CHAPTER 3

Three-dimensional MHD Hybrid
Nanofluid Flow Between Two Vertical
Porous Plates Moving In Opposite

*

Directions

3.1 INTRODUCTION

The theoretical and experimental survey on nanofluids, the efficient energy trans-
port fluids describes their enormous interpretations and implications including heat
exchangers and electronic devices. The strengthening in thermophysical properties
of nanofluids adjudged, hybrid nanofluid attained much attention. The synergic ef-
fects improve thermal qualities and potential utilities of nanoliquid, beneficial in the
industrial area such as nuclear system cooling, thermal energy generating system,
hot rolling, solar energy systems, etc.

The present chapter aims to analytically explore the three-dimensional convec-
tive hydromagnetic hybrid nanoliquid (with suspended Al,O3 and Fe30, nanopar-
ticles) flow between two oppositely moving vertical porous plates. Governing equa-

tions are solved using the perturbation technique and the consequence of effectual

*Published in Heat Transfer (Wiley), 2021;50(7); 6548-6571
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CHAPTER 3

parameters on velocity and temperature profiles are analyzed with aid of graphs
using MATLAB software. The rate of heat transfer is statistically scrutinized using

response surface methodology and sensitivity analysis.
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Figure 3.1: Physical configuration

3.2 MATHEMATICAL FORMULATION

An unsteady convective hybrid nanoliquid flow between two vertical porous plates
involving a magnetic field (of uniform strength, By applied normally to the plane
of the plate) is considered (see Figure 3.1). The problem is developed utilizing the

following conditions:

1. Parallel plates are traveling in different directions with uniform velocities.
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Section 3.2

2. The upward and downward moving plates are subjected to transverse sinu-

soidal injection velocity and constant suction velocity, respectively.

3. Induced magnetic field has been neglected due to the assumption of a small
magnetic Reynolds number.

4. The injection velocity distribution is of the form:
v*(2*) = Vo(1 + &1 cos(mz*/d))

5. Without loss of generality, the distance d between the plates is taken equal to

the wavelength of the injection velocity.

6. The temperature of the downward moving plate is at constant temperature

T and that of the upward moving plate fluctuating with time is given as:
T*(t*) = To + 82(T0 - Tl)ei‘“*t*

Utilizing Boussinesq’s approximation and the above assumptions, governing equa-

tions (referred from (Singh & Mathew, 2009b)) are given by:

ov* n ow*
dy*  0z*

—0 (3.2.1)

+ 0" — 4w’ il +82u* + Ohng Biu* | +
v w — — — — gt | =— + —— OnnBsu
ot* dy* oz* Phns | Ox* Hing oy*2  0z*2 hnf =0

9B (T* = T1) (3.2.2)

ov* ov* ov* 1 [op* o%v*  0%*
. U — s [ E2 3.2.3
T E {ay* s (W " az)} 323
ow* L ow* L ow* 1 [op* OPw* N OPw* o B
ot* oy* 02*  puny |02 Hinf dy*?  0z*? hnf=0
(322.4)
or* AT T* Ky [T &T
* * = 3.2.5
8t* +v ay* +w 82* (pcp>hnf |: ay*Q + 82*2 ( )
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subject to the boundary conditions:

y* = 0,u" = Up,v*(z*) = Vo(1 + &1 cos =), w* = 0,
T*(t*) = T() + 82<T0 - Tl)ei”*t*, (326)
v =d,u* = —Uy,v*(z*) = Vo,w* =0,T" =T

Hybrid nanofluid model used is

Effective Dynamic Viscosity:

Cl _ i _ (1 . ¢1>2.5(1 . ¢2)2.5
Hhnf

Effective Density:

Cy = Phng =(1—¢») [1 — o1+ @1 <p—sfl)} + 02 (Pg;)

Pr
Effective Electrical Conductivity:

3 (2 — (61 +00)

Ohnf

;= =1+
o 9101+¢202 ¢101+¢>202
P2 () - (amm 0+ 0)
Effective Coefficient Of Thermal Expansion:
Bhnf |: (ﬁéﬁ ):| 632
Cy = 1—¢9) |1 =1+ ¢ + ¢
4= 3; = ( 2) 1 1 B; 2 B;

