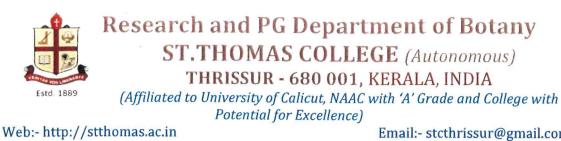


Research and PG Department of Botany ST.THOMAS COLLEGE (Autonomous) THRISSUR - 680 001, KERALA, INDIA (Affiliated to University of Calicut, NAAC with 'A' Grade and College with Potential for Excellence)

Web:- http://stthomas.ac.in Phone:- +91 487 2420435 Email:- stcthrissur@gmail.com Fax:- +91 487 2421510

Date: 06/05/2022

CERTIFICATE


I hereby certify that, this is the revised version of the thesis entitled "Green synthesis of *Silver Nanoparticles using Curcuma Rhizomes: Characterization and Application*" submitted by Ms. Aiswariya K S, under my guidance after incorporating the necessary corrections / suggestions made by the adjudicators. The content of the CD is the same as in the hard copy.

Dr. Vimala Jose

(Research Guide)

HEAD OF THE DEPARTMENT Department Of Botany St. Thomas' College(Autonomous) Thrissun Kerala-680001

Web:- http://stthomas.ac.in Phone:- +91 487 2420435 Email:- stcthrissur@gmail.com Fax:- +91 487 2421510

Date: 06/05/2022

CERTIFICATE

This is to certify that the thesis entitled "Green synthesis of Silver Nanoparticles using *Curcuma Rhizomes: Characterization and Application*" is an authentic record of original research carried out by Ms. Aiswariya K S under my supervision in partial fulfillment of the requirements for the award of the degree of Doctor of Philosophy in Botany of University of Calicut and further that no part thereof has been presented before for any other degree.

Dr. Vimala Jose

(Research Guide)

HEAD OF THE DEPARTMENT Department Of Botany St. Thomas' College(Autonomous) Thrissur, Kerala-680001

Declaration

I hereby declare that the thesis entitled "Green synthesis of Silver Nanoparticles using Curcuma Rhizomes: Characterization and Application", submitted to the University of Calicut in partial fulfillment of the requirement for the award of the Degree of Doctor of Philosophy in Botany is a bonafied research work done by me under the supervision of Dr. Vimala Jose, Assistant Professor, Research and Post graduate Department of Botany, St. Thomas College (Autonomous), Thrissur.

I also declare that the material presented in this thesis is original and does not form the basis for the award of any other degree, diploma or other similar titles of any other university.

AISWARIYA K S

Date: 06/05/2022

Acknowledgement

I express my special gratitude to my research guide, **Dr. Vimala Jose** who made it possible to accomplish the goal of my doctoral studies fruitfully. The freedom of work I enjoyed under her supervision helped me in moulding my potential to tackle the barrier that emerged during the course of my studies. I am very much obliged to her without whom my work would have been incomplete. I remember with grace the constant support she gave me during the difficulties that aroused during my work period. Expressing my gratitude for the valuable guidance, support and motivation extended by my research guide remain incomplete through these limited words.

The spirit of St. Thomas College- my research institution has induced an invisible bondage which gave me the feeling of another home. I remember with thanks the former principals of St. Thomas College **Dr.** P O Jenson, **Dr. Ignatious Antony** and **Dr. Joy K L** along with the current principal in charge **Rev. Fr. Dr. Martin K** A who implemented their great visions in order to develop the qualities of research. They motivated us a lot. **Rev. Fr. Biju Panengadan** the BURSAR of our institution was always approachable and contributed a lot for the development of infrastructures in our research centre. I sincerely thank him for his unforgettable support.

I am indebted to the CSIR, New Delhi for the timely grant of fellowship which supported me in carrying out the research activities.

I am greatly motivated by **Dr. C. D. Varghese**, Retd. HoD of Botany Department. Besides decorating the official chairs of responsibilities, he coordinated the research activities of our department in an appreciable way. I am always thankful to him for his valuable advices and guidance.

