
CHAPTER 3

Three-dimensional MHD Hybrid

Nanofluid Flow Between Two Vertical

Porous Plates Moving In Opposite

Directions ∗

3.1 INTRODUCTION

The theoretical and experimental survey on nanofluids, the efficient energy trans-

port fluids describes their enormous interpretations and implications including heat

exchangers and electronic devices. The strengthening in thermophysical properties

of nanofluids adjudged, hybrid nanofluid attained much attention. The synergic ef-

fects improve thermal qualities and potential utilities of nanoliquid, beneficial in the

industrial area such as nuclear system cooling, thermal energy generating system,

hot rolling, solar energy systems, etc.

The present chapter aims to analytically explore the three-dimensional convec-

tive hydromagnetic hybrid nanoliquid (with suspended Al2O3 and Fe3O4 nanopar-

ticles) flow between two oppositely moving vertical porous plates. Governing equa-

tions are solved using the perturbation technique and the consequence of effectual
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CHAPTER 3

parameters on velocity and temperature profiles are analyzed with aid of graphs

using MATLAB software. The rate of heat transfer is statistically scrutinized using

response surface methodology and sensitivity analysis.

Figure 3.1: Physical configuration

3.2 MATHEMATICAL FORMULATION

An unsteady convective hybrid nanoliquid flow between two vertical porous plates

involving a magnetic field (of uniform strength, B0 applied normally to the plane

of the plate) is considered (see Figure 3.1). The problem is developed utilizing the

following conditions:

1. Parallel plates are traveling in different directions with uniform velocities.
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Section 3.2

2. The upward and downward moving plates are subjected to transverse sinu-

soidal injection velocity and constant suction velocity, respectively.

3. Induced magnetic field has been neglected due to the assumption of a small

magnetic Reynolds number.

4. The injection velocity distribution is of the form:

v∗(z∗) = V0(1 + ε1 cos(πz
∗/d))

5. Without loss of generality, the distance d between the plates is taken equal to

the wavelength of the injection velocity.

6. The temperature of the downward moving plate is at constant temperature

T1 and that of the upward moving plate fluctuating with time is given as:

T ∗(t∗) = T0 + ε2(T0 − T1)e
iω∗t∗

Utilizing Boussinesq’s approximation and the above assumptions, governing equa-

tions (referred from (Singh & Mathew, 2009b)) are given by:

∂v∗

∂y∗
+

∂w∗

∂z∗
= 0 (3.2.1)

∂u∗

∂t∗
+ v∗

∂u∗

∂y∗
+ w∗

∂u∗

∂z∗
= − 1

ρhnf

[

∂p∗

∂x∗
− µhnf

(

∂2u∗

∂y∗2
+

∂2u∗

∂z∗2

)

+ σhnfB
2
0u

∗

]

+

gβhnf (T
∗ − T1) (3.2.2)

∂v∗

∂t∗
+ v∗

∂v∗

∂y∗
+ w∗

∂v∗

∂z∗
= − 1

ρhnf

[

∂p∗

∂y∗
− µhnf

(

∂2v∗

∂y∗2
+

∂2v∗

∂z∗2

)]

(3.2.3)

∂w∗

∂t∗
+ v∗

∂w∗

∂y∗
+ w∗

∂w∗

∂z∗
= − 1

ρhnf

[

∂p∗

∂z∗
− µhnf

(

∂2w∗

∂y∗2
+

∂2w∗

∂z∗2

)

+ σhnfB
2
0w

∗

]

(3.2.4)

∂T ∗

∂t∗
+ v∗

∂T ∗

∂y∗
+ w∗

∂T ∗

∂z∗
=

Khnf

(ρCp)hnf

[

∂2T ∗

∂y∗2
+

∂2T ∗

∂z∗2

]

(3.2.5)
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subject to the boundary conditions:

y∗ = 0, u∗ = U0, v
∗(z∗) = V0(1 + ε1 cos

πz∗

d
), w∗ = 0,

T ∗(t∗) = T0 + ε2(T0 − T1)e
iω∗t∗ ,

y∗ = d, u∗ = −U0, v
∗(z∗) = V0, w

∗ = 0, T ∗ = T1















(3.2.6)

Hybrid nanofluid model used is

Effective Dynamic Viscosity:

C1 =
µf

µhnf

= (1− φ1)
2.5(1− φ2)

2.5

Effective Density:

C2 =
ρhnf
ρf

= (1− φ2)

[

1− φ1 + φ1

(

ρs1
ρf

)]

+ φ2

(

ρs2
ρf

)

Effective Electrical Conductivity:

C3 =
σhnf

σf

= 1 +
3
(

φ1σ1+φ2σ2

σf
− (φ1 + φ2)

)

2 +
(

φ1σ1+φ2σ2

(φ1+φ2)σf

)

−
(

φ1σ1+φ2σ2

σf
− (φ1 + φ2)

)

Effective Coefficient Of Thermal Expansion:

C4 =
βhnf

βf

= (1− φ2)

[

1− φ1 + φ1

(

βs1

βf

)]

+ φ2

(

βs2

βf

)

Effective Specific Heat:

C5 =
(ρCp)hnf
(ρCp)f

= (1− φ2)

[

1− φ1 + φ1

(

(ρcp)s1
(ρcp)f

)]

+ φ2

(

(ρcp)s2
(ρcp)f

)

Effective Thermal Conductivity:

C6 =
Khnf

Kf

where

Khnf

Knf

=
Ks2 + 2Knf − 2φ2 (Knf −Ks2)

Ks2 + 2Knf + 2φ2 (Knf −Ks2)

and

Knf

Kf

=
Ks1 + 2Kf − 2φ1 (Kf −Ks1)

Ks1 + 2Kf + 2φ1 (Kf −Ks1)
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The following dimensionless quantities are introduced into equations (3.2.1) to

(3.2.6) (except (3.2.2)),

y = y∗

d
, z = z∗

d
, t = t∗ω∗, u = u∗

U0
, v = v∗

V0
, w = w∗

V0
,

p = p∗

ρhnfV
2
0

, ω = ω∗d2

ϑ
, θ = T ∗

−T1

T0−T1
,

The reduced equations take the form:

∂v

∂y
+

∂w

∂z
= 0 (3.2.7)

ω

Re

∂v

∂t
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

1

C1C2Re

(

∂2v

∂y2
+

∂2v

∂z2

)

(3.2.8)

ω

Re

∂w

∂t
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1

C1C2Re

(

∂2w

∂y2
+

∂2w

∂z2

)

− C3

C2Re
H2w (3.2.9)

ω

Re

∂θ

∂t
+ v

∂θ

∂y
+ w

∂θ

∂z
=

C6

C5PrRe

(

∂2θ

∂y2
+

∂2θ

∂z2

)

(3.2.10)

Equation (3.3.2) permutes to the following cases:

Case 1: Magnetic Field is applied on the upward moving plate (at y=0)

ω

Re

∂u

∂t
+ v

∂u

∂y
+ w

∂u

∂z
=

1

C1C2Re

(

∂2u

∂y2
+

∂2u

∂z2

)

− C3

C2Re
H2(u− 1)+

C4GrReθ (3.2.11)

Case 2: Magnetic Field is applied on the downward moving plate (at y=1)

ω

Re

∂u

∂t
+ v

∂u

∂y
+ w

∂u

∂z
=

1

C1C2Re

(

∂2u

∂y2
+

∂2u

∂z2

)

− C3

C2Re
H2(u+ 1)+

C4GrReθ (3.2.12)
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The reduced boundary conditions take the form:

y = 0, u = 1, v(z) = 1 + ε1 cos πz, w = 0, θ = 1 + ε2e
it

y = 1, u = −1, v = 1, w = 0, θ = 0







(3.2.13)

3.3 METHOD OF SOLUTION

The reduced forms of the governing equations are resolved using the perturbation

method. For this, let ε = min {ε1, ε2} be very small and suppose that solution is of

the format

f(y, z, t) = f0(y) + εf1(y, z, t) +O(ε2) (3.3.1)

3.3.1 Steady Flow Solution

Letting ε = 0, the current problem narrows to a steady two dimensional flow which

is governed by the ensuing equations:

Case 1: Magnetic Field is applied on the upward moving plate (at y=0)

u0
′′ − C1C2Reu0

′ − C1C3H
2(u0 − 1) + C1C2C4Re2Grθ0 = 0 (3.3.2)

Case 2: Magnetic Field is applied on the downward moving plate (at y=1)

u0
′′ − C1C2Reu0

′ − C1C3H
2(u0 + 1) + C1C2C4Re2Grθ0 = 0 (3.3.3)

with v0 = 1, w0 = 0, p0 = a constant and

θ0
′′ − C5PrRe

C6

θ0
′ = 0 (3.3.4)

where prime notates the derivative with respect to y.