Effective Specific Heat:

C, c
05:M (1—¢2) [1—¢1+¢1 (%)

(PCyp) 4

Effective Thermal Conductivity:

_ Ky

Khnf _ ng + 2an - 2¢2 (an - ng)
an KS2 + 2an + 202 (an - K82)

and

Knp Ko +2Kp =20 (Kp — Ky))
Kf K51+2Kf+2q51 (K —Ksl)
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The following dimensionless quantities are introduced into equations (3.2.1) to

(3.2.6) (except (3.2.2)),

_y _z g,k _
y—ﬁ,Z—g,t—tw,U—

_ wrd? _T*-T)
w= 5=, 0= To—T1

— _p
p Phnf VG

The reduced equations take the form:

g_;} + (g—lj =0 (3.2.7)
%?9—1; * vg_j * wg_z) - _% * 01012Re (?;yz;} * 88221;)> a Cflg%esz (3:2.9)
R Tt G A o) 020

Equation (3.3.2) permutes to the following cases:

Case 1: Magnetic Field is applied on the upward moving plate (at y=0)

H*(u— 1)+

w Ju  Ju w@ 1 d%u N d%u G
Re 0Ot dy dz  C1CyRe \ 0y? = 022 CsRe
CuGrRef (3.2.11)

Case 2: Magnetic Field is applied on the downward moving plate (at y=1)

H?*(u+ 1)+

w Ou du w@— 1 82u+82u G
Re Ot oy 0z  C1CyRe \ 0y? = 022 CyRe

CyGrRed (3.2.12)
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The reduced boundary conditions take the form:

y=0,u=1v(z) =1+¢ecosmz,w=0,0 =1+ eye™

(3.2.13)
y=lLu=-1lLv=1w=0,0=0

3.3 METHOD OF SOLUTION

The reduced forms of the governing equations are resolved using the perturbation
method. For this, let ¢ = min {e1, 2} be very small and suppose that solution is of

the format

f(y7 Z7t) = fO(y) + €f1<y7 th) + O(€2> (331>

3.3.1 Steady Flow Solution

Letting € = 0, the current problem narrows to a steady two dimensional flow which
is governed by the ensuing equations:

Case 1: Magnetic Field is applied on the upward moving plate (at y=0)

’LLOH - ClchBUOI — C’lchQ(uo - 1) + 010204R62GT90 = 0 (332)

Case 2: Magnetic Field is applied on the downward moving plate (at y=1)

uO” — C’ngReuo/ — 0103H2(U0 + 1) + 010204R62G7”90 = 0 (333)

with vg = 1, wy = 0, pg = a constant and

CsPrR
0y — %00’ =0 (3.3.4)
6

where prime notates the derivative with respect to y.

The analogous boundary conditions take the form:

=0,up=1,0p =1
y=hte= L (3.3.5)
y:17u0:_179020
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Solving equations (3.3.2) to (3.3.4) with respect to (3.3.5) yields:

1
e’ —1

0o = (e™ — ™) (3.3.6)

Case 1: Magnetic Field is applied on the upward moving plate (at y=0)

1

Yo = T el [(ne” — B1)e"? + (B1 — ane®)e™] + Are™ + Ay + 1 (3.3.7)

Case 2: Magnetic Field is applied on the downward moving plate (at y=1)

uy = [((a1+2)eP2—(B142)) e Y+ ((B1+2) — (a1 42)e" )Y+ A e+ Ay —1

eb2 — eb

(3.3.8)

3.3.2 Cross Flow Solution

Letting € # 0 applying equation (3.3.1) into equations (3.2.7) - (3.2.9) and equating

like powers of € and ignoring the higher powers of €2, the following equations are

derived:
(%1 8w1 .
3 g =0 (3.3.9)
w O, Oy op, 1 vy 0%y
— — —_— T —— . -1
Re 0t "oy 0y | CiCoRe [8y2 T o2 (3.:3.10)
w (9w1 (9w1 8p1 1 (92w1 8211)1 03 2
w Our __O; %oy 311
Re 0t "oy 0z @ CiCyRe [ oF T o2 | Gretwr (3311

