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Appendix A 

An Analysis of Behavioural Bias and Investment Performance 

among Equity Mutual Fund Investors in Kerala 

QUESTIONNAIRE 

Please  for each question. 

1. Gender:  a. Male   b. Female 

2. District: …………………….. 

3. Residential Location:  

a. Corporation  b. Municipality  c. Panchayath  

4. Age: 

a. Below 20 years 
b. 20 – 40 years 
c. 40 – 60 years 
d. Above 60 years 

5. Education level:  
a. Higher Secondary & Below 
b. Graduate 
c. Post Graduate 
d. Professional 
e. Vocational/Technical 

6. Occupation:  
a. Employed 
b. Professional 
c. Businessman 
d. Retired 
e. Others 
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7. Marital status:  
a. Married   b. Unmarried 

8. Annual Income :   

a. Less than Rs. 5,00,000 
b. Rs. 5,00,000 - 10,00,000 
c. Rs. 10,00,000- 15,00,000 
d. More than Rs. 15,00,000 

 

9. Annual mutual fund Investment:  

a. Less than Rs. 25,000 
b. Rs. 25,001 – 50,000 
c. Rs. 50,001 – Rs. 1,00,000 
d. More than Rs. 1,00,000 

 

10. Mode of Investment:  

a. Lumpsum 
b. SIP 
c. SIP & Lumpsum 

 

11. Years of experience in mutual fund investment :  

a. Less than 1 year 
b. 1-3 years 
c. 3-5 years 
d. Above 5 years 
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Behavioural Aspects 

Read each statement and  the following according to your 

agreement/disagreement. 

SA = Strongly Agree, A = Agree, N = Neutral, D = Disagree, SD = Strongly 

Disagree  

1.  
I make investment decisions by monitoring the 
performance of a few samples. 

SA A N D SD 

2.  
I invest in funds that have performed better 
recently. 

SA A N D SD 

3.  
I avoid investing in funds that have performed 
poorly in the recent past. 

SA A N D SD 

4.  
I prefer to buy hot stocks instead of poorly 
performed stocks. 

SA A N D SD 

5.  
I have sufficient knowledge about the Indian 
mutual fund industry. 

SA A N D SD 

6.  
My experience in trading with funds helps me 
choose funds that outperform the market. 

SA A N D SD 

7.  
I have confidence in my ability to pick better 
funds. 

SA A N D SD 

8.  
I never commit mistakes while making 
investment decisions. 

SA A N D SD 

9.  
I believe that I can master the future trend of 
my investment. 

SA A N D SD 

10.  
I think that market trends are often consistent 
with my perspectives. 

SA A N D SD 

11.  
I rely heavily on one piece of information in 
making investment decision. 

SA A N D SD 

12.  
I forecast the changes in net asset value of 
funds in the future based on the recent net asset 
values. 

SA A N D SD 

13.  
I invest in a fund because I heard good news 
about it when I decided to make a investment. 

SA A N D SD 

14.  
I become more optimistic when the market 
rises. 

SA A N D SD 

15.  I become more pessimistic when the market SA A N D SD 
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falls. 

16.  
I make investment decisions based on available 
information. 

SA A N D SD 

17.  
I give more importance to current information 
when I make investment decisions. 

SA A N D SD 

18.  
I select the funds of companies which I already 
know. 

SA A N D SD 

19.  
I consider the information from friends and 
relatives as a reliable reference for my 
investment decisions. 

SA A N D SD 

20.  I prefer to invest in already known funds. SA A N D SD 

21.  
I hold the funds when the price decreases, even 
if it increases the loss. 

SA A N D SD 

22.  
I invest in funds that I already own, even if 
their NAV goes down, to justify my 
investment decision. 

SA A N D SD 

23.  
I believe that I get profit on investment due to 
my skill. 

SA A N D SD 

24.  
The NAV of funds, which I selected by 
studying myself, increases. 

SA A N D SD 

25.  
The NAV of funds, which I selected due to 
others’ recommendations, falls. 

SA A N D SD 

26.  
I collect maximum information from experts 
about funds, to confirm my investment 
decisions. 

SA A N D SD 

27.  
I study the nature of funds and search for 
information while making investments. 

SA A N D SD 

28.  
I seek market news that confirms my 
investment decision as correct. 

SA A N D SD 

29.  
When an investment is not going well, I 
usually seek information that confirms I made 
the right decision about it. 