The analogous boundary conditions take the form:

y = 0, u0 = 1, θ0 = 1

y = 1, u0 = −1, θ0 = 0







(3.3.5)
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Solving equations (3.3.2) to (3.3.4) with respect to (3.3.5) yields:

θ0 =
1

ea1 − 1
(ea1 − ea1y) (3.3.6)

Case 1: Magnetic Field is applied on the upward moving plate (at y=0)

u0 =
1

eb2 − eb1
[(α1e

b2 − β1)e
b1y + (β1 − α1e

b1)eb2y] + A1e
a1y + A2 + 1 (3.3.7)

Case 2: Magnetic Field is applied on the downward moving plate (at y=1)

u0 =
1

eb2 − eb1
[((α1+2)eb2−(β1+2))eb1y+((β1+2)−(α1+2)eb1)eb2y]+A1e

a1y+A2−1

(3.3.8)

3.3.2 Cross Flow Solution

Letting ε ≠ 0 applying equation (3.3.1) into equations (3.2.7) - (3.2.9) and equating

like powers of ε and ignoring the higher powers of ε2, the following equations are

derived:
∂v1
∂y

+
∂w1

∂z
= 0 (3.3.9)

ω

Re

∂v1
∂t

+
∂v1
∂y

= −∂p1
∂y

+
1

C1C2Re

[

∂2v1
∂y2

+
∂2v1
∂z2

]

(3.3.10)

ω

Re

∂w1

∂t
+

∂w1

∂y
= −∂p1

∂z
+

1

C1C2Re

[

∂2w1

∂y2
+

∂2w1

∂z2

]

− C3

C2Re
H2w1 (3.3.11)

Corresponding boundary conditions are

y = 0, v1 = cos πz, w1 = 0

y = 1, v1 = 0, w1 = 0







(3.3.12)

These are the linear partial differential equations reporting the three-dimensional

cross flow which are independent of the temperature field and the main flow com-
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ponent. The solutions for v1, w1, p1 are assumed to be of the form:

v1(y, z, t) = v11(y)e
it + v12(y) cos πz (3.3.13)

w1(y, z, t) = −(zv11
′(y)eit +

1

π
v12

′(y) sin πz) (3.3.14)

p1(y, z, t) = p11(y)e
it + p12(y) cos πz (3.3.15)

where prime notates the derivative with respect to y. Expressions (3.3.13) and

(3.3.14) have been chosen so that the equation of continuity (3.3.9) is trivially

satisfied. Applying these into equations (3.3.10) and (3.3.11) and employing the

boundary condition (3.3.12), the solutions for v1, w1, p1 are obtained as:

v1 =
1

D

4
∑

i=1

Die
riy cos πz (3.3.16)

w1 = − 1

πD

4
∑

i=1

riDie
riy sin πz (3.3.17)

p1 = − 1

C1C2Reπ2D

4
∑

i=1

Di(r
3
i − C1C2Rer2i − (C1C3H

2 + π2)ri)e
riy cos πz (3.3.18)

3.3.3 Temperature Field

Comparably letting ε ̸= 0, applying equation (3.3.1) to equation (3.2.10) and com-

paring like powers of ε, the equation for temperature field is given by:

ω

Re

∂θ1
∂t

+
∂θ1
∂y

=
C6

C5PrRe

(

∂2θ1
∂y2

+
∂2θ1
∂z2

)

(3.3.19)

with

y = 0, θ1 = eit

y = 1, θ1 = 0,







(3.3.20)
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Equation (3.3.19) along with equation (3.3.20) is solved with a supposition that the

solution is of the format:

θ1(y, z, t) = θ11e
it + θ12 cos πz (3.3.21)

Substituting equation (3.3.21) into (3.3.19), one can obtain

θ11
′′ − C5PrRe

C6

θ11
′ − C5Prωi

C6

θ11 = 0 (3.3.22)

θ12
′′ − C5PrRe

C6

θ12
′ − π2θ12 = 0 (3.3.23)

with

y = 0, θ11 = 1, θ12 = 0

y = 1, θ11 = 0, θ12 = 0







(3.3.24)

Resolving equations (3.3.22) and (3.3.23) utilizing equation (3.3.24), the solution is

given by:

θ1 (y, z, t) =
1

ea3 − ea2
(ea3ea2y − ea2ea3y) eit (3.3.25)

3.3.4 Main Flow Solution

Letting ε ≠ 0, the first order equation for the main flow deduced with the help of

equation (3.3.1) and equating like powers of ε is given by:

ω

Re

∂u1

∂t
+

∂u1

∂y
+ v1u0

′ =
1

C1C2Re

(

∂2u1

∂y2
+

∂2u1

∂z2

)

− C3

C2Re
H2u1 + C4GrReθ1

(3.3.26)

with

y = 0, u1 = 0

y = 1, u1 = 0







(3.3.27)

Suppose the solution is of the format:

u1 (y, z, t) = u11e
it + u12 cos πz (3.3.28)

Applying equation (3.3.28) in equation (3.3.26) and comparing like powers of ε:

u11
′′ − C1C2Reu11

′ − (C1C2ωi+ C1C3H
2)u11 = −C1C2C4Re2Grθ11 (3.3.29)
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u12
′′ − C1C2Reu12

′ − (π2 + C1C3H
2)u12 = C1C2Rev12u0

′ (3.3.30)

with

y = 0, u11 = 0, u12 = 0

y = 1, u11 = 0, u12 = 0







(3.3.31)

Resolving equations (3.3.29) and (3.3.30) utilizing equation (3.3.31), the solu-

tion is derived as:

Case 1: Magnetic Field is applied on the upward moving plate (at y=0)

u1(y, z, t) =







1
eb4−eb3

[(α2e
b4 − β2)e

b3y + (β2 − α2e
b3)eb4y]+

A3e
a2y + A4e

a3y







eit+







1
eb6−eb5

[(α3e
b6 − β3)e

b5y + (β3 − α3e
b5)eb6y]+

∑4
i=1 Ai1e

(ri+b1)y + Ai2e
(ri+b2)y + Ai3e

(ri+a1)y







cos πz (3.3.32)

Case 2: Magnetic Field is applied on the downward moving plate (at y=1)

u1(y, z, t) =







1
eb4−eb3

[(α2e
b4 − β2)e

b3y + (β2 − α2e
b3)eb4y]+

A3e
a2y + A4e

a3y







eit+







1
eb6−eb5

[(α4e
b6 − β4)e

b5y + (β4 − α4e
b5)eb6y]+

∑4
i=1 Bi1e

(ri+b1)y +Bi2e
(ri+b2)y +Bi3e

(ri+a1)y







cos πz (3.3.33)

3.4 PHYSICAL QUANTITIES

Physical quantities like drag coefficient (Cf) and Nusselt number (Nu) measuring

surface drag and rate of heat transfer, respectively are given by:

Case 1: Magnetic Field is applied on the upward moving plate (at y=0)

Cf =
d

µfU0

∣

∣

∣

∣

∣

µhnf

(

du∗

dy∗

)

y∗=d

∣

∣

∣

∣

∣

=
1

C1

∣

∣

∣

∣

∣

(

du0

dy

)

y=1

+ ε

(

du1

dy

)

y=1

∣

∣

∣

∣

∣

(3.4.1)

Case 2: Magnetic Field is applied on the downward moving plate (at y=1)

Cf =
d

µfU0

∣

∣

∣

∣

∣

µhnf

(

du∗

dy∗

)

y∗=d

∣

∣

∣

∣

∣

=
1

C1

∣

∣

∣

∣

∣

(

du0

dy

)

y=1

+ ε

(

du1

dy

)

y=1

∣

∣

∣

∣

∣

(3.4.2)
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Nu =
d

Kf (T0 − T1)

∣

∣

∣

∣

∣

Khnf

(

dT ∗

dy∗

)

y∗=d

∣

∣

∣

∣

∣

= C6

∣

∣

∣

∣

∣

(

dθ0
dy

)

y=0

+ ε

(

dθ1
dy

)

y=0

∣

∣

∣

∣

∣

(3.4.3)

3.5 RESULTS AND DISCUSSION

The significance of effectual parameters on velocity (u), surface drag (Cf) and

temperature (θ) profiles are depicted through Figures 3.2 - 3.13. The physical

properties of nanoparticles (Al2O3 and Fe3O4) and the conventional fluid (water)

are identified in Table 3.1. φ1 = 0.1, φ2 = 0.1, ω = 10, Re = 1, H = 2, P r =

7, Gr = 7 and t = π/2 are the base values of parameters employed (unless specified)

throughout the analysis. Further, the validation of the obtained results is achieved

through a comparative study with the previous work (Neethu, Areekara, & Mathew,

2021) (see Table 3.2) and a good agreement is noted.