I extend my gratitude to all the teaching and non-teaching staff of St. Thomas College, Thrissur for their support in one way or the other. I thank with honour, faculty members of our department Dr. Anto P V, Dr. Geethu Elizabath Thomas, Dr. Thomas M T, Dr. Joby Paul and Dr. Sandhya Vincent Neelamkaavil who helped me a lot during the course of my work. I also thank the lab attenders of our department Mr. Joy, Mr. Pauly and Mr. Paulson for their constant support and prayers. I further extend my sincere thanks to Dr. Joby Thomas K, Dr. Paulson Mathew, Dr. Jency Thomas K faculty, Department of Chemistry, Dr. Johns Naduvath, Assistant Prof., Department of Physics, St. Thomas College Thrissur, for analysing my samples and Dr. Achuthan C Raghavamenon, Associate Professor, Amala Cancer Research Centre, Thrissur, for the constant support and guidiance in carrying out the in vivo research activities. It is said that the real friends are the ones who come to our aid during the hardest times of our life. They laugh with us while the rest laugh at us. I can whole heartedly point out such friends whom I consider to be my family members. They include co-researchers namely Ms. Hridhya M V, Ms. Rameena K Jamal, Ms. Sreeshma P S, Ms. Aparna Joseph, Ms. Lakshmi Devi, Ms. Reshma Rajan, Ms. Blessy Santhosh, Ms. Smitha P S, Ms. Seena K K, Ms. Neenu A Santhosh, Ms. Alina K Sebastian, Ms. Keerthana Nandakumar, Ms. Nimmi Dominigose, Ms. Afsana Khan, Ms. Reshma Asok, Ms. Dhanya Jose, Mr. Jithin, Mr. Shaibu Jacob of my institution. The sweet memories of the happiest moments of life spent with my friends presented me an unforgettable nostalgia. I also thank Ms. Sruthi P K, Ms. Soorya P. I, Ms. Aswathy, Ms. Sowmya, Ms Sisira K S, Ms. Preetha and Mr.Vignesh of Amala Cancer Research Centre, Thrissur and many more.

I always remain thankful to our institution and various institutions which provided me the facilities for conducting my work and / or analysing my samples. These institutions include IIT Bombay, Sathyabama University, Chennai, MG University, Kottayam, CUSAT, Kochi, Amala Cancer Research Centre, Thrissur, KVASU, Thrissur. I specially thank **Mr. Sanjo Jose**, Librarian St. Thomas College (Autonomous), Thrissur for the library assistance and **Dr. Vinod V M**, Assistant librarian, C. H. M. K library for conducting the plagiarism check of my thesis.

The real strength and support I enjoyed at every instances of my research career could be credited to my family members, especially my parents. The gravity of their infinite love and bondage cherished within me the real confidence and courage.

I always remember with never ending gratitude, all the personalities who helped at different stages of my work physically and / or mentally. The helping hands extended by each and every one of them are well accounted for which I always bet to remain thankful.

With heartfelt gratitude

AISWARIYA K S

Dedicated to The Almighty

Preface

Nanotechnology refers to the wide range of technologies and applications that involve the use of particles ranging from a few nanometers to hundreds of nanometers in diameter. Nanoparticles (NPs) have revolutionized the fields of environmental remediation, medicine, material science, chemistry and engineering. They have been exploited in catalysis, sensor technology, imaging, cancer treatments and site specific drug delivery because of their characteristic high surface to volume ratio compared to their bulk counterparts. But the physicochemical processes involved in the synthesis of metallic nanoparticles involve the use of toxic solvents, posing a serious threat to the environment. Their efficacy, on the other hand, is restricted by their limited hydrophilicity and stability. Therefore, in recent times, the use of natural entities such as microbes, parasites, yeast, seaweeds and plants as basic hotspot for the synthesis of metal nanoparticles has gained considerable interest among researchers. Plants are enriched with bioactive molecules which are unique in structure and function justifying their role in pharmaceutical, biomedical, nutraceutical, cosmeceutical, and chemical industries. Hence, the plants continue to be a critical source of present-day drugs Natural products are frequently viewed as vulnerable medication candidates due to their high dosage requirements and frequent administration.

