
Chapter 8

Significance of nanoparticle shape effect

on MHD convective alumina-water

nanofluid flow over a rotating rigid disk ✯

8.1 Introduction

This work aims in the numerical exploration of the hydromagnetic alumina–water

nanofluid flow due to a rotating rigid disk. The nano fluid flow considering different

nanoparticle shapes (namely sphere, platelet, cylinder, and brick) and the thermo-

hydrodynamic slip constraints have been modeled utilizing the modified Buongiorno

model. Modified Buongiorno model modifies the conventional two-phase Buongiorno

model by additionally considering the volume fraction dependent nanoparticle

properties. The present study has many applications in both engineering and

industrial fields like spin coating, extrusion process, aerodynamics, etc. Von Kármán’s

similarity transformations are exercised in the transmutation of the mathematically

modelled equations into a system of first-order ODE’s and treated numerically

using the generalized differential quadrature method. The consequence of effectual

parameters on the physical quantities and the flow profiles is explained with the aid

of graphs and tables.

8.2 Mathematical formulation

A steady hydromagnetic incompressible and axisymmetric alumina-water nanofluid

flow due to a circular rigid disk placed at z = 0 has been considered (see Fig.

8.1). The flow is due to a constant rotation (Ω) of the disk which establishes a

✯Published in: International Communications in Heat and Mass Transfer (Elsevier), 2022 (129);
105711
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swirling flow in the neighbouring nanofluid layers. Let (u, v, w) be the velocity

components along (r, ϕ, z) directions. Also, let (T, TW , T∞) be the nanofluid

temperature, nanofluid temperature near the disk, and nanofluid temperature far

from the disk, correspondingly and (C, CW , C∞) be the nanofluid concentration,

nanofluid concentration near the disk, and nanofluid concentration far from the

disk, respectively. An external magnetic field (of uniform intensity B0) is applied

along the axial direction. Using the two-phase modified Buongiorno nanofluid model

(Yang et al., 2013), the governing equations take the form (see (Mustafa, 2017),

(U. Khan, Bilal, Zaib, Makinde, & Wakif, 2022), (Mustafa et al., 2018)):

Figure 8.1: Physical configuration
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subject to the following boundary conditions

u = N1
∂u
∂z
, v = rΩ+N1

∂v
∂z
, w = 0,

T = Tw +N2
∂T
∂z
, DB

∂C
∂z

+
ρAl2O3

DT

MAl2O3
T∞

∂T
∂z

= 0



 at z = 0 (8.2.7)

u → 0 , v → 0 , T → T∞ , C → C∞ as z → ∞ (8.2.8)

Physical quantities of interest are (see (Mustafa et al., 2018)):

Local Skin friction coefficient :

Cf =

√
τ 2r + τ 2ϕ

ρf (rΩ)
2 ; τr = µnf

∂u

∂z

∣∣∣∣
z=0

& τϕ = µnf
∂v
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∣∣∣∣
z=0

. (8.2.9)

Local Nusselt number:

Nu =
rqw

kf (TW − T∞)
; qw = knf

∂T

∂z

∣∣∣∣
z=0

. (8.2.10)

Introducing the following similarity transformations (see (Mahanthesh, Lorenzini,

Oudina, & Animasaun, 2020)) into equations (8.2.1) to (8.2.10)

ζ = z
√

Ω
νf
, u = Ωr F (ζ) ,

v = Ωr G (ζ) , w =
√
νfΩ H (ζ) , p = p∞ − 2Ω µf P (ζ) ,

T = T∞ + (Tw − T∞) θ (ζ) , C = C∞ + (CW − C∞) φ (ζ)

The reduced governing equations are given by:

2F +Hζ = 0 (8.2.11)

Fζζ −
A3

A1

MF +
A2

A1

(
G2 − F 2 − FζH

)
= 0 (8.2.12)
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Gζζ −
A3

A1

MG−
A2

A1

(2FG+GζH) = 0 (8.2.13)

θζζ +
Pr

A4

(
Nbχζθζ +Ntθ2ζ − A5Hθζ

)
= 0 (8.2.14)

φζζ +
Nt

Nb
θζζ − ScHφζ = 0 (8.2.15)

with

F (0) = b1 Fζ (0) , G (0) = 1 + b1 Gζ (0) , H (0) = 0 ,

θ (0) = 1 + γ θζ (0) , χζ (0) +
Nt
Nb

θζ (0) = 0 , F (ζ → ∞) → 0,

G (ζ → ∞) → 0 , θ (ζ → ∞) → 0 , φ (ζ → ∞) → 0 .