Figure 3.2 explains the positive effect of Grashof number (Gr) on u meaning

that an augmentation in Gr will increase the velocity. Physically, on magnifying

Gr the buoyancy forces becomes prominent which results in ascending the velocity

profile. Figure 3.3 manifests the consequence of Hartmann number (H) on u. The

introduction of a magnetic field produces a drag force (Lorentz force) which sets up

an opposite reaction on upward and downward moving plates. On varying H, it is

noted that u ascends on upward moving plate whereas u descends on the downward-

moving plate. The negative influence of the volume fraction of nanoparticles (φ1

and φ2) on u is elucidated in Figures 3.4 and 3.5, respectively. This decrease in

velocity can be physically attributed to the fact that increasing the volume fraction

of nanoparticles swells the viscosity of hybrid nanoliquid which causes a drop in

velocity. The influence of injection/suction parameter (Re) on u is depicted in

Figure 3.6. Velocity profile experiences an exponential augmentation when Re

values are improved.

Figure 3.7 and 3.8 reveals that intensification in the volume fraction of nanopar-

ticles brings about a reduction in θ. The impact of Re on θ is displayed using Figure

3.9 and it is noted that Re causes an improvement in θ. Physically, this increase

in temperature can be associated with the fact that with increasing Re values the

heated nanoparticles enter the opposite moving plates and the cold nanoparticles

exit the opposite moving plates.

The parallel effect of effectual parameters on drag coefficient (Cf) on the up-
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ward and downward-moving plates is illustrated in Figures 3.10 - 3.13 with the

aid of three-dimensional surface plots. It is seen that surface drag ascends with

φ1, Re,H and Gr on the upward moving plate. Further, surface drag ascends with

φ1, Re, and Gr and descends with H on the downward moving plate.

3.6 STATISTICAL ANALYSIS

3.6.1 Response Surface Methodology (RSM)

RSM is a statistical approach employed in analyzing the conjoint impact of effectual

parameters (independent variables) on the physical quantity of interest (response

or dependent variable). In this problem, Nu is chosen as the response variable and

nanoparticle volume fraction of Al2O3 (0.02 ≤ φ1 ≤ 0.08), nanoparticle volume

fraction of Fe3O4 (0.02 ≤ φ2 ≤ 0.08) and injection/suction parameter (1 ≤ Re ≤ 2)

are chosen as the influential parameters. Table 3.3 bespeaks the effective parameters

and their levels. The general model (adopting central composite design) for response

variables involving linear, interactive and quadratic terms is expressed by:

Response = λ0 + λ1A+ λ2B+ λ3C + λ4AB+ λ5BC + λ6AC + λ7A
2 + λ8B

2 + λ9C
2

(3.6.1)

where λi(i = 0, 1, . . . , 9) represents the regression coefficients. The experimental

design and the response for the 20 runs (according to CCD) are given in Table 3.4.

The analysis of variable (ANOVA) table (Table 3.5) illustrates the efficiency

of the estimated model. A parameter is claimed as significant if the corresponding

p-value is less than 0.05. It is observed that the quadratic terms in φ1 and φ2 are

not significant. Hence, they removed these terms from the model. The coefficient

of determination (R2) for the model is found to be 100% which boosts the model’s

accuracy.

The fitted quadratic model for Nu is given by:

Nu = 10.2645− 0.07064φ1 − 0.0394φ2 + 3.403Re+ 0.01807Re2+

0.0053φ1φ2 − 0.03258φ1Re− 0.0209φ2Re (3.6.2)

The reliability of the estimated model for Nu is further clarified using residual

plots (see Figure 3.14). All points in the normal probability plot are situated
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beside a straight line with an insignificant deflection and the residual histogram is

approximately bell-shaped confirming the normal nature of residuals. Furthermore,

a maximum error of 0.005 can be observed from the fitted versus residual plot which

also contributes to the accuracy of the model.