SA A N D SD 

30.  I seek more risk after a prior gain. SA A N D SD 

31.  I become more risk averse after a prior loss. SA A N D SD 
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32.  
The pain of financial loss is greater than the 
pleasure of financial gain. 

SA A N D SD 

33.  I prefer to invest in high-performing funds. SA A N D SD 

34.  
I tend to hold onto losing funds too long, 
hoping for a reversal. 

SA A N D SD 

35.  I used to sell winning funds too soon. SA A N D SD 

36.  
I feel more sorrow about holding onto losing 
funds too long than about selling winning 
funds too soon. 

SA A N D SD 

37.  I buy funds in times of bullish trends. SA A N D SD 

38.  I sell funds in times of bearish trends. SA A N D SD 

39.  I invest in funds in which my friends invest. SA A N D SD 

40. 
My investment decisions are influenced by the 
investment behaviour of the majority. 

SA A N D SD 

41. I would follow the market information to trade. SA A N D SD 

42. 
I believe I have greater control over my 
investment. 

SA A N D SD 

43. 
I can predict the market in a more logical 
manner. 

SA A N D SD 

44. 
I tend to invest more when I am successful in 
my previous investment. 

SA A N D SD 

45. 
I tend to treat each element of my investment 
portfolio separately. 

SA A N D SD 

46. 
I save a part of my income for investing in the 
stock market. 

SA A N D SD 

47. 
The rate of return on my recent investment 
meets my expectations. 

SA A N D SD 

48. 
My rate of return is equal to or higher than the 
average rate of return in the market. 

SA A N D SD 

49. 
I feel satisfied with my investment decisions 
over the last year. 

SA A N D SD 
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Appendix B 

DATABASE FOR THE STUDY 

B.1 Database for the First Objective 

Table B.1 

Average Annual Returns of Equity Mutual Funds in India 

Year 
Large-cap 

Funds 
Large and Mid-cap 

Funds 
Mid-cap 
Funds 

Small-cap 
Funds 

2011 (21.76) (23.88) (23.74) (27.31) 

2012 27.31 34.01 40.52 40.79 

2013 5 4.99 3.13 3.07 

2014 40.96 52.08 69.73 71.98 

2015 1.01 3.55 7.17 8.89 

2016 3.30 6.62 3.91 5.82 

2017 30.63 38.82 42.40 47.52 

2018 (1.91) (7.33) (11.37) (17.27) 

2019 11.78 8.54 3.04 (1.51) 

2020 14 16.20 24.30 30.66 

2021 25.9 37.43 44.6 62.8 

Source: Compiled from the Websites of Mutual Fund AMCs 
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Appendix C 

TOOLS USED IN TIME SERIES DATA ANALYSIS 

C.1 Augmented Dickey Fuller Test 

A stationary time series is one whose statistical properties such as mean, variance, 

autocorrelation, etc. are all constant over time. Such statistics are useful as 

descriptors of future behaviour only if the series is stationary. In statistics, a unit 

root test tests whether a time series variable is non-stationary and possesses a unit 

root. In this study, ADF tests have been conducted to examine the stationarity 

properties of the variables. Before understanding ADF Test, one must know the 

basics of a Dickey Fuller test. Dickey and Fuller (1979) consider three different 

regression equations that can be used to test the presence of a unit root: 

ΔYt = γYt−1 + εt        (C.1) 

ΔYt = α0 + γYt−1 + εt       (C.2) 

ΔYt = α0 + γYt−1 + α2t + εt      (C.3) 

In the above equations, the difference between the three regressions concerns the 

presence of the deterministic elements a0, a2t. While the first equation represents a 

pure random walk model, the second equation adds an intercept or drift term into 

the model and the third equation includes both an intercept and linear time trend. 