Corresponding boundary conditions are

=0,v; =cosmz,w; =0
Y ' ! (3.3.12)
Yy = 1,1}1 :O,w1 =0

These are the linear partial differential equations reporting the three-dimensional

cross flow which are independent of the temperature field and the main flow com-
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ponent. The solutions for vy, wq, p; are assumed to be of the form:

v1(y, 2,t) = v11(y)e™ + via(y) cos Tz (3.3.13)

! it 1 / :
wi(y, z,t) = —(zv11 (y)e” + —U12 (y)sinmz) (3.3.14)
pi(y, 2,t) = pra(y)e” + pia(y) cosmz (3.3.15)

where prime notates the derivative with respect to y. Expressions (3.3.13) and
(3.3.14) have been chosen so that the equation of continuity (3.3.9) is trivially
satisfied. Applying these into equations (3.3.10) and (3.3.11) and employing the

boundary condition (3.3.12), the solutions for vy, ws, p; are obtained as:

4
1
u=5 ; D;e"¥ cos Tz (3.3.16)
4
1
w = —— 2 riD;e"Y sin Tz (3.3.17)

1

pr= _0102R67T2D

4
Z D;(r? — C1CyRer? — (C1C3H? + 72)r;)e" Y cosmz (3.3.18)
=1

3.3.3 Temperature Field

Comparably letting € # 0, applying equation (3.3.1) to equation (3.2.10) and com-

paring like powers of ¢, the equation for temperature field is given by:

w 891 891 CG 8291 8291
Il Ppaae 3.3.19
Re Ot * dy  CsPrRe (8y2 + 0722 ( )
with
=0,0, ="
yemEe (3.3.20)
Y= 17 01 = Oa
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Equation (3.3.19) along with equation (3.3.20) is solved with a supposition that the

solution is of the format:
01(y, z,t) = O11€" + 015 cos 2 (3.3.21)

Substituting equation (3.3.21) into (3.3.19), one can obtain

B C5P7’R€9 ,  Cs5Prwi

9 " To” T _
11 06 11 CG

611 =0 (3.3.22)

Cs5PrRe
Cs

912// - 612/ — 72912 =0 (3323)

with
y=0,01=1,01o=0

(3.3.24)
y=1,011=0,012=0

Resolving equations (3.3.22) and (3.3.23) utilizing equation (3.3.24), the solution is
given by:

01 (y,z,t) = (e%3e72Y — g2V ¢!t (3.3.25)

et — g2
3.3.4 Main Flow Solution

Letting € # 0, the first order equation for the main flow deduced with the help of

equation (3.3.1) and equating like powers of ¢ is given by:

w Ouy  Owy , 1 Puy 0%y Cs
ettt S Tt} = — H C4GrRef
Re Ot dy + Uit C1CoRe \ 0y? * 022 CyRe up + CaGriichy
(3.3.26)
with
=0, u =0
Y ! (3.3.27)
y=1, w1 =0
Suppose the solution is of the format:
up (y, 2,t) = upe 4 ujp cos mz (3.3.28)

Applying equation (3.3.28) in equation (3.3.26) and comparing like powers of &:

uy" — C1CyReuyy — (C1Cowi + C1C3H? Yuyy = —C1CoCyRe*Groy, (3.3.29)
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u1p" — C1Cy Reuyy’ — (w2 + C1Cs H? )ury = C1Co Revigug’ (3.3.30)

with
=0, un1 =0, wup=0
Y H 2 (3.3.31)
y=1, un =0, w=0
Resolving equations (3.3.29) and (3.3.30) utilizing equation (3.3.31), the solu-

tion is derived as:

Case 1: Magnetic Field is applied on the upward moving plate (at y=0)

T [(aae? — Bo)ePY + (B — apel®)eb]+-

by .
e’4 —e Glt—l—
A3ea2y + A4€a3y

ui(y, z,t) =

b [(ase®s — By)eh™ + (85 — aze®)elov]+

4 cosmz (3.3.32)
Zizl Aile(n—i—bl)y 4 Aize(ri—i—ln)y —|—A¢36(Ti+a1)y

Case 2: Magnetic Field is applied on the downward moving plate (at y=1)

