.19). Physically,

it is due to thermophoresis effects.

Figure 7.16: Surface plot of CfRe
1

2 for variation of K and M .

7.5 Response Surface Methodology (RSM)

RSM is an experimental design-based statistical technique that illustrates the impact

of influential parameters (independent variables) and their interactive effects on

the physical quantity of choice (dependent or response variable ). Experimental

trials are time-consuming and costly whereas RSM reduces the number of trials and

optimizes the response variable. RSM using the Central Composite Design (CCD)

is a suitable sequential experimentation method which is incorporated in the present

study with 20 (2j + 2j + o, j = 3, o = 6) runs, here o denotes the number of faces

and j denotes the number of factors. The relation involves 23 factorial 6 center and 6

axial points. A full quadratic 3 level factorial design is adopted in the study as follows
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Figure 7.17: Surface plot of NuRe−
1

2 for variation of A and B.

Figure 7.18: Surface plot of NuRe−
1

2 for variation of Sc and Ec.
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Figure 7.19: Surface plot of NuRe−
1

2 for variation of Nb and Nt.

Response (Y ) = L1X1 + L2X2 + L3X3 + L4X1X2 + L5X2X3 + L6X1X3+

L7X
2
1 + L8X

2
2 + L9X

2
3 + L10.

(7.5.1)

Here, Li (i = 1, 2, . . . , 10) denote the regression coefficients. The RSM techniquie

becomes advantageous in finding the levels of the parameters that optimize the

response. In processes involving heat transfer, the maximization of the heat transfer

is carried such that the desirability factor is maximized. If the lowest and highest

response are respectively denoted by Yl and Yh, then the desirability factor is calcu-

lated as follows:

d = 0, Y ≤ Yl

d = Y−Yl

Yh−Yl
, Yl ≤ Y ≤ Yh

d = 1, Y ≥ Yh

(7.5.2)

For the present analysis, Nur is chosen as the response variable and the param-

eters inducted for the design are M (0.15 ≤ M ≤ 2.5) , K (0.15 ≤ K ≤ 2.5),

and γ (0.05 ≤ γ ≤ 0.15 ) respectively. Also, the influential parameters M , K,
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and γ are coded as X1, X2, and X3 respectively (see Table 7.2). The numerical

experimental design involving 20 runs (based on the face-centered CCD design) is

given in Table 7.3.

The ANOVA table as described in Table 7.4 evaluates the quality of the fitted

Table 7.2: The effectual levels of parameters.

Parameters Coded Symbols

Levels
-1 0 1

(Low) (Medium) (High)
M X1 0.15 0.2 0.25
K X1 0.15 0.2 0.25
γ X1 0.05 0.1 0.15

Table 7.3: Experimental (numerical) design.

Runs
Coded Values Real values Response
X1 X2 X3 M K γ Nur

1 -1 -1 -1 0.15 0.15 0.05 0.716786
2 1 -1 -1 0.25 0.15 0.05 0.623955
3 -1 1 -1 0.15 0.25 0.05 0.700967
4 1 1 -1 0.25 0.25 0.05 0.604885
5 -1 -1 1 0.15 0.15 0.15 0.663199
6 1 -1 1 0.25 0.15 0.15 0.579336
7 -1 1 1 0.15 0.25 0.15 0.649497
8 1 1 1 0.25 0.25 0.15 0.562579
9 -1 0 0 0.15 0.2 0.1 0.681731
10 1 0 0 0.25 0.2 0.1 0.592045
11 0 -1 0 0.2 0.15 0.1 0.644742
12 0 1 0 0.2 0.25 0.1 0.628525
13 0 0 -1 0.2 0.2 0.05 0.661615
14 0 0 1 0.2 0.2 0.15 0.613698
15 0 0 0 0.2 0.2 0.1 0.636765
16 0 0 0 0.2 0.2 0.1 0.636765
17 0 0 0 0.2 0.2 0.1 0.636765
18 0 0 0 0.2 0.2 0.1 0.636765
19 0 0 0 0.2 0.2 0.1 0.636765
20 0 0 0 0.2 0.2 0.1 0.636765

quadratic model in a reliable way. The significance of linear, quadratic, and interac-

tive regression terms of M ,K, and γ are computed statistically using a high F value

with p-value < 0.05. All the regression terms in the fitted model are significant