From equation (3.6.2), it can be inferred that φ1 and φ2 have a negative impact

on Nu and Re has a positive effect on Nu. The parallel interaction of two param-

eters on Nu is graphed using surface and contour plots (see Figure 3.15) by fixing

the third parameter at the medium level. From Figures 3.15 (a) - (c), it is perceived

that Nu is highest for smaller values of φ1 and φ2 and larger values of Re.

3.6.2 Sensitivity Analysis

Sensitivity analysis is a statistical technique that measures the extent and nature

of dependency exhibited by the effectual parameters on the physical quantity of

interest. In other words, sensitivity analysis accounts for the variation induced

by the augmenting parameter on the remaining effectual parameter. The sign of

sensitivity (positive or negative) signifies the nature of the correlation between Nu

and the influential parameters. Further, the magnitude of sensitivity indicates the

intensity of the effect on Nu.

The quadratic model (in coded form) after neglecting the insignificant terms is

given by:

Nu = 10.2645− 0.07064 A− 0.0394 B + 3.403 C + 0.01807 C2+

0.0053 AB − 0.03258 AC − 0.0209 BC (3.6.3)

Then the sensitivity functions are:

∂ Nu

∂A
= −0.07064 + 0.0053 B − 0.03258 C (3.6.4)

∂ Nu

∂B
= −0.0394 + 0.0053 A− 0.0209 C (3.6.5)

∂ Nu

∂C
= 3.403 + 0.03614 C − 0.03258 A− 0.0209 B (3.6.6)

The sensitivity for Nu is tabulated in Table 3.6 keeping φ1 in the medium level.

It is noted that φ1 and φ2 exhibit negative sensitivity and Re exhibits a positive
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sensitivity towards Nu. The sensitivity of Nu is also visualized using bar charts

(Figure 3.16). It is seen that the results of sensitivity analysis are in perfect harmony

with the results inferred using RSM. It is also noticed that Nu is most sensitive

with Re.

3.7 CONCLUSION

The key observations are:

• Grashof number has a constructive effect on main flow velocity.

• Hartman number positively contributes towards the velocity profile on the

upward moving plate and negatively contributes towards the velocity profile

on the downward moving plate.

• Main flow velocity profile is higher when the magnetic field is applied on the

upward-moving plate.

• Drag coefficient is directly proportional to the volume fraction of nanoparti-

cles.

• Rate of heat transfer is the most sensitive parameter with injection/suction

parameter.

• Augmentation of volume fraction of Al2O3 nanoparticles has more influence

on the flow profiles.

• Surface drag coefficient ascends with augmenting Hartmann number on the

upward moving plate and descends on the downward moving plate.

• Volume fraction of nanoparticles exhibits a destructive effect on heat transfer

rate.
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TABLES AND GRAPHS

Table 3.1: Physical properties of nanoparticles and base fluid

Physical
Proper-
ties

H2O Al2O3 Fe3O4

ρ 997.1 3970 5180
Cp 4179 765 670
β 21 ∗ 10−5 0.85 ∗ 10−5 1.3 ∗ 10−5

σ 5 ∗ 10−2 35 ∗ 106 25000
k 0.613 40 9.7

Table 3.2: Comparison of Nu with augmenting Re values when φ1 = 0, φ2 =
0,Ω = 10, t = π/2, P r = 7, Gr = 5 and H = 2

Re
Nu

(Neethu et al., 2021) Present study
0.5 3.60681 3.60681
1 6.9976 6.9976
1.5 10.4771 10.4771
2 13.9665 13.9665
2.5 17.4835 17.4835

Table 3.3: Effective parameter levels

Parameter Symbol
Levels

-1(low) 0(medium) 1(high)
φ1 A 0.02 0.05 0.08
φ2 B 0.02 0.05 0.08
Re C 1 1.5 2
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Table 3.4: Experimental design with response