(e — Bo)e + (B, — apel)eh]+

A36a29 + A4€a3y

ul(ya Zat) = eit+

(e = B 4 () — cue)eh] +

., cosmz (3.3.33)
S By erithy 4 Boelrith)y 4 B.oelritar)y

3.4 PHYSICAL QUANTITIES

Physical quantities like drag coefficient (C'f) and Nusselt number (Nu) measuring
surface drag and rate of heat transfer, respectively are given by:

Case 1: Magnetic Field is applied on the upward moving plate (at y=0)

) <du*) <du0) +€<du1>
hnf dy* yed dy - dy -

Case 2: Magnetic Field is applied on the downward moving plate (at y=1)

<du*) <du0) +€<du1)
Hing | — —
hn f dy* o dy 1 dy -

d
Cf = —
/ 1ryUo

1

1
=

cf =@

= 3.4.2
T (3.4.2)
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— G (3.4.3)

dT™ dﬁo) (d91 )
Nu=——-|K, n e +el —
Kf (TO - Tl) ‘ it ( dy* )y*:d ( dy y=0 dy y=0

3.5 RESULTS AND DISCUSSION

The significance of effectual parameters on velocity (u), surface drag (Cf) and
temperature () profiles are depicted through Figures 3.2 - 3.13. The physical
properties of nanoparticles (Al,O3 and Fe3O,) and the conventional fluid (water)
are identified in Table 3.1. ¢; = 0.1,¢9o = 0.1,w = 10,Re = 1,H = 2, Pr =
7,Gr =7 and t = w/2 are the base values of parameters employed (unless specified)
throughout the analysis. Further, the validation of the obtained results is achieved
through a comparative study with the previous work (Neethu, Areekara, & Mathew,
2021) (see Table 3.2) and a good agreement is noted.

Figure 3.2 explains the positive effect of Grashof number (Gr) on u meaning
that an augmentation in Gr will increase the velocity. Physically, on magnifying
G'r the buoyancy forces becomes prominent which results in ascending the velocity
profile. Figure 3.3 manifests the consequence of Hartmann number (H) on u. The
introduction of a magnetic field produces a drag force (Lorentz force) which sets up
an opposite reaction on upward and downward moving plates. On varying H, it is
noted that u ascends on upward moving plate whereas u descends on the downward-
moving plate. The negative influence of the volume fraction of nanoparticles (¢;
and ¢7) on wu is elucidated in Figures 3.4 and 3.5, respectively. This decrease in
velocity can be physically attributed to the fact that increasing the volume fraction
of nanoparticles swells the viscosity of hybrid nanoliquid which causes a drop in
velocity. The influence of injection/suction parameter (Re) on u is depicted in
Figure 3.6. Velocity profile experiences an exponential augmentation when Re
values are improved.

Figure 3.7 and 3.8 reveals that intensification in the volume fraction of nanopar-
ticles brings about a reduction in 8. The impact of Re on 6 is displayed using Figure
3.9 and it is noted that Re causes an improvement in 6. Physically, this increase
in temperature can be associated with the fact that with increasing Re values the
heated nanoparticles enter the opposite moving plates and the cold nanoparticles
exit the opposite moving plates.

The parallel effect of effectual parameters on drag coefficient (C'f) on the up-
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ward and downward-moving plates is illustrated in Figures 3.10 - 3.13 with the
aid of three-dimensional surface plots. It is seen that surface drag ascends with
¢1, Re, H and Gr on the upward moving plate. Further, surface drag ascends with

¢1, Re, and Gr and descends with H on the downward moving plate.

3.6 STATISTICAL ANALYSIS

3.6.1 Response Surface Methodology (RSM)

RSM is a statistical approach employed in analyzing the conjoint impact of effectual
parameters (independent variables) on the physical quantity of interest (response
or dependent variable). In this problem, Nu is chosen as the response variable and
nanoparticle volume fraction of Al,O3 (0.02 < ¢; < 0.08), nanoparticle volume
fraction of FezOy (0.02 < ¢ < 0.08) and injection/suction parameter (1 < Re < 2)
are chosen as the influential parameters. Table 3.3 bespeaks the effective parameters
and their levels. The general model (adopting central composite design) for response

variables involving linear, interactive and quadratic terms is expressed by:

Response = \g+ M A+ Ao B 4+ \sC + MAB + A5 BC + MAC + M\ A% + A\g B? + \gC?