(see Table 7.4). Fig. 7.20 is used to explain the accuracy of the fitted model. In
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Table 7.4: ANOVA table

Source Deg. of Free-
dom

Adj. Sum of
Squares

Adj. Mean
Squares

F-value p-value

Model 9 0.026667 0.002963 827176.7 < 0.001
Linear terms 3 0.026615 0.008872 2476641 <0.001

M 1 0.020194 0.020194 5637544 < 0.001
K 1 0.000665 0.000665 185731.8 < 0.001
γ 1 0.005755 0.005755 1606648 < 0.001

Square terms 3 0.000004 0.000001 373.57 < 0.001
M2 1 0 0 11.83 0.006
K2 1 0 0 13.09 0.005
γ2 1 0.000002 0.000002 611.68 < 0.001

Interaction
terms

3 0.000049 0.000016 4515.58 < 0.001

M ×K 1 0.000005 0.000005 1387.84 < 0.001
M × γ 1 0.000041 0.000041 11473.87 < 0.001
K × γ 1 0.000002 0.000002 685.03 <0.001

Errors 10 0 0
Lack-of-Fit 5 0 0 * *
Pure Error 5 0 0
Total 19 0.026667
Coefficient of determination R2 = 99.99 %

the normal probability plot against residuals, the data points are aligned along a

straight line and the histogram has a bell shape. Therefore, the residuals follow

a normal distribution. The maximum error entailed in the residual versus fitted

value plots of the model is 0.00010. The coefficient of determination (R2) indicates

the change in response variable for a chosen set of independent variables and the

relevance of the model. The empirical model gives a good fit if R2 value is very close

to 1. Here, R2 is found to be 99.99 % which guarantees the precision of the model.

7.5.1 Statistical Analysis

The fitted model of the response function Nur in terms of uncoded significant

influential parameters is given below

Nur = 0.910541− 0.94622 M − 0.10133 K − 0.77684 γ + 0.0497 M2 − 0.0522 K2

+ 0.3570 γ2 − 0.31532 M K + 0.90665 M γ + 0.22153 K γ

(7.5.3)

The regression coefficients of M,K and γ are negative. These parameters have

a negative impact with Nur. This indicates that heat transfer rate demotes an

enhance in these parameters.
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Figure 7.20: Residual plots for Nur.

Fig. 7.21-7.23 depict the simultaneous effect of pertinent parameters on Nur using

contour and 3-D plots. The heat transfer coefficient is investigated by studying the

interaction of two parameters while keeping the third parameter at a medium level.

It can be noticed from Fig. 7.21 -7.23 that heat transfer coefficient is a decreasing

function of M,K, and γ.

The optimization of heat transfer rate in practical applications implies the maxi-

mization of Nur, Therefore, the levels of the parameters that maximize the heat

transfer rate are estimated to be M = 0.15 (low level), K = 0.15 (low level), and

γ = 0.05 (low level). The maximized Nur value is estimated to be 0.7168 with a

desirability of 0.9999.

7.5.2 Sensitivity analysis

The sensitivity of the heat transfer coefficient is estimated using the the full quadratic

model with the coded coefficients given below:
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(a) Contour plot of Nur for combina-

tions of γ,K .

(b) Response surface plot of Nur for

combinations of γ,K .

Figure 7.21: Contour and response surface plot of Nur for combinations of γ,K .

(a) Contour plot of Nur for combina-

tions of γ,M .

(b) Response surface plot of Nur for

combinations of γ,M .

Figure 7.22: Contour and response surface plot of Nur for combinations of
γ,M .
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(a) Contour plot of Nur for combina-

tions of M,K .

(b) Response surface plot of Nur for

combinations of M,K .

Figure 7.23: Contour and response surface plot of Nur for combinations of
M,K .