Despite the advantages of the biomolecules, the exploitation of the plant resources remains in a nascent stage. Consequently, during the recent years, synthesis of plant based functional nanoparticles has evolved as a potential area of investigation among the scientific community. Besides, the minimal efforts involved in synthesis, the plant material integrated nanoparticles are biocompatible and biodegradable. Moreover, the bioactive molecules act as reducing and stabilizing agents in the formation of metal nanoparticles. Therefore, the green synthesized nanoparticles have been explored in the field of nanomedicine and nanoremediation.

The main goal of this research is to produce silver nanoparticles (AgNPs) using aqueous extracts of *Curcuma zanthorrhiza* Roxb. (CZ) and *Curcuma aromatica* Salisb. (CA), as well as to evaluate its diverse catalytic, antimicrobial, antioxidant, *in vitro* and *in vivo* anticancer properties. The toxicity evaluation of silver nanoparticles was also performed.

To establish the synthesis of silver nanoparticles, UV-Visible spectroscopy experiments were carried out. FTIR investigations have been carried out to ensure the nature off phytochemicals involved in the reduction and stability of nanoparticles. The crystalline nature of silver nanoparticles was investigated using X-ray diffraction techniques. The size and shape of the nanoparticles were studied using HR-TEM and FESEM. Energy dispersive X-ray (EDX) analysis was used to characterize the elemental properties of nanoparticles. DLS was used to investigate the hydrodynamic size of the synthesized silver nanoparticles, while BET analysis was used to determine its surface area. HR-LCMS analysis of nanoparticles was done to ascertain the chemical nature of biomolecules that capped over the AgNPs.

In the field of catalysis, promising new possibilities based on nanotechnology methods are developing. Catalyst synthesis that is efficient, size regulated, and cost effective is thus extremely important. Nanoparticles have been found to offer novel catalytic features, such as increased reactivity and selectivity, when compared to their bulk counterparts. The catalytic efficiency of synthesized nanoparticles (CZAgNPs and CAAgNPs) in the degradation of ionic dyes (malachite green and coomassie brilliant blue), by photons (sunlight and UV light irradiation) was investigated. The catalytic property of nanoparticles were further validated by analyzing the degradation of azo dyes (Orange G, Methyl Orange, Eriochrome Black T, and Congo Red) using sodium borohydride as a reductant. UV-Visible spectral analysis has been used to investigate the reduction patterns of various dyes. HR LCMS was further used to ascertain degradation products.

Metal nanoparticles have antimicrobial properties that have been used to treat a number of different infections. Nanoparticles can bind to microorganisms more effectively due to their small size and large surface area. In light of the potential applications of silver nanoparticles in many biomedical domains the antibacterial properties of synthesized CZAgNPs and CAAgNPs were examined using the disc diffusion method and the broth microdilution assay. The antifungal property of nanoparticles was investigated by the poisoned food technique. *In silico* molecular docking experiments were done using the tool Auto Dock 4.2. Here rigid protein flexible ligand docking was employed to study the interactions. The biomedical applications of nanoparticles are becoming more widespread. However, there are not many studies regarding the influence of these nanoparticles in living cells or as biochemical indicators. It is therefore vital to encourage research into the toxicity and biochemical evaluations of silver nanoparticles. In the present investigations, the antioxidant potentials of plant extracts and AgNP synthesized from them have been assessed using an *in vitro* DPPH assay.

The trypan blue exclusion method in DLA and EAC cell lines, as well as the MTT assay in MCF - 7 cell lines, was used to assess the short-term *in vitro* cytotoxicity of plant extracts and the as synthesized silver nanoparticles. To further substantiate the cytotoxic properties of silver nanoparticles, *in silico* molecular docking investigations were conducted. The MCF - 7 proteins - Human tyrosine protein kinase C- SRC (PDB ID: 2SRC) and CDK 2 with EGFR inhibitor compound 8 (PDB ID: 4RJ3) were selected and was docked against the biomolecules bound on the as synthesized silver nanoparticles. The protein ligand bound complex was visualized using Pymol tool.