(8.2.16)

The physical quantities in their reduced form are:

Cfr = Cf Re1/2 = A1

√
F 2
ζ (0) +G2

ζ (0) . (8.2.17)

Nur = Nu Re−1/2 = −A4 θζ (0) . (8.2.18)

where M (magnetic field parameter)=
σfB

2
0

ρfΩ
, τ (effective heat capacity ratio)=

(ρCP )p
(ρCP )f

, P r (Prandtl number)=
(µCP )f

κf
, Nt (thermophoresis parameter)= τ DT (Tw−T∞)

T∞νf
,

Nb (Brownian motion parameter)=
τ MAl2O3

DB(Cw−C∞)

ρAl2O3
νf

, Sc (Schmidt number)=

νf
DB

, b1 (hydrodynamic slip parameter)= N1

(
Ω
νf

) 1
2
, γ (thermal slip parameter)=

N2

(
Ω
ϑf

) 1
2
, and Re (local Reynold’s number)= Ωr2

νf
are the nondimensional quanti-

ties. The nanofluid models, thermophysical properties and the nanoparticle shape

characteristics are described in Tables 8.1, 8.2 and 8.3 respectively.

Table 8.1: Effective nanofluid constants see (Timofeeva et al., 2009),(Mustafa
et al., 2018),(Brinkman, 1952).

Non-spherical Nanoparticles Spherical Nanoparticles
A1 =

µnf

µf
= 1 + a1φAl2O3 + a2φ

2
Al2O3
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µnf
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= 1

(1−φAl2O3)
2.5
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ρnf
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(
ρAl2O3
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3

(
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−1

)
φAl2O3

(
σAl2O3
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+2

)
−

(
σAl2O3

σf
−1

)
φAl2O3

A4 =
knf

kf
=

kAl2O3
+(ñs−1)kf−(ñs−1)ϕ(kf−kAl2O3)

kAl2O3
+(ñs−1)kf+φAl2O3(kf−kAl2O3)

A5 =
(ρCP )nf

(ρCP )f
= (1− φAl2O3) + φAl2O3

(ρCp)Al2O3

(ρCp)f
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Table 8.2: Thermophysical Properties of water and Al2O3 (see (Wakif & Sehaqui,
2022)).

Physical Properties Water Al2O3

ρ (kg/m3) 997.1 3970
k (W/m.K) 0.613 40

σ (S/m) 0.05 10−10

CP (J/kg.K) 4179 765
µ (Pa.s) 89 ×10−5 —

8.3 Numerical solution

Generalized differential quadrature method (GDQM) acts as a powerful numerical

collocation method for tackling linear and nonlinear physical problems due to its

high flexibility and higher accuracy levels. More description on the solving procedure

for the proposed GDQM can be seen in (Thumma, Wakif, & Animasaun, 2020),

(Nayak, Wakif, Animasaun, & Alaoui, 2020). Fig. 8.2 depicts a brief outline on

the steps involved in adopted numerical procedure. The conversion of the infinite

physical domain [0,∞] to the finite computational domain [0, 1] is achieved with the

aid of the following transformations:

ζ = ζ∞ η

F (ζ) = F (ζ∞ η) = F̃ (η)

G (ζ) = G (ζ∞ η) = G̃ (η)

H (ζ) = H (ζ∞ η) = H̃ (η)

θ (ζ) = θ (ζ∞ η) = θ̃ (η)

φ (ζ) = φ (ζ∞ η) = φ̃ (η)





(8.3.1)

where ζ∞ is the appropriate asymptotical value taken by the boundary layer thickness.

The reduced ODE’s, boundary conditions, and physical quantities are transformed

(using equation (8.3.1)) into:

2 ζ∞ F̃ + H̃η = 0 (8.3.2)

F̃ηη −
A3

A1

ζ2∞ M F̃ +
A2

A1

(
ζ2∞ G̃2 − ζ2∞ F̃ 2 − ζ∞ F̃η H̃

)
= 0 (8.3.3)

G̃ηη −
A3

A1

ζ2∞ M G̃−
A2

A1

(
2 ζ2∞ F̃ G̃+ ζ∞ G̃η H̃

)
= 0 (8.3.4)
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Table 8.3: Nanoparticle shape properties of Al2O3 (see (Timofeeva et al., 2009)).