Nur = 0.636764− 0.044938 X1 − 0.008157 X2 − 0.023990 X3

+0.000124 X2
1 − 0.000131 X2

2 + 0.000893 X2
3 − 0.000788 X1X2

+0.002267 X1X3 + 0.000554 X2X3,

(7.5.4)

The partial derivatives of the full quadratic model with the coded variables are

computed to find the sensitivity functions as follows:

∂Nur

∂X1

= −0.044938 + 0.000248 X1 − 0.000788 X2 + 0.002267 X3, (7.5.5)

∂Nur

∂X2

= −0.008157− 0.000262 X2 − 0.000788 X1 + 0.000554 X3, (7.5.6)

∂Nur

∂X3

= −0.023990 + 0.001786 X3 + 0.002267 X1 + 0.000554 X2. (7.5.7)

Bar charts in Fig. 7.24 visualize the heat transfer coefficient sensitivity. Sensitivity is

a measurement that interprets the level of change in response variables with variation

in independent variables. The positive or negative sign in the sensitivity function

indicates the nature of the sensitivity and its magnitude delineates the intensity of

the relationship. The sensitivity of Nur is computed by assuming M = 0.2. Nur

is negative sensitive towards M, K and γ. For a fixed value of K magnitude of

sensitivity towards M, K and γ reduce with an increase in γ and the intensity of

the relationship is maximum for M when compared to other variables. Further, the
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sensitivity intensity augments with an increase in K. The change in the sensitivity

rate with varying levels of γ is described as follows (see Table 7.5):

(a) Bar charts depicting the sensitivity

of Nur with X1 = 0, X2 = −1.
(b) Bar charts depicting the sensitivity

of Nur with X1 = 0, X2 = 0.

(c) Bar charts depicting the sensitivity

of Nur X1 = 0, X2 = 1.

Figure 7.24: Bar charts depicting the sensitivity of Nur

❼ The sensitivity towards M varies at the rate of -0.2267%.

❼ The sensitivity towards K varies at the rate of -0.0554%.

❼ The sensitivity towards γ varies at the rate of -0.1786%.
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Table 7.5: The sensitivity values of the response Nur when X1 = 0

X2 X3 Sensitivity values
∂Nur

∂X1

∂Nur

∂X2

∂Nur

∂X3

-1

-1 -0.046417 -0.008449 -0.02633
0 -0.04415 -0.007895 -0.024544
1 -0.041883 -0.007341 -0.022758

Rate of change -0.002267 -0.000554 -0.001786

0

-1 -0.047205 -0.008711 -0.025776
0 -0.044938 -0.008157 -0.02399
1 -0.042671 -0.007603 -0.022204

Rate of change -0.002267 -0.000554 -0.001786

1
-1 -0.047993 -0.008973 -0.025222
0 -0.045726 -0.008419 -0.023436
1 -0.043459 -0.007865 -0.021650

Rate of change -0.002267 -0.000554 -0.001786

7.6 Conclusions

An electrically conducting Reiner Rivlin nanoliquid flow past a rotating disk is

considered in the study. A uniform magnetic field of intensity B0 is applied along

the axial direction. The volume fraction of the nanoparticles on the surface of the

disk is passively controlled by a realistic boundary condition . In addition, thermal

jump conditions and Joule heating effects are accounted. In the presence of a space-

dependent and temperature- dependent heat source effects the conclusions of the

present work are summarized below:

❼ Radial and azimuthal velocities demote with an increment in magnetic field

due to the presence of Lorentz force.

❼ Radial velocity and surface drag decrease with augmentation in Reiner-Rivlin

fluid parameter. It is due to an elevation in the cross-viscosity coefficient.

❼ The temperature profile increases due to both temperature and space-dependent

heat sources. An opposite trend is noted in the heat transfer rate.

❼ Joule heating has a positive influence on the thermal boundary layer. The

heat transfer rate lowers with an increment in the Eckert number.

❼ Hartmann number, Reiner-Rivlin fluid parameter, and thermal slip parameter

show a negative response with heat transfer coefficient.
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❼ The heat transfer sensitivity towards the Hartmann number decreases at the

rate of 0.2267% and the sensitivity towards the Reiner-Rivlin fluid parameter

decreases at the rate of 0.0554% when thermal slip is incremented.
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