The safety evaluation of the synthesized nanoparticles has been conducted *in vivo* in Swiss albino male and female mice. Oxidative stress is one of the most important elements in the development of chronic and degenerative diseases such as ageing, cancer, and immunological suppression. Phytochemicals with antioxidant activity can be found in a variety of plants. Plant-based antioxidants are regarded as an essential source of therapeutic agents in comparison to current medications because of their low cost, ease of availability, and lack of side effects. Antioxidants can protect the body from the oxidative damage caused by free radicals. Antioxidants function as oxygen scavengers or react with free radicals to slow down the oxidation process. The protective impact of green synthesized silver nanoparticles on Swiss albino mice intoxicated with sodium fluoride was investigated.

The potential of silver nanoparticles in inhibiting the rapid growth and proliferation of both DLA and EAC tumour models was investigated in this study. The entire work is summarised in the section Summary and Conclusion. The possible application of biogenic AgNPs for prospective nanomedicine and nanocatalysts is discussed. The significance of the work along with its environmental friendliness and future scope is also discussed.

Abbreviations

NP	Nanoparticle
CZ	Curcuma zanthorrhiza
CA	Curcuma aromatica
DPPH	2,2-diphenyl -1-picrylhydrazyl
DLA	Dalton's Lymphoma Ascites
EAC	Ehrlich Ascites Carcinoma
MTT	3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl- tetrazolium bromide
MCF - 7	Michigan Cancer Foundation-7
ROS	Reactive Oxygen Species
CADD	Computer Aided Drug Design
PDB	Protein Data Bank
DAP	Diaminopimelate
EGFR	Epidermal Growth Factor Receptor
FCR	Follin's Ciocalteau Reagent
OD	Optical Density
BJH	Barrett Joyner Halenda
MG	Malachite Green
CBB	Coomassie Brilliant Blue
OG	Orange G
CR	Congo Red
EBT	Eriochrome Black T
МО	Methyl Orange
ZOI	Zone of Inhibition
LB	Luria Bertani broth
MIC	Minimum Inhibitory Concentation

PDA	Potato Dextrose Agar
OECD	Organisation for Economic Co-operation and Development
HDL	High Density Lipoprotein
LDL	Low Density Lipoprotein
VLDL	Very low Density Lipoprotein
SGPT	Serum Glutamate Pyruvate Transaminase
SGOT	Serum Glutamate Oxaloacetic Transaminase
ALP	Alkaline phosphatase
CAT	Catalase
SOD	Superoxide dismutase
GSH	Reduced glutathione
GST	Glutathione - s- transferase
GPx	Glutathione Peroxidase
GR	Glutathione Reductase
SPR	Surface Plasmon Resonance

List of tables

Table	Table caption	Page
no:		No
4.1	Qualitatitive Analysis of aqueous rhizome extract of Curcuma zanthorrhiza and Curcuma aromatica	114
4.2	Bioactive compounds in the aqueous rhizome extract of Curcuma zanthorrhiza identified from the HRLCMS chromatogram presented in Fig. 4.2	117
4.3	Biological properties of the compounds identified in the rhizome extract of CZ by HRLCMS	119
4.4	Bioactive compounds in the aqueous rhizome extract of Curcuma aromatica identified from the HRLCMS chromatogram presented in Fig. 4.3	122
4.5	Biological properties of the compounds identified in the rhizome extract of CA by HRLCMS	124
4.6	Elemental analysis of CZAgNPs and CAAgNPs	138
4.7	Bioactive macromolecules coated on CZAgNPs identified from the HRLCMS chromatogram presented in Fig. 4.13a	142
4.8	Bioactive macromolecules coated on CAAgNPs identified from the HRLCMS chromatogram presented in Fig. 4.13b	144
4.9	Zone of inhibition of various test solution (100 μ g / ml) against bacterial strains (disc diffusion method)	155
4.10	Comparison of MIC of Ampicillin, biosynthesised silver nanoparticles, plant rhizome extracts and silver nitrate solution against pathogenic bacterial strain	159
4.11	The molecular properties of the selected ligands (Data from Pub Chem)	163
4.12	The binding energy formed between all the ligand molecule and the protein target- 5N9M	165
4.13	The binding energy formed between all the ligand molecule and the protein target- 4IJZ	165