(3.6.1)

where \;(i = 0,1,...,9) represents the regression coefficients. The experimental

design and the response for the 20 runs (according to CCD) are given in Table 3.4.

The analysis of variable (ANOVA) table (Table 3.5) illustrates the efficiency

of the estimated model. A parameter is claimed as significant if the corresponding

p-value is less than 0.05. It is observed that the quadratic terms in ¢, and ¢ are

not significant. Hence, they removed these terms from the model. The coefficient

of determination (R?) for the model is found to be 100% which boosts the model’s
accuracy.

The fitted quadratic model for Nu is given by:

Nu = 10.2645 — 0.07064¢, — 0.0394¢5 + 3.403Re + 0.01807 Re*+
0.0053¢ ¢ — 0.03258¢p1 Re — 0.0209¢,Re  (3.6.2)

The reliability of the estimated model for Nu is further clarified using residual

plots (see Figure 3.14). All points in the normal probability plot are situated
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beside a straight line with an insignificant deflection and the residual histogram is
approximately bell-shaped confirming the normal nature of residuals. Furthermore,
a maximum error of 0.005 can be observed from the fitted versus residual plot which
also contributes to the accuracy of the model.

From equation (3.6.2), it can be inferred that ¢; and ¢, have a negative impact
on Nu and Re has a positive effect on Nu. The parallel interaction of two param-
eters on Nu is graphed using surface and contour plots (see Figure 3.15) by fixing
the third parameter at the medium level. From Figures 3.15 (a) - (c), it is perceived

that Nu is highest for smaller values of ¢; and ¢5 and larger values of Re.

3.6.2 Sensitivity Analysis

Sensitivity analysis is a statistical technique that measures the extent and nature
of dependency exhibited by the effectual parameters on the physical quantity of
interest. In other words, sensitivity analysis accounts for the variation induced
by the augmenting parameter on the remaining effectual parameter. The sign of
sensitivity (positive or negative) signifies the nature of the correlation between Nu
and the influential parameters. Further, the magnitude of sensitivity indicates the
intensity of the effect on Nu.

The quadratic model (in coded form) after neglecting the insignificant terms is

given by:

Nu = 10.2645 — 0.07064 A — 0.0394 B + 3.403 C 4 0.01807 C*+
0.0053 AB — 0.03258 AC' — 0.0209 BC (3.6.3)

Then the sensitivity functions are:

0 Nu

5 = 007064 +0.0053 B — 0.03258 C (3.6.4)
N
8aBu = —0.0394 +0.0053 A — 0.0209 C (3.6.5)
& N
8—0“ = 3.403 + 0.03614 C' — 0.03258 A — 0.0209 B (3.6.6)

The sensitivity for Nu is tabulated in Table 3.6 keeping ¢; in the medium level.
It is noted that ¢, and ¢, exhibit negative sensitivity and Re exhibits a positive
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sensitivity towards Nu. The sensitivity of Nu is also visualized using bar charts
(Figure 3.16). It is seen that the results of sensitivity analysis are in perfect harmony
with the results inferred using RSM. It is also noticed that Nu is most sensitive

with Re.

3.7 CONCLUSION

The key observations are:
e Grashof number has a constructive effect on main flow velocity.

e Hartman number positively contributes towards the velocity profile on the
upward moving plate and negatively contributes towards the velocity profile

on the downward moving plate.

e Main flow velocity profile is higher when the magnetic field is applied on the

upward-moving plate.

e Drag coefficient is directly proportional to the volume fraction of nanoparti-

cles.

e Rate of heat transfer is the most sensitive parameter with injection/suction

parameter.

e Augmentation of volume fraction of Al,O3 nanoparticles has more influence

on the flow profiles.

e Surface drag coefficient ascends with augmenting Hartmann number on the

upward moving plate and descends on the downward moving plate.

e Volume fraction of nanoparticles exhibits a destructive effect on heat transfer

rate.
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TABLES AND GRAPHS

Table 3.1: Physical properties of nanoparticles and base fluid

Physical HQO Al203 F€304
Proper-
ties
p 997.1 3970 5180
C, 4179 765 670
B 21%107° | 0.85%107° | 1.3 % 107°
o 5% 1072 35 * 10° 25000
k 0.613 40 9.7

