

RESEARCH AND POSTGRADUATE DEPARTMENT OF CHEMISTRY ST. THOMAS' COLLEGE THRISSUR, KERALA-680001

(Nationally reaccredited at 'A' level by NAAC & affiliated to University of Calicut)

Dr. JOBY THOMAS K M.Sc., M.Phil., MBA, Ph.D

24-06-2022

CERTIFICATE

I hereby certify that, this is the revised version of the thesis entitled "Synthetic and natural organic inhibitors for metal corrosion: physicochemical, electrochemical, morphological and quantum mechanical investigations" submitted by Ms. Vidhya Thomas K under my guidance after incorporating the necessary corrections/suggestions made by the adjudicators. Also certify that the contents in the thesis and the soft copy are one and the same.

Dr. Joby Thomas K (Supervising Teacher)

Dr. JOBY THOMAS K. M.Sc.,M.Phil.,MBA,Ph.D Former HOD & Associate Professor

2/11/2021

CERTIFICATE

This is to certify that the thesis entitled "Synthetic and natural organic inhibitors for metal corrosion: physicochemical, electrochemical, morphological and quantum mechanical investigations" is an authentic record of research work carried out by Ms. VIDHYA THOMAS K under my supervision in partial fulfillment of the requirements for the degree of Doctor of Philosophy, in Chemistry of University of Calicut and further that no part thereof has been presented before for any other degree.

> Dr. Joby Thomas. K (Supervising Teacher)

DECLARATION

I hereby declare that the thesis entitled, "Synthetic and natural organic inhibitors for metal corrosion: physicochemical, electrochemical, morphological and quantum mechanical investigations", submitted to the University of Calicut in partial fulfillment of the requirements for the award of the Degree of Doctor of Philosophy in Chemistry is a bonafide research work done by me under the supervision and guidance of Dr. Joby Thomas. K, Former Associate Professor & Former Head, Department of Chemistry, St. Thomas' College (Autonomous), Thrissur, Kerala.

I further declare that this thesis has not previously formed the basis of any degree, diploma or any other similar title.

2-11-2021

VIDHYA THOMAS K

To My Family

ACKNOWLEDGEMENT

First of all, I thank God Almighty for His showers of blessing throughout my research to complete the work successfully. I would also like to express my deep and sincere gratitude to my Research Supervisor and my Mentor, Dr. Joby Thomas K for giving me the opportunity to do research and providing invaluable guidance throughout this research. I would always cherish this experience for the rest of my life, and it was a great privilege and honour to work and study under his guidance.

I should mention the love and great desire of two people $Mr \ K \ V$ Thomas and $Mrs \ Mary$ Thomas, my parents, which made me dream about these achievements. I am very much thankful to my Husband, Sabu $A \ S$, who helped me a lot to fulfil my ambition, especially spending his precious time introducing statistical analysis. Also, I express my thanks to my Son, Sister, Mother in law and Father in law for their tolerance and support.

The support rendered by the St. Thomas College Team – Dr. Fr Martin K A, Principal, Dr. K L Joy, Dr. Jenson P. O and Dr. Ignatius Antony, Former Principals, Dr. C L Joshy, HOD, Dept of Chemistry, all other faculty members of the Chemistry Department, Lab Assistants and Office Staffs has been really high. They served as a lighthouse in my journey towards the completion of this voyage.

I would like to express my sincere gratitude for the support and help rendered by my seniors Dr. Aby Paul, Dr. Vinod P. Raphael, Dr. Shaju K, S and Dr. Nimmy Kuriakose. Special thanks to Dr. Vinod P. Raphael for his constant guidance and support, which helped me greatly during the research period.

The support and help rendered by my research colleagues Sini, Bincy, Reeja, Ramesh, Dinoop, Anju, Martin, Savitha, Swathy, Rohini, Drishya, Siji, Aji, Akhila, Nithya, Neera, Sr. Jisha, Sr. Cinu, Raji and Memcy helped me a lot in completing this thesis, they sincerely worked as a unit. Really it was an honour to work with them. I recollect the blessings and support from the faculty members, Dept. of Chemistry, St Josephs' College Irinjalakuda. I would like to express my sincere thanks to Dr. Naijil George, Dept. of Biotechnology, St. Joseph College, Irinjalakuda, for successfully completing the microbial induced corrosion studies. I also acknowledge Kavya from Biotechnology lab.

I hereby acknowledge the help rendered by the STIC-CUSAT and SAIF-MG University in analysing the compounds, which were really worthwhile to mention.

I also recall with gratitude the support and the motivation rendered by my dear friends and relatives. I sincerely thank the hard work of Mr. M I Pauly of Educare, Thrissur, who did the DTP work for this project.

I have no valuable words to express my thanks, but my heart is still full of the favours received from every person.

Vidhya Thomas K

ABBREVIATIONS

ICE	Ixora coccinea extract
CPE	Croton persimilis extract
TCE	Tinospora cordifolia extract
GCE	Garcinia cambogia extract
CILE	Clerodendrum infortunatum leaf extract
CIRE	Clerodendrum infortunatum root extract
DBE	Dioscorea bulbifera extract
HCA	Hydroxy citric acid
NHP2M	N-hydroxy-1-(pyridin-2-yl)methanimine
NHP3M	N-hydroxy-1-(pyridin-3-yl)methanimine
2PHEP	(E)-2-(1-(2-phenylhydrazono) ethyl)pyridine
2TAEP	(E)-2-(1-triazylidineethyl)pyridine
SCC	Stress corrosion cracking
HIC	Hydrogen-induced cracking
EIC	Environmentally induced cracking
CFC	Corrosion-fatigue cracking
GDP	Gross domestic product
VPIs	Vapour phase inhibitors
DMSO	Dimethyl sulphoxide
EIS	Electrochemical impedance spectroscopy
FTIR	Fourier-transform infrared
UV-Vis	Ultraviolet-visible
NMR	Nuclear magnetic resonance
LC-MS	Liquid chromatography-mass spectrometry
SCE	Saturated calomel electrode
OCP	Open circuit potential
ECN	Electrochemical noise