Characteristics of nanoparticles Sphere Platelet Cylinder Brick
a1 —— 37.1 13.5 1.9
a2 —— 612.6 904.4 471.4

Sphericity χ 1 0.52 0.62 0.81

Shape factor ñs =
3
χ 3 5.7 4.9 3.7

θ̃ηη +
Pr

A4

(
Nb θ̃η χ̃η +Nt θ̃2η − A5 ζ∞ H̃ θ̃η

)
= 0 (8.3.5)

φ̃ηη +
Nt

Nb
θ̃ηη − Sc ζ∞ H̃ φ̃η = 0 (8.3.6)

with

F̃ (0) = b1
ζ∞

F̃η (0) , G̃ (0) = 1 + b1
ζ∞

G̃η (0) , H̃ (0) = 0 ,

θ̃ (0) = 1 + γ
ζ∞

θ̃η (0) , φ̃η (0) +
Nt
Nb

θ̃η (0) = 0 ,

F̃ (η → 1) → 0 , G̃ (η → 1) → 0 , θ̃ (η → 1) → 0 , φ̃ (η → 1) → 0 .





(8.3.7)

Re1/2Cfr =
A1

ζ∞

√
F̃ 2
η (0) + G̃2

η (0) (8.3.8)

Re−1/2Nur = −
A4

ζ∞
θ̃η (0) (8.3.9)

In order to achieve a higher level of accuracy, the transformed ODEs are spatially dis-

cretized utilizing the modified Gauss-Lobatto grid points
{
ηi | 0 ≤ ηi ≤ 1 & 1 ≤ i ≤ Ñ

}

given by

ηi =
1

2
−

1

2
cos

(
π (i− 1)

Ñ − 1

)
(8.3.10)

where Ñ is the total number of collocation points. The numerical discretization of

the space derivative for a continuous function T (η) at any collocation point ηi is

given by

T (ñ) (ηi) =
Ñ∑

j=1

d
(ñ)
ij Tj (8.3.11)

where Tj = T (ηj) & 1 ≤ i, j ≤ Ñ are the weighting coefficients for the ñth-order

derivative.
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Figure 8.2: Flowchart depicting the numerical scheme.

According to (Shu, 2012) and (X. Wang, 2015), the coefficients d
(ñ)
ij are explic-

itly defined as:

d
(1)
ij =

∏Ñ
k=1,k ̸=i (ηi−ηk)

(ηi−ηj)
∏Ñ

k=1,k ̸=j (ηj−ηk)
for i ̸= j, 1 ≤ i, j ≤ Ñ .

d
(1)
ij =

Ñ∑
k=1,k ̸=i

d
(1)
ik for i = j, 1 ≤ i, j ≤ Ñ .

d
(ñ)
ij = ñ

[
d
(ñ−1)
ii d

(1)
ij −

d
(ñ−1)
ij

ηi−ηj

]
for i ̸= j, 1 ≤ i, j ≤ Ñ & ñ ≥ 2.

d
(ñ)
ij = −

Ñ∑
k=1, k ̸=i

d
(ñ)
ik for i = j, 1 ≤ i, j ≤ Ñ & ñ ≥ 2.





(8.3.12)

Applying GDQM approximation to equations (8.3.2)-(8.3.7), the discretized nonlin-

ear differential system is given by:
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NDS :

F̃i −
b1
ζ∞

Ñ∑
j=1

d
(1)
ij F̃j = 0, for i = 1,

A2

A1

(
ζ2∞ G̃2

i − ζ2∞ F̃ 2
i − ζ∞

Ñ∑
j=1

d
(1)
ij H̃i F̃j

)

+
Ñ∑
j=1

d
(2)
ij F̃j −

A3

A1
ζ2∞ M F̃i = 0 for i = 2 ≤ i ≤ Ñ − 1.

F̃i = 0, for i = Ñ , .