Table 3.2: Comparison of Nu with augmenting Re values when ¢; = 0, ¢pg =
0,Q=10,t =7/2,Pr=7,Gr =5 and H = 2

Re | Nu |
(Neethu et al., 2021) | Present study
0.5 3.60681 3.60681
1 6.9976 6.9976
1.5 10.4771 10.4771
2 13.9665 13.9665
2.5 17.4835 17.4835

Table 3.3: Effective parameter levels

Parameter ‘ Symbol ‘ Levels ‘
-1(low) | O(medium) | 1(high)
01 Al 0.02 0.05 0.08
o B | 0.02 0.05 0.08
Re C 1 1.5 2
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Table 3.4: Experimental design with response

’Run‘

Coded values ‘ Actual values ‘ Response ‘

A| B C le ¢2 Re Nu

1 -1 -1 -1 0.0210.02] 1 6.9437
2 1 -1 -1 0.0810.02| 1 6.8562
3 -1 1 -1 0.02]0.08| 1 6.895

4 1]1 -1 0.0810.08 | 1 6.8352
D -11]-1 1 0.020.02 | 2 13.8524
6 1]-1 1 0.08 | 0.02 | 2 13.6411
7T |-1|1 1 0.02 1 0.08 | 2 13.7266
8 171 1 0.08 | 0.08 | 2 13.53

9 -110 0 0.02 | 0.05 | 1.5 | 10.3412
10 110 0 0.08 | 0.05 | 1.5 10.19

11 0|-1 0 0.05{0.02 |15 | 10.309
12 01 0 0.05 | 0.08 | 1.5 | 10.2216
13 100 -1 0.05]0.05| 1 6.8773
14 1010 1 0.05{0.05 | 2 13.6873
15 (010 0 0.05 | 0.05 | 1.5 | 10.2646
16 |00 0 0.05 | 0.05 | 1.5 | 10.2646
17 1010 0 0.05 | 0.05 | 1.5 | 10.2646
18 100 0 0.05 | 0.05 | 1.5 | 10.2646
19 {00 0 0.05 | 0.05 | 1.5 | 10.2646
20 010 0 0.05 1 0.05 | 1.5 | 10.2646
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Table 3.5: ANOVA table

Deg. Of | Adj. Adj. RegressignF-Value | p-Value
freedom | sum of | mean Coefti-
squares | squares | cient
Model 9 115.884 12.876 924250 0
Linear 3 115.87 38.623 2772413 0
01 1 0.05 0.05 -0.0706 3581.88 0
0o 1 0.016 0.016 -0.0394 1114.3 0
Re 1 115.804 115.804 3.403 8312544 0
Square 3 0.002 0.001 46 0
01 % O 1 0 0 0.00137 0.37 0.556
Do * Do 1 0 0 0.00107 0.23 0.644
Re x Re 1 0.001 0.001 0.01807 64.47 0
2-Way 3 0.012 0.004 292.11 0
Interac-
tion
X 1 0 0 0.0053 16.13 0.002
o1 * Re 1 0.008 0.008 -0.0326 609.35 0
o2 * Re 1 0.003 0.003 -0.0209 250.84 0
Constant 10.2645
Error 10 0 0
Lack-of- 5 0 0 * *
Fit
Pure FEr- 5 0 0
ror
Total 19 115.884
R? = 100% Adjusted R? = 100%
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Table 3.6: Sensitivity of response Nu when A =0

’ ‘ ‘ Sensitivity ‘
B, C d Nu J Nu d Nu

0A oB oC
1 [-0.0434 | -0.0185 | 3.3878
1] 0 [-0.0759 | -0.0394 | 3.4239 |

1 1-0.1085 | -0.0603 | 3.46
-1 1-0.0381 | -0.0185 | 3.3669

| 0| 0[-0.0706 | -0.0394 | 3.403 |
|| 1]-0.1032 | -0.0603 | 3.4391 |
| [-1]-0.0328 | -0.0185 | 3.346 |
| 1] 0[-0.0653 | -0.0394 | 3.3821 |
| | 1]-0.0979 | -0.0603 | 3.4182 |
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Figure 3.5: Variation in u with ¢
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Figure 3.6: Variation in u with Re
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Figure 3.8: Variation in 6 with ¢
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Figure 3.9: Variation in 60 with Re
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Appendix I: Non-Dimensional Quantities