Run
Coded values Actual values Response

A B C φ1 φ2 Re Nu
1 -1 -1 -1 0.02 0.02 1 6.9437
2 1 -1 -1 0.08 0.02 1 6.8562
3 -1 1 -1 0.02 0.08 1 6.895
4 1 1 -1 0.08 0.08 1 6.8352
5 -1 -1 1 0.02 0.02 2 13.8524
6 1 -1 1 0.08 0.02 2 13.6411
7 -1 1 1 0.02 0.08 2 13.7266
8 1 1 1 0.08 0.08 2 13.53
9 -1 0 0 0.02 0.05 1.5 10.3412
10 1 0 0 0.08 0.05 1.5 10.19
11 0 -1 0 0.05 0.02 1.5 10.309
12 0 1 0 0.05 0.08 1.5 10.2216
13 0 0 -1 0.05 0.05 1 6.8773
14 0 0 1 0.05 0.05 2 13.6873
15 0 0 0 0.05 0.05 1.5 10.2646
16 0 0 0 0.05 0.05 1.5 10.2646
17 0 0 0 0.05 0.05 1.5 10.2646
18 0 0 0 0.05 0.05 1.5 10.2646
19 0 0 0 0.05 0.05 1.5 10.2646
20 0 0 0 0.05 0.05 1.5 10.2646
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Table 3.5: ANOVA table

Deg. Of
freedom

Adj.
sum of
squares

Adj.
mean
squares

Regression
Coeffi-
cient

F-Value p-Value

Model 9 115.884 12.876 924250 0
Linear 3 115.87 38.623 2772413 0

φ1 1 0.05 0.05 -0.0706 3581.88 0
φ2 1 0.016 0.016 -0.0394 1114.3 0
Re 1 115.804 115.804 3.403 8312544 0

Square 3 0.002 0.001 46 0
φ1 ∗ φ1 1 0 0 0.00137 0.37 0.556
φ2 ∗ φ2 1 0 0 0.00107 0.23 0.644
Re ∗Re 1 0.001 0.001 0.01807 64.47 0

2-Way

Interac-

tion

3 0.012 0.004 292.11 0

φ1 ∗ φ2 1 0 0 0.0053 16.13 0.002
φ1 ∗Re 1 0.008 0.008 -0.0326 609.35 0
φ2 ∗Re 1 0.003 0.003 -0.0209 250.84 0

Constant 10.2645
Error 10 0 0
Lack-of-

Fit

5 0 0 * *

Pure Er-

ror

5 0 0

Total 19 115.884
R2 = 100% Adjusted R2 = 100%
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Table 3.6: Sensitivity of response Nu when A = 0

B C
Sensitivity

∂ Nu
∂A

∂ Nu
∂B

∂ Nu
∂C

-1

-1 -0.0434 -0.0185 3.3878

0 -0.0759 -0.0394 3.4239

1 -0.1085 -0.0603 3.46

0

-1 -0.0381 -0.0185 3.3669

0 -0.0706 -0.0394 3.403

1 -0.1032 -0.0603 3.4391

1

-1 -0.0328 -0.0185 3.346

0 -0.0653 -0.0394 3.3821

1 -0.0979 -0.0603 3.4182
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Figure 3.2: Variation in u with Gr

Figure 3.3: Variation in u with H
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Figure 3.4: Variation in u with φ1

Figure 3.5: Variation in u with φ2
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Figure 3.6: Variation in u with Re

Figure 3.7: Variation in θ with φ1
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Figure 3.8: Variation in θ with φ2

Figure 3.9: Variation in θ with Re
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Figure 3.10: Variation in Cf with φ1 and Re at y = 0

Figure 3.11: Variation in Cf with φ1 and Re at y = 1
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Figure 3.12: Variation in Cf with Gr and H at y = 0

Figure 3.13: Variation in Cf with Gr and H at y = 1
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Figure 3.14: Residual plots
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Figure 3.15: Contour and surface plots for Nu
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Figure 3.16: Bar charts depicting the sensitivity of Nu
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Appendix I: Non-Dimensional Quantities

Pr =
(µcp)f
kf

Prandtl Number

Re = U0d
ϑf

Injection/ Suction Parameter

H = B0d
√

σf

ρfϑf
Hartmann Number

Gr =
gβfϑf (T0−T1)

U3
0

Grashof Number

Appendix II: Nomenclature

u∗, v∗, w∗ Velocity components T ∗ Fluid temperature

V0 Injection velocity g Acceleration due to gravity

t∗ Time T0, T1 Reference temperature

p∗ Pressure Cp Specific heat at constant pressure

B0 strength of magnetic field U0 velocity of the moving plates

σ Electrical conductivity φ1 Volume fraction of Al2O3

d Distance between the plates φ2 Volume fraction of Fe3O4

µ Dynamic viscosity ρ Density

ν Kinematic viscosity ω∗ Angular velocity

K Thermal conductivity f Base fluid

nf Nanofluid s1 Al2O3 Nanoparticle

hnf Hybrid nanofluid s2 Fe3O4 Nanoparticle

ε1, ε2, ε3 Very small reference constants
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Appendix III: Short keys