G̃i −

(
1 + b1

ζ∞

Ñ∑
j=1

d
(1)
ij G̃j

)
= 0, for i = 1,

Ñ∑
j=1

d
(2)
ij G̃j −

A2

A1

(
2 ζ2∞ F̃i G̃i + ζ∞

Ñ∑
j=1

d
(1)
ij H̃i G̃j

)

−A3

A1
ζ2∞ M G̃i = 0, for i = 2 ≤ i ≤ Ñ − 1,

G̃i = 0, for i = Ñ ,

H̃i = 0, for i = 1,

2 ζ∞ F̃i +
Ñ∑
j=1

d
(1)
ij H̃j = 0, for i = 2 ≤ i ≤ Ñ − 1,

θ̃i −

(
1 + γ

ζ∞

Ñ∑
j=1

d
(1)
ij θ̃j

)
= 0, for i = 1,

Pr
A4


Nb

Ñ∑
j=1

d
(1)
ij θ̃j

Ñ∑
j=1

d
(1)
ij φ̃j +Nt

(
Ñ∑
j=1

d
(1)
ij θ̃j

)2

− A5 ζ∞
Ñ∑
j=1

d
(1)
ij H̃i θ̃j




+
Ñ∑
j=1

d
(2)
ij θ̃j = 0, for i = 2 ≤ i ≤ Ñ − 1,

θ̃i = 0, for i = Ñ ,
Ñ∑
j=1

d
(1)
ij φ̃j +

Nt
Nb

Ñ∑
j=1

d
(1)
ij θ̃j = 0, for i = 1,

Ñ∑
j=1

d
(2)
ij φ̃j +

Nt
Nb

Ñ∑
j=1

d
(2)
ij θ̃j − Sc ζ∞

Ñ∑
j=1

d
(1)
ij H̃i φ̃j = 0, for i = 2 ≤ i ≤ Ñ − 1,

φ̃i = 0 for i = Ñ .

The above non-linear algebraic system (NDS) is solved iteratively utilizing Newton-

Raphson method and by taking
(
ζ∞ , Ñ

)
= (30, 100) as the best key values with

an accuracy of 10−11. After accurate generation of the discrete solutions{
F̃ (ηi) , G̃ (ηi) , θ̃ (ηi) , φ̃ (ηi) | 1 ≤ i ≤ Ñ

}
locally, the flow profiles and the

physical quantities can be deduced as:

F (ζi) = F̃ (ηi) (8.3.13)
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G (ζi) = G̃ (ηi) , (8.3.14)

H (ζi) = H̃ (ηi) , (8.3.15)

θ (ζi) = θ̃ (ηi) (8.3.16)

φ (ζi) = φ̃ (ηi) , (8.3.17)

Cfr =
A1

ζ∞

√√√√√




Ñ∑

j=1

d
(1)
1j F̃j




2

+




Ñ∑

j=1

d
(1)
1j G̃j




2

(8.3.18)

Nur = −
A4

ζ∞

Ñ∑

j=1

d
(1)
1j θ̃j (8.3.19)

The veracity of the code and the validation of the current problem have been

adjudged through a restrictive comparison with already published works (see Tables

8.4 and 8.5).

Table 8.4: Validation for regular fluids ( Pr = 6.2, φAl2O3 = 0, M = 0, b1 =
0, γ = 0, ζ∞ = 30, Ñ = 100 )

Physical Quantities (Turkyilmazoglu,
2014)

(J. A. Khan, Mustafa,
Hayat, & Alsaedi,
2018)

Present Results

Fζ (0) 0.51023262 0.510232 0.510232619
−Gζ (0) 0.61592201 0.615923 0.615922014
−H (∞) 0.88447411 0.88462 0.88447411
−θζ (0). 0.93387794 0.933877 0.93387794

Table 8.5: Validation for nanofluids ( Pr = 7, A1 = A2 = A3 = A4 = A5 = 1,
Sc = 5, Nb = 0.5, Nt = 0.5, b1 = 0, γ = 0, ζ∞ = 15, Ñ = 100 )

M
(J. A. Khan et al., 2018) Present Results

−θζ (0)
√

F 2
ζ (0) +G2

ζ (0) −θζ (0)
√

F 2
ζ (0) +G2

ζ (0)

0.5 ——— 0.93201894 0.642783196 0.932018932
1 0.50409254 1.1128862 0.504092494 1.112886149
1.5 ———– 1.2929102 0.392295982 1.292910169
2 ———– 1.4604084 0.306400265 1.460408379
2.5 ———– 1.6148965 0.242922257 1.614896532
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8.4 Results and Discussion

The consequence of pertinent parameters over the radial velocity (F (ζ)), azimuthal

velocity (G (ζ)), nanofluid temperature profile (θ (ζ)), and nanofluid concentration

profiles (φ (ζ)) has been depicted through Figs. 8.3-8.23. The Prandtl number and

infinity are chosen as 6.2 and 8, respectively. The thermophysical properties of

water and alumina nanoparticles are identified in Table 8.2. The base values for

the effectual parameters are fixed at φAl2O3 = 0.02, M = 0.2, Sc = 5, Nb = 0.2,

Nt = 0.1, b1 = 0.25, γ = 0.25. Further, the impact of nanoparticle shape factor on

the physical quantities is elucidated in Tables 8.6 and 8.7.