The test is used to identify the value of γ. If γ = 0, it implies that the Yt sequence 

contains a unit root. The test estimates the value of γ and associated standard error 

of the equations using OLS method. By analysing the value of t-statistic along 

with the probability value helps to determine whether to accept or reject the null 

hypothesis of γ = 0. Dickey Fuller test assumes that the error term εt is 

uncorrelated. In case when no such assumption regarding εt is taken into 

consideration, Dickey and Fuller have developed another unit root test which is 

known as the ADF test. In this test, the lagged difference terms of the variable are 
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included in the model to make the error term serially independent. This test is 

conducted by‘augmenting’the preceding three equations such as Equation (C.1, 

C.2 and C.3) by adding the lagged values of the independent variable ΔYt. The 

ADF test can handle more complex models than the Dickey-Fuller test, and it is 

also more powerful. The ADF test may be specified as follows: 

ΔYt = α0 + α1t + γYt−1 + X k i=1 βiYt−i + εt       (C.4) 

Where εt represents a pure white noise error term 

Δ represents the difference operator 

γ and β represents the parameters. 

ADF test follows the same asymptotic distribution as the DF statistics, i.e whether 

γ = 0 so the same critical values can be used. It is important to note that the 

selection of statistic depends on the deterministic components included in the 

regression equation. When there is no intercept and trend, τ statistic is used; with 

only the intercept, τ statistic is used and with both intercept and trend, ττ statistic is 

used. The statistics labelled τ, τ and ττ are the appropriate statistics to be used in 

Equations (C.1, C.2 and C.3) respectively. For ADF test, the value of K is 

determined based on either AIC or SIC. 

C.2 Vector Auto Regression (VAR) 

VAR method is widely used in the estimation of appropriate lag length of each 

variable in the system. It is possible to use different lag length for each variable in 

the equation. Such type of VAR is called as NEAR VAR and can be estimated 

through Seemingly Unrelated Regression. But for the sake of simplicity the same 

lag length is used for all equations. Various lag selection criteria are used to select 

the optimum lag length of the model. These are Likelihood Ratio, Final Prediction 

Error, Akaike Information Criteria, Schwarz Information Criteria and Hannan- 

Quinn information criteria. After setting lag length, the next step is to estimate the 

model through OLS. However, it is difficult to interpret individual coefficients in 
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estimated VAR models directly. To overcome this problem, advanced techniques 

like impulse response function and variance decomposition are made use of. 

Suppose a multivariate VAR is given as follows: 

Xt = A0 + A1Xt−1 + A1Xt−2 + ........... + ApXt−p + et    (C.5) 

Where, Xt = the (n × 1) vector containing each of the n variables included in the 

VAR  

A0 = an (n × 1) vector of intercept terms.  

Ai = an (n × n) matrix of coefficient. et = an (n × 1) vector of error terms.  

In the above example, matrix A0 contains n intercept term and each matrix Ai 

contains n2 coefficients, hence n + pn2 terms need to be estimated. 

Unquestionably, a VAR will be over parameterized by which many of these 

coefficient estimates can be properly excluded. 

C.3 Johansen’s Co-integration Test 

Johansen Co-integration test, named after Søren Johansen, is a procedure for 

testing cointegration of several, say k, I(1) time series. This test permits more than 

one cointegrating relationship so is more generally applicable than the Engle–

Granger test which is based on the Dickey–Fuller (or the augmented) test for unit 

roots in the residuals from a single (estimated) cointegrating relationship. There 

are two types of Johansen test, either with trace or with eigenvalue, and the 

inferences might be a little bit different. The null hypothesis for the trace test is 

that the number of cointegration vectors is r = r* < k, vs. the alternative that r = k. 

Testing proceeds sequentially for r* = 1,2, etc. and the first non-rejection of the 

null is taken as an estimate of r. The null hypothesis for the "maximum 

eigenvalue" test is as for the trace test but the alternative is r = r* + 1 and, again, 

testing proceeds sequentially for r* = 1, 2 etc., with the first non-rejection used as 

an estimator for r. 

The trace test and maximum eigen value test can be shown in equations 
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Jtrance=-T ΣN 

i=r+1ln (1- λˆi)         (C.6) 

Jtmax=-T ln (1- λˆr+1)        (C.7) 

Where T is the sample size 

λˆi is the ith largest canonical correlation. 

The trace test tests the null hypothesis of r cointegrating vectors against the 

alternative hypothesis of n cointegrating vectors. The maximum eigen value test, 

on the other hand, tests the null hypothesis of r cointegrating vectors against the 

alternative hypothesis of r +1 cointegrating vectors. 

C.4 Vector Error Correction Model 

If a set of variables are found to have one or more cointegrating vectors, then a 

suitable estimation technique that can be used to adjust both short run changes in 

variables and deviations from equilibrium a VECM. Granger (1969) argued that 

VECM is more appropriate to examine the causality between the series at I (1). 