a1 =
C5PrRe

C6

a2 =

C5PrRe

C6
+

√

C2
5
Pr2Re2

C2
6

+
4C5Prωi

C6

2
a3 =

C5PrRe

C6
−

√

C2
5
Pr2Re2

C2
6

+
4C5Prωi

C6

2

b1 =
C1C2Re+

√
C2

1
C2

2
Re2+4C1C3H2

2
b2 =

C1C2Re−
√

C2
1
C2

2
Re2+4C1C3H2

2

b3 =
C1C2Re+

√
C2

1
C2

2
Re2+4(iωC1C2+C1C3H2)

2
b4 =

C1C2Re−
√

C2
1
C2

2
Re2+4(iωC1C2+C1C3H2)

2

b5 =
C1C2Re+

√
C2

1
C2

2
Re2+4(C1C3H2+π2)

2
b6 =

C1C2Re−
√

C2
1
C2

2
Re2+4(C1C3H2+π2)

2

A1 =
C1C2C4Re2Gr

(ea1−1)(a12−C1C2Re a1−C1C3H2)
A2 =

C1C2C4Re2Gr ea1

(ea1−1)C1C3H2)

A3 =
C1C2C4Re2Grea3

(ea2−ea3 )(a22−C1C2Re a2−C1C2iω−C1C3H2)
A4 =

C1C2C4Re2Grea2

(ea3−ea2 )(a23−C1C2Re a3−C1C2iω−C1C3H2)

α1 = − (A1 + A2) β1 = − (2 + A1e
a1 + A2)

α2 = − (A3 + A4) β2 = − (A3e
a2 + A4e

a3)

r1 =
b1+

√
b2
1
+4π2

2
r2 =

b1−
√

b2
1
+4π2

2

r3 =
b2+

√
b2
2
+4π2

2
r4 =

b2−
√

b2
2
+4π2

2

α3 = −
4
∑

i=1

(Ai1 + Ai2 + Ai3) α4 = −
4
∑

i=1

(Bi1 +Bi2 +Bi3)

β3 = −
4
∑

i=1

(

Ai1e
(ri+b1) + Ai2e

(ri+b2) + Ai3e
(ri+a1)

)

β4 = −
4
∑

i=1

(

Bi1e
(ri+b1) +Bi2e

(ri+b2) +Bi3e
(ri+a1)

)
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D1 = r3r4 (e
r2+r4 − er2+r3) + r2r4 (e

r3+r2 − er3+r4) + r2r3 (e
r3+r4 − er2+r4)

D2 = r3r4 (e
r1+r3 − er1+r4) + r1r4 (e

r3+r4 − er3+r1) + r1r3 (e
r1+r4 − er3+r4)

D3 = r2r4 (e
r1+r4 − er1+r2) + r1r4 (e

r2+r1 − er2+r4) + r1r2 (e
r2+r4 − er1+r4)

D4 = r2r3 (e
r1+r2 − er1+r3) + r1r3 (e

r3+r2 − er2+r1) + r1r2 (e
r1+r3 − er2+r3)

D = D1 +D2 +D3 +D4

Ai1 =
b1(α1e

b2−β1)C1C2ReDi

(eb2−eb1)D[(ri+b1)
2
−C1C2Re(ri+b1)−(C1C3H2+π2)]

, i = 1, 2, 3, 4

Ai2 =
b2(β1−α1e

b1)C1C2ReDi

(eb2−eb1)D[(ri+b2)
2
−C1C2Re(ri+b2)−(C1C3H2+π2)]

, i = 1, 2, 3, 4

Bi1 =
b1((α1+2)eb2−(β1+2))C1C2ReDi

(eb2−eb1)D[(ri+b1)
2
−C1C2Re(ri+b1)−(C1C3H2+π2)]

, i = 1, 2, 3, 4

Bi2 =
b2((β1+2)−(α1+2)eb1)C1C2ReDi

(eb2−eb1)D[(ri+b2)
2
−C1C2Re(ri+b2)−(C1C3H2+π2)]

, i = 1, 2, 3, 4

Bi3 = Ai3 =
a1A1C1C2ReDi

D[(ri+a1)
2
−C1C2Re(ri+a1)−(C1C3H2+π2)]

, i = 1, 2, 3, 4
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