Figs. 8.3 and 8.4 display the variation in F (ζ) and G (ζ) for differing values of φAl2O3 ,

respectively. Both F (ζ) and G (ζ) elevates with augmentation in φAl2O3 . The radial

velocity profile attains the maximum value after travelling a distance from the disk

and finally converges asymptotically whereas the azimuthal velocity profile achieves

the highest magnitude near the disk and reduces subsequently. The elevation in

θ (ζ) due to an increment in φAl2O3 is depicted in Fig. 8.5. This escalation in the

nanofluid temperature is due to the enhanced thermal conductivity and also due to

the increased frictional drag initiated by the hike in nanofluid viscosity.

The influence of M on the radial and azimuthal velocity profiles is shown in

Table 8.6: Numerical estimation of Cfr for various shapes of nanoparticles (M =
0.2, Sc = 5, Nb = 0.2, Nt = 0.1, b1 = 0.25, γ = 0.25, ζ∞ = 30, Ñ =
100 )

Slope ofñs

Cfr

Cfr = f(ñs, φAl2O3)φAl2O3 = 0.01 φAl2O3 = 0.02 φAl2O3 = 0.03 φAl2O3 = 0.04
3 0.70204642 0.719531478 0.737435414 0.7557736 1.79085
3.7 0.718533752 0.788333074 0.889210514 1.015145323 9.90712
4.9 0.780370295 0.931753125 1.122969268 1.342003469 18.76115
5.7 0.855189646 1.043874203 1.245861103 1.458150886 20.1087

Figs. 8.6 and 8.7, respectively. An increment in M retards both the velocity profiles.

Physically, an augmentation in M enhances the Lorentz force (a conflicting force)

that brings down the velocity. In addition, Lorentz force fuels a frictional force that

leads to an escalation in the nanofluid temperature. Hence, θ (ζ) increases with

M (shown in Fig 8.8). The magnetic field parameter has a mixed impact on the

nanofluid concentration (see Fig 8.9). Initially, φ (ζ) decreases with M and gradually
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Table 8.7: Numerical estimation of Nur for various shapes of nanoparticles
(M = 0.2, Sc = 5, Nb = 0.2, Nt = 0.1, b1 = 0.25, γ = 0.25, ζ∞ =
30, Ñ = 100.

Slope of
ñs

Nur

Nur = f(ñs, φAl2O3)

φAl2O3 = 0.01 φAl2O3 = 0.02 φAl2O3 = 0.03 φAl2O3 = 0.04
3 0.761567002 0.77656073 0.791540424 0.806513545 1.49819
3.7 0.763692739 0.778935228 0.791999253 0.802907625 1.30708
4.9 0.765231559 0.779448063 0.78971431 0.797404207 1.06784
5.7 0.763684413 0.777463582 0.789397437 0.800430499 1.22172

Figure 8.3: Impact of φAl2O3 on F (ζ).

the trend reverses.

Figs. 8.10 and 8.11 depicts the consequence of b1 on F (ζ) and G (ζ), respectively.

An augmentation in b1 transfers the stretching effects onto the fluid layers in the

radial and azimuthal direction that decelerates the fluid flow. The positive impact

of b1 on the θ (ζ) and φ (ζ) has been illustrated in Figs. 8.12 and 8.13, respectively.

Fig. 8.14 elucidates the drop in θ (ζ) due to escalating γ values. This is physically

associated to the fact that mounting values of γ decreases the reactivity of fluid flow

within the boundary layer, which reduces the amount of heat processed and thus
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Figure 8.4: Impact of φAl2O3 on G (ζ).

Figure 8.5: Impact of φAl2O3 on θ (ζ).
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Figure 8.6: Impact of M on F (ζ).

Figure 8.7: Impact of M on G (ζ).
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Figure 8.8: Impact of M on θ (ζ).

Figure 8.9: Impact of M on φ (ζ).
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Figure 8.10: Impact of b1 on F (ζ).