VECM is the restricted form of unrestricted VAR and restriction is levied on the 

presence of the long run relationship between the series. The system of ECM 

makes use of all series endogenously. This system allows the predicted values to 

explain itself both by its own lags and lags of forcing variables as well as the lags 

of the ECT and by residual term. The VECM equation is as follows: 

(C.8) 

Where C's, β's and γ's are the parameters to be estimated 

ECM t−1 represents the one period lagged error-term derived from the co-

integration vector 

ε's are serially independent with mean zero and finite covariance matrix  
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All variables in the model are treated as endogenous variables. F test is applied to 

examine the direction of causal relationship between the variables. The 

coefficients on the ECM represent how fast deviations from the long-run 

equilibrium become stable. 

C.5 Granger Causality Test 

Causality refers to the ability of one variable containing useful information to 

predict and therefore influence the value of another variable based on linear least 

squares (Diebold 2007). To explain the causality test, the Granger (1969) 

definition of the proof of causality is that if variable Xt can be predicted with 

greater accuracy by using past values of the variable Yt when all other terms or 

factors remain unchanged, it simply says Yt that causes Xt. Therefore, the variables 

Yt and Xt can affect each other with distributed lags (past period). Causality test 

reveals which variable is exogenous and which variables are endogenous.  

Engle and Granger (1987), find that a causal relationship exists in at least one 

direction if two individual variables are cointegrated. The VAR model can be 

constructed in terms of time series at level form, (I(0)). It also can be constructed 

in terms of the first difference of the variable, (I(1)), with the addition of an ECT 

to capture the dynamic short-run response. However, if the data are not 

cointegrated (I(1)), the causality test can be derived from transforming the data 

into stationarity.  

C.6 Variance Decomposition Analysis 

Short run variations occurring in a variable are mostly due to its own shocks. 

However, there are chances of other variables to have an impact on the variable. 

Forecast Error Variance Decomposition (FEVD) helps to measure the impact of 

external variables on the selected variable. While Impulse Response Function 

(IMF) analyses the dynamic behaviour of the target variables due to unanticipated 

shocks within a VAR model, variance decomposition analysis determines the 
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relative importance of each innovation on the variables in the system. Variance 

decompositions analysis can be considered as similar to R2 values associated with 

the dependent variables in different horizons of shocks. To calculate n-period 

forecast error Xt+n considering the vector moving average representation of VAR, 

the following equation is used. 

Xt+n-EtXt+n = μ + Σ𝑛−1 θ𝑖=0 iεt+n−1      (C.9) 

Considering Yt, the first element of the Xt+n matrix in Equation (C.9), the 

variance 

of the n-step-ahead forecast error can be calculated as: 

Yt + n-EtXt+n = θ11(0)εyt+n + θ11(1) εyt+n-1+....+ θ11(n-1)εyt+1+θ12(0)εzt+n 

+θ12(1)εzt+n-1 + .... + θ12(n-1) εzt+1      (C.10) 

or 

σy(n)2 = σ2y [θ11(0)2 + θ11(1)2 +....+θ11(n-1)2] + σ2z [θ12(0)2 + θ12(1)2 +.... + 

θ12(n-1)2]          (C.11) 

 

Where σy(n)2 and σz(n)2 denote the n-step-ahead forecast error variance of Yt+n 

and Zt+n, respectively. While the first part of the Equation (C.10) shows the 

proportion of variance due to the variables own shock i.e., Yt, the second part of 

the Equation (C.11) shows the proportion of variance due to the other variables 

shock i.e., Zt. 

Theoretically, the first part decreases over time and the second part of the variance 

increases. However, it is typical for a variable to explain almost all of its forecast 

error variance at a short horizon and smaller proportions at longer horizons. From 

this standpoint, variance decomposition analysis is useful to assess how one 

variable explains a considerable portion of forecast error variance of another 

variable. That is, when a shock εz explains none of the forecast error variance of 

the sequence Yt at all forecast horizons, i.e., δσ2y/σ2z ≈ 0, we may say that Yt 

evolves indecently of the Zt shocks i.e, εz. In addition to that, when a shock given 

to the Zt sequence i.e.,εz explains the entire forecast error variance of the sequence 
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Yt at all forecast horizons, i.e., δσ2 y/σ2z≈ 100%, may say that Yt sequence is 

totally endogenous. 