4.14	Percentage of mycelial growth inhibition by various drugs against fungal pathogen A. niger	167
4.15	The binding energy formed between all the ligand molecule and the protein target- 1DQU	170
4.16	Comparison of percentage cytotoxicity of CZAgNPs, CAAgNPs, CZ, CA and silver nitrate solution against DLA cell lines	175
4.17	Comparison of percentage cytotoxicity of CZAgNPs, CAAgNPs, CZ, CA and silver nitrate solution against EAC cell lines	176
4.18	Comparison of percentage inhibition of MCF -7 cell lines by CZAgNPs, CAAgNPs, CZ, CA	177
4.19	The binding energy formed between all the ligand molecule and the protein target- 2SRC	181
4.20	The binding energy formed between all the ligand molecule and the protein target- 4RJ3	182
4.21	Percentage change in body weight of mice in acute oral toxicity test	184
4.22	Feed consumption of mice in acute oral toxicity test	185
4.23	Water consumption of mice in acute oral toxicity test	185
4.24	Feed consumption of mice in sub-acute oral toxicity test	188
4.25	Water consumption of mice in sub-acute oral toxicity test	188
4.26	Relative organ weight of mice in sub-acute oral toxicity test	189
4.27	Hematological parameters of mice in sub-acute oral toxicity test	190
4.28	Hepatological parameters of mice in sub-acute oral toxicity test	192
4.29	Renal function parameters of mice in sub-acute oral toxicity test	193
4.30	Lipid profile of mice in sub-acute oral toxicity test	194
4.31	Antioxidant enzyme status in liver tissues of untreated and treated mice with various doses of CZAgNPs and standard Vitamin C	204

-

4.32	The inhibitory effect of CZAgNPs on ascites tumor development	216

4.33 The inhibitory effect of CZAgNPs on solid tumor development...... 217

List of figures

Figure No:	Figure caption	Page No.
4.1	Fresh rhizomes of (a) <i>Curcuma zanthorrhiza</i> Roxb. (b) <i>Curcuma aromatica</i> Salisb	112
4.2	HR-LCMS chromatogram of the aqueous rhizome extract of C. zanthorrhiza	119
4.3	HR-LCMS chromatogram of the aqueous rhizome extract of <i>C</i> . <i>aromatica</i>	124
4.4	Color change in reaction mixture from yellow to reddish brown indicated formation of AgNPs (a) aqueous rhizome extract (yellow); (b) biosynthesized CZAgNP suspension (reddish brown)	126
4.5	Color change in reaction mixture from yellow to reddish brown indicated formation of AgNPs (a) aqueous rhizome extract (pale yellow); (b) biosynthesized CAAgNP suspension (reddish brown)	127
4.6	The UV–Vis absorption spectrum of (a) CZAgNPs, (b) CAAgNPs	128
4.7	The FTIR spectrum of (a) CZAgNPs, (b) CAAgNPs	131
4.8	The PXRD spectrum of (a) CZAgNPs, (bCAAgNPs	133
4.9	(a) SAED pattern of CZAgNPs, (b) HR TEM micrograph of CZAgNPs (c) SAED pattern of CAAgNPs, (d) HR TEM image of CAAgNPs	134,135
4.10	FESEM image of (a) CZAgNPs, (b) CAAgNPs, EDAX image of (c) CZAgNPs, (d) CAAgNPs	136,137
4.11	DLS image of (a) CZAgNPs, (b) CAAgNPs	139
4.12	Nitrogen sorption isotherms of (a) CZAgNPs and (b) CAAgNPs, BET plots of (c) CZAgNPs and (d) CAAgNPs	141