Figure 8.11: Impact of b1 on G (ζ).
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Figure 8.12: Impact of b1 on θ (ζ).

Figure 8.13: Impact of b1 on φ (ζ).
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descends the nanofluid temperature. In addition, φ (ζ) enhances near the disk and

φ (ζ) depletes away from the disk for augmenting values of γ (see Fig. 8.15). The

flow rate is maximal away from the disk relative to the boundary layer which is the

reason behind the decrease in nanofluid concentration.

The effect of Nt on θ (ζ) and φ (ζ) profiles are displayed in Figs. 8.16 and 8.17,

Figure 8.14: Impact of γ on θ (ζ).

respectively. θ (ζ) escalates with mounting Nt values and φ (ζ) exhibits a negative

impact near the disk which gradually transits into a positive impact (away from

the disk). A rise in Nt accelerates the movement of hot fluid particles to the cold

regions which enhances the thermal gradient and therefore the nanofluid temperature

increases. Further, the increase in the nanofluid concentration away from the disk is

due to improved mass transport caused by the movement of fluid particles from the

disk to the ambient region.

Fig 8.18 elucidates the mixed impact of Nb on φ (ζ). φ (ζ) demotes near the disk

and enhances away from the disk. Physically, an increment in Nb promotes the

haphazard motion of nanoparticles that leads to increased collision near the disk

(relative to away from the disk) caused by a large centrifugal force.
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Figure 8.15: Impact of γ on φ (ζ).

Figure 8.16: Impact of Nt on θ (ζ).
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Figure 8.17: Impact of Nt on φ (ζ).

Figure 8.18: Impact of Nb on φ (ζ).
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Fig 8.19 depicts the influence of Sc on φ (ζ). φ (ζ) reduces near the disk and

increases far from the disk. This is due to a mild diffusivity that encourages the

nanoparticle migration from the hot disk towards the cold ambient fluid.

Figs. 8.20-8.23 illustrates significance of nanoparticle shape factor on F (ζ),

Figure 8.19: Impact of Sc on φ (ζ).

G (ζ), θ (ζ), and φ (ζ), respectively. Initially, F (ζ) retards near the disk and grad-

ually reverses the trend. In addition, G (ζ) and θ (ζ) are increasing functions in

ñs whereas φ (ζ) is a reducing function of ñs. Sphericity explores the resemblance

of an object with a perfect sphere and the nanoparticle shape factor is inversely

proportional to sphericity. An increment in the nanoparticle shape factor elevates

the fluid flow in azimuthal direction due to the rotational effect. Further, aug-

menting ñs values exert more friction in the radial direction (near the disk) that

helps in enhancing the nanofluid temperature. Tables 8.6 and 8.7 describe the

influence of nanoparticle shape on the drag coefficient and the heat transfer rate,

respectively. The highest drag is exhibited by platelet-shaped alumina nanoparticles

followed by cylinder-, brick-, and sphere-shaped alumina nanoparticles. From Ta-

ble 8.7, it can be concluded that heat transfer rate ascends with an increase in φAl2O3 .
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Figure 8.20: Impact of ñs on F (ζ).

Figure 8.21: Impact of ñs on G (ζ).
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Figure 8.22: Impact of ñs on θ (ζ).

Figure 8.23: Impact of ñs on φ (ζ).
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8.5 Conclusions

The hydromagnetic alumina-water nanofluid flow past a rotating rigid disk has been

theoretically investigated. The nanofluid flow considering different nanoparticle

shapes (namely sphere, platelet, cylinder, and brick) and the thermo-hydrodynamic

slip constraints have been modeled utilizing the modified Buongiorno model. The

mathematically modeled equations are transmuted into a system of first-order ODEs

using Von Kármán’s similarity transformations and then resolved numerically by

employing generalized differential quadrature method. The key conclusions of the

present study are:

❼ The azimuthal velocity is inversely proportional to the hydrodynamic slip

parameter.

❼ The nanofluid temperature ascends with the hydrodynamic slip parameter and

descends with the thermal slip parameter.

❼ The nanofluid temperature is an increasing function of nanoparticle shape factor

whereas the nanofluid concentration is a reducing function of nanoparticle

shape factor.

❼ The heat transfer rate ascends with an increase in the volume fraction of

alumina nanoparticle.

❼ The highest drag is exhibited by platelet-shaped alumina nanoparticles followed

by cylinder-, brick-, and sphere-shaped alumina nanoparticles.
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