Pr = (qu)f Prandtl Number
Re = %d Injection/ Suction Parameter
H = Byd p;’;f Hartmann Number

Grashof Number

Appendix II: Nomenclature

u*, v*, w*
Vo

t*

hnf

€1,€2,¢3

Velocity components
Injection velocity

Time

Pressure

strength of magnetic field
Electrical conductivity
Distance between the plates
Dynamic viscosity
Kinematic viscosity
Thermal conductivity
Nanofluid

Hybrid nanofluid

Very small reference constants
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T*

T07 Tl

Uo

$1
¢2

S1

52

Fluid temperature
Acceleration due to gravity
Reference temperature
Specific heat at constant pressure
velocity of the moving plates
Volume fraction of AlyO3
Volume fraction of Fe30,
Density

Angular velocity

Base fluid

Al>,0O3 Nanoparticle

Fe30, Nanoparticle
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Appendix III: Short keys

CsPrRe
a) = —506

C5PrRe+\/C§PT2RE2 405 Prwi

Ce c Ce
a9 = 3
by — C1CaRe+4/C3C3 Re?+4C, C3 H?
1= 2
b C1CyRe+4/C3C3Re?+4(iwC1 Oy C1C3 H2)
3 = 2
b C1CaRe+4/C3C3 Re2+4(C1C3 H2+72)
5 — 2
A — C1CQC4R62GT
1 (e"1—1)(a12—C1C2Re a1—C1C3H?)
A — C1C5C 4 Re2Gre?3
3 (6”276”3)(%701021%6 azfclcgiwfclchQ)
o] = — (Al + Ag)
Qg = — <A3 —+ A4)
_ bity/b3+4n?
r = — 5
_ bat4/b3+4m2
ry3=—Ft5——
4
ag=—> (Ain + Ain + Aj3)
i=1
4
Bz = = (Anel ) 4 Aperithe) 4 Ajgelritan)
i=1
4

By = —Z (Bﬂe(ri—i—bl) + BZ.Ze(ri—i—Im) i Bi3€(ri+a1))

=1
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CSPTRE\/CgPrzREQ 4C5 Pruwi

Cs cg Ce

az = 3

C1CyRe—y/C}C3 Re2+4C1 C3 H?
b2 == 2
by — C1CyRe—y/C3C3Re?+4(iwC1 Oy C1C3 H2)
4= 2
b C1CyRe—y/C}C3Re?+4(C1C3 H2+m2)
6 — 2

A _ 010204R€2GT el
2 7 (e1-1)C1C3H?)

A — C1C5C4 Re2Gre®2
4 (e“Sfeaz)(angHCgRe agfclcgiwfclchQ)

fr=— (24 Ae™ + Ay)

fa = — (Aze® 4 Age®)
bl—\/b%+471'2
=g

bo—/b3+4m2
ry=—Y5—
2

W~

ay ==Y (Bi + Bia + Bis)

i=1
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_D1 = rary <€T2+T4 _ 67”2+T3) _|_ Tory (6T3+7”2 o 67‘3+T4) + rors (6T3+T4 _ €T2+T4)
Dy = 13y (€M7 — M) opypy (€73 — @) gy (71T — grata)
D3 = rory ("7 — e 72) ey (€727 — @2 ey (€727 — 1)
Dy = rors (€772 — MH73) - pypg (€73172 — 72FT1) oy (7173 — eT21TS)

D =D+ Dy+ D3+ Dy

by (a16b2 —ﬂl)Cl CoReDi

A = (eb2—eb1) D[(ri+b1)?~CrCaRe(ri+b1)—(C1C3 H2 +72)]’ 1=12,3,4
A = (ebzebl)D[(nlizgf)12_2f;)}zil(iﬁfi(0103H2+7r2)]’ 1=1,2,3,4
[ Y
B = Gy e ey 1= 12,84
Bz = A= WAL C, e Dy i=1,2,34

D[(ri—l—al)2—CngRe(ri—i—m)—(0103H2+7r2)] ’
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