4.13	(a) HRLCMS chromatogram of CZAgNPs showing the bound bioactive molecules, (b) HRLCMS chromatogram of CAAgNPs showing the bound bioactive molecules	143,145
4.14	Photocatalytic degradation of MG under sunlight (a) CZAgNPs, (b) CAAgNPs; under UV light (c) CZAgNPs, (d) CAAgNPs, (e) Possible intermediates formed after degradation of MG, (f) HR LCMS chromatogram of photocatalytic degradation product of MG by CZAgNPs	147,148
4.15	Photocatalytic degradation of CBB exposed to UV light under (a) CAAgNPs (b) CZAgNPs	150
4.16	(a) Catalytic degradation of azo dyes using CAAgNPs (i) OG, (ii) CR, (iii) EBT, (iv) MO;(b) Catalytic degradation of azo dyes using CZAgNPs (i) OG, (ii) CR, (iii) EBT, (iv) MO	152,153
4.17	Antibacterial activity of AgNPs (a) Disc diffusion method against (i) E. coli, (ii) P. aeruginosa, (iii) K. pneumonia, (iv) P. mirabilis, (v) S. marcescens (vi) B. subtilis and (vii) S.aureus [NA- CAAgNPs, NZ- CZAgNPs], (b) Broth microdilution method: Plates showing MIC against (i, iii) E.coli, (ii, iv) S. aureus [Ab- Ampicillin, AgNPs – CZAgNPs, PE- CZ, AgNO ₃ – silver nitrate, CANP –CAAgNPs, RE – CA], (c) Interaction diagram of procurcumadiol and 5n9m protein (d) interaction diagram of curcumenolactone and 4ijz, Protein ligand complex of (e) procurcumadiol and 5n9m protein (f) curcumenolactone and 4ijz visualized usong Pymol.	156,160, 166
4.18	Antifungal activity (a) control, (b) plant extract, (c) silver nitrate, (d-f) various concentrations of synthesized silver nanoparticles, (g) Interaction diagram (h) protein ligand bound complex of Curcumenolactone C and 1dqu	169,171
4.19	DPPH assay of rhizome extracts and as synthesized silver nanoparticles	172
4.20	(a) MTT assay of MCF -7 cell lines against various concentrations of CZ (i) 12.5 μ g / ml (ii) 25 μ g / ml (iii) 50 μ g / ml (iv) 75 μ g / ml (v) 100 μ g / ml (vi) control, (b) MTT assay of MCF -7 cell lines against various concentrations of CA (i) 12.5 μ g / ml (ii) 25 μ g / ml (iii) 50 μ g / ml (iv) 75 μ g / ml (v) 100 μ g / ml (vi) control, (c) MTT assay of MCF -7 cell lines against various concentrations of CZAgNPs (i) 3.125 μ g / ml (ii) 6.12 μ g / ml (iii) 12.5 μ g / ml (iv) 25 μ g / ml (v) 50 μ g / ml (vi) 75 μ g / ml (vii) 100 μ g / ml (viii) control, (d) MTT assay of MCF -7 cell lines against various concentrations of CAAgNPs (i) 3.125 μ g / ml (ii) 6.12 μ g / ml (iii) 12.5 μ g / ml (iv) 25 μ g / ml (v) 50 μ g / ml (vi) 75 μ g / ml (iii) 12.5 μ g / ml (iv) 25 μ g / ml (v) 50 μ g / ml (vi)	178,179