C.7 Impulse Response Function 

Impulse response function is the reaction of any dynamic system in response to 

some external change. It is a useful tool in determining the magnitude, direction, 

and the duration of the variables in the system which are affected by an external 

variable’s shock. Its main purpose is to describe the evolution of a model's 

variables in reaction to a shock in one or more variables. For estimating impulse 

response function, VAR model is be transformed into Vector Moving Average 

(VMA) as it allows to identify the effects of various shocks on variables in the 

system. In a VAR model which includes two variables, the form of the impulse 

response function can be written as: 

   (C.12) 

     (C.13) 

and 

        (C.14) 

Where θi is the impulse response function of disturbances. 

Therefore, impulse response function is analysed by reading off the coefficients in the 

moving average representation of the process. If the innovations εtâĹŠi are 

contemporaneously uncorrelated, interpretation of the impulse response will be 

straightforward. For example, the ith innovation of εt is simply a shock to the ith 

endogenous variable in the system. However, the residuals generated by the VAR 

models are usually contemporaneously correlated. This is because in a VAR model 

only lagged endogenous variables are admitted on the right-hand side of each equation 
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(in addition to a constant term), and hence all the contemporaneous shocks which 

impact on Xt are forced to feed through the residuals uit. While this may not cause a 

problem in the estimation of the VAR model, the impulse responses and variance 

decompositions derived from the initial estimates of the VAR model can be affected 

because any adjustment made in the order of the variables entered in the system could 

produce different results. Thus, there is a need to impose some restrictions when 

estimating the VAR model to identify the impulse response function. In this regard, a 

common approach is the Cholesky decomposition, which was originally applied by 

Sims in 1980. The Cholesky decomposition overcomes the problem of 

contemporaneous relationships among the innovations error terms within the 

estimated VAR model by identifying structural shocks so that the covariance matrix of 

the estimated residuals is lower triangular. In fact, the Cholesky decomposition 

suggests that there is no contemporaneous pass-through from Yt to the other variable, 

zt. More formally, in the VAR, the matrix error structure becomes left triangular. In 

practice, this means that the Cholesky decomposition attributes all the effect to the 

variable that comes first to the target variable in the VAR system. 

C.8 Auto Regressive Integrated Moving Average (ARIMA) 

An Autoregressive Integrated Moving Average (ARIMA) model is a generalization of 

an autoregressive moving average (ARMA) model. Both of these models are fitted to 

time series data either to better understand the data or to predict future points in the 

series (forecasting). ARIMA models are applied in some cases where data show 

evidence of non-stationarity, where an initial differencing step (corresponding to the 

"integrated" part of the model) can be applied one or more times to eliminate the non-

stationarity. The AR part of ARIMA indicates that the evolving variable of interest is 

regressed on its own lagged (i.e., prior) values. The equation for the AR model is 

shown below: 

    (C.15) 
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The respective weights (Ф1, Ф2 …Фp) of the corresponding lagged observations are 

decided by the correlation between that lagged observation and the current 

observation. If the correlation is more, the weight corresponding to that lagged 

observation is high (and vice-versa). This (p) is called the lag order. It represents the 

number of prior lag observations we include in the model i.e., the number of lags 

which have a significant correlation with the current observation. The MA part 

indicates that the regression error is actually a linear combination of error terms whose 

values occurred contemporaneously and at various times in the past. 

    (C.16) 

The ε terms represent the errors observed at respective lags and the weights (ω1, ω2 

…ωq) are calculated statistically depending on the correlations. (q) represents the size 

of the moving window i.e., the number of lag observation errors which have a 

significant impact on the current observation. It’s similar to the lag order (p), but it 

considers errors instead of the observations themselves. 

When we combine the AR and MA equations, we get 

     (C.17) 

The I (for "integrated") indicates that the data values have been replaced with the 

difference between their values and the previous values (and this differencing process 

may have been performed more than once). This is equivalent to performing a 

transformation of the form: 

         (C.18) 

So to revise, the final ARIMA model will take the following form, ARIMA (p,d,q). 

Where p represents Auto Regressive (AR) 

d represents order of differencing (I) 

q represents moving average (MA) 