4.21	(a) Interaction diagram of furanogermanone and 4rj3 protein (b) interaction diagram of procurcumadiol and 2src, Protein ligand complex of (c) furanogermanone and 4rj3 protein (d) procurcumadiol and 2src	182,183
4.22	Percentage change in body weight of the animals treated with 500 mg / kg bwt of CZAgNPs. Values are expressed as mean \pm SEM (n=5) by two way ANOVA followed by Dunnett's multiple comparisons test. *p<0.05 as significance	185
4.23	Feed and water consumption of the animals treated with 500 mg / kg bwt of CZAgNPs. Values are expressed as mean \pm SEM (n=5) by two way ANOVA followed by Dunnett's multiple comparisons test. *p<0.05 as significance	186
4.24	Gross anatomy of swiss albino mice (a) Normal female, (b) Normal male, (c) High dose female, (d) High dose male, (e) Medium dose female, (f) Medium dose male, (g) Low dose female, (h) Low dose male	187
4.25	(a) Histological section of mice treated with high dose of CZAgNPs (i) Brain, (ii) Heart, (iii) Intestine, (iv) Kidney, (v) Liver, (vi) Lungs, (vii) Stomach, (viii) Testis, (ix) Ovary, (b) Histological section of mice treated with medium dose of CZAgNPs (i) Brain, (ii) Heart, (iii) Intestine, (iv) Kidney, (v) Liver, (vi) Lungs, (vii) Stomach, (viii) Testis, (ix) Ovary, (c) Histological section of mice treated with low dose of CZAgNPs (i) Brain, (ii) Intestine, (iv) Kidney, (v) Liver, (vii) Eastis, (ix) Ovary, (c) Histological section of mice treated with low dose of CZAgNPs (i) Brain, (ii) Heart, (iii) Intestine, (iv) Kidney, (v) Liver, (vi) Lungs, (vii) Stomach, (viii) Testis, (ix) Ovary, (d) Histological section of untreated normal mice (i) Brain, (ii) Heart, (iii) Intestine, (iv) Kidney, (v) Liver, (v) Liver, (vi) Lungs, (vii) Stomach, (viii) Testis, (ix) Ovary. (d) Histological section of untreated normal mice (i) Brain, (ii) Heart, (iii) Intestine, (iv) Kidney, (v) Liver, (vi) Lungs, (vii) Stomach, (viii) Testis, (ix) Ovary.	197-199
4.26	(a) SOD activity in blood of the untreated and animals treated with different doses of CZAgNPs, Vitamin C. Values are expressed as mean \pm SEM (n=5) by one ANOVA followed by Bonferroni's multiple comparisons test. *p<0.05 as significance, (b) SOD activity in tissue of the untreated and animals treated with different doses of CZAgNPs, Vitamin C. Values are expressed as mean \pm SEM (n=5) by one ANOVA followed by Bonferroni's multiple comparisons test. *p<0.05 as significance	205
4.27	(a) Catalase activity in blood of the untreated and animals treated with different doses of CZAgNPs, Vitamin C. Values are expressed as mean \pm SEM (n=5) by one ANOVA followed by Bonferroni's multiple comparisons test. *p <0.05 as significance, (b) Catalase activity in tissue of the untreated and animals treated with different doses of CZAgNPs, Vitamin C. Values are	

_

	expressed as mean \pm SEM (n=5) by one ANOVA followed by Bonferroni's multiple comparisons test. *p <0.05 as significance	206,207
4.28	GSH activity in tissue of the untreated and animals treated with different doses of CZAgNPs, Vitamin C. Values are expressed as mean \pm SEM (n=5) by one ANOVA followed by Bonferroni's multiple comparisons test. *p <0.05 as significance	208
4.29	GST activity in tissue of the untreated and animals treated with different doses of CZAgNPs, Vitamin C. Values are expressed as mean \pm SEM (n=5) by one ANOVA followed by Bonferroni's multiple comparisons test. *p <0.05 as significance	209
4.30	<i>GR</i> activity in tissue of the untreated and animals treated with different doses of CZAgNPs, Vitamin C. Values are expressed as mean \pm SEM (n=5) by one ANOVA followed by Bonferroni's multiple comparisons test. *p <0.05 as significance	210
4.31	GPx activity in tissue of the untreated and animals treated with different doses of CZAgNPs, Vitamin C. Values are expressed as mean \pm SEM (n=5) by one ANOVA followed by Bonferroni's multiple comparisons test. *p <0.05 as significance	211
4.32	Hepatic TBARs level in the untreated and animals treated with different doses of CZAgNPs, Vitamin C. Values are expressed as mean \pm SEM (n=5) by one ANOVA followed by Bonferroni's multiple comparisons test. *p <0.05 as significance	212
4.33	Histology of liver tissues (a) Normal, (b) Low dose, (c) Medium dose, (d) High dose, (e) Standard and (f) NaF treatments	213
4.34	Effect of CZAgNPs on EAC induced solid tumor development in Swiss albino mice	216
4.35	(a) Effect of CZAgNPs on DLA induced solid tumor development in Swiss albino mice (UNTC- untreated group), (b) Solid tumor excised from the mice treated with CZAgNPs (i) control, (ii) low dose, (iii) medium dose, (iv) high dose, (v) standard, (c) Tumor development in DLA induced solid tumor in (i) control group animals, CZAgNPs administered animals (ii) low dose, (iii) medium dose, (iv) high dose and (v) standard	218,219