PSD	Power spectral density
FFT	Fast Fourier transform
MEM	Maximum entropy method
MM	Molecular mechanics
DFT	Density functional theory
SE	Semi-empirical
STO	Slater type orbitals
SEM	Scanning electron microscopy
AFM	Atomic force microscopy
МО	Molecular orbital
НОМО	Highest occupied molecular orbital
LUMO	Lowest unoccupied molecular orbital
RSM	Response surface methodology
CCD	Central Composite Design
ANOVA	Analysis of variance
BBD	Box-Behnken Design
MIC	Microbial induced corrosion
EPS	Extracellular polymeric substances
SRB	Sulphate reducing bacteria
SOB	Sulphur oxidizing bacteria
IB	Iron oxidizing/depositing bacteria
MnB	Manganese oxidizing/depositing bacteria
APB	Acid-producing bacteria
MHA	Mueller-Hinton agar
PCR	Polymerase Chain Reaction
XRD	X-ray diffraction spectroscopy
TEM	Transmission electron microscopy
IE	Inhibition efficiency

LIST OF TABLES

TABLE	TITLE	PAGE
No.		No.
	CHAPTER 1	
1.1	List of natural organic inhibitors with their active constituents, material/medium used and inhibition efficiency (IE%)	37
1.2	List of synthetic organic corrosion inhibitors	42
1.3	List of Schiff base corrosion inhibitors	45
1.4	Some of the non-oxidizing inhibitors with their advantages and disadvantages	55
1.5	Recently reported biocides for inhibiting MIC	56
	CHAPTER 2	
2.1	Level of factors of BBD/CCD with coded and uncoded form	73
	CHAPTER 3	
3.1	Phytochemical screening of ICE	86
3.2	Weight loss measurements of mild steel with and without ICE in 1 M HCl and 0.5 M H ₂ SO ₄ at room temperature for 24 hrs	87
3.3	Corrosion rate (v) and inhibition efficiency (η %) of ICE in 1 M HCl and 0.5 M H ₂ SO ₄ at different temperatures for 24 hrs	88
3.4	Thermodynamic parameters of mild steel corrosion with and without ICE in 1 M HCl and 0.5 M H ₂ SO ₄	90
3.5	Impedance parameters of mild steel in 1 M HCl and 0.5 M H_2SO_4 with and without ICE	93
3.6	Potentiodynamic polarization parameters of mild steel in 1 M HCl and 0.5 M H_2SO_4 with and without ICE	96
3.7	Quantum mechanical parameters (in eV) of ixorene	100
3.8	Experimental and predicted IE% from the weight loss measurements and CCD	101
3.9	Analysis of variance for corrosion inhibition efficiency	101
	CHAPTER 4	
4.1	Phytochemical screening of CPE	108
4.2	Weight loss measurements of mild steel with and without CPE in 1 M HCl and 0.5 M H ₂ SO ₄ at room temperature for 24 hrs	109
4.3	Corrosion rate (v) and inhibition efficiency (η %) of CPE in 1 M HCl and 0.5 M H ₂ SO ₄ at different temperatures for 24 hrs	110
4.4	Thermodynamic parameters of mild steel corrosion with and without CPE in 1 M HCl and 0.5 M H ₂ SO ₄	112
4.5	Impedance parameters of mild steel in 1 M HCl and 0.5 M H_2SO_4 with and without CPE	116
4.6	Potentiodynamic polarization parameters of mild steel in 1 M HCl and 0.5 M H_2SO_4 with and without CPE	118

4.7	Quantum mechanical parameters (in eV) of neocrotocembraneic acid (I) and stigmasterol (II)	122
4.8	Experimental and predicted IE% from the weight loss measurements and CCD	124
4.9	Analysis of variance for corrosion inhibition efficiency	125
	CHAPTER 5	
5.1	Phytochemical screening of TCE	130
5.2	Weight loss measurements of mild steel with and without TCE in 1 M HCl and 0.5 M H ₂ SO ₄ at room temperature for 24 hrs	131
5.3	Corrosion rate (v) and inhibition efficiency (η %) of TCE in 1 M HCl and 0.5 M H ₂ SO ₄ at different temperatures for 24 hrs	133
5.4	Thermodynamic parameters of mild steel corrosion with and without TCE in 1 M HCl and 0.5 M H ₂ SO ₄	134
5.5	Impedance parameters of mild steel in 1 M HCl and $0.5 \text{ M H}_2\text{SO}_4$ with and without TCE	138
5.6	Potentiodynamic polarization parameters of mild steel in 1 M HCl and $0.5 \text{ M H}_2\text{SO}_4$ with and without TCE	139
5.7	Surface roughness parameters of mild steel by AFM analysis	142
5.8	Quantum mechanical parameters (in eV) of tinosponone	144
5.9	Experimental and predicted IE% from weight loss measurements and BBD	145
5.10	Analysis of variance for corrosion inhibition efficiency	146
	CHAPTER 6	
6.1	Phytochemical screening of GCE	152
6.2	Weight loss measurements of mild steel with and without GCE in 1 M HCl and 0.5 M H ₂ SO ₄ at room temperature for 24 hrs	153
6.3	Corrosion rate (v) and inhibition efficiency (η %) of GCE in 1 M HCl and 0.5 M H ₂ SO ₄ at different temperatures for 24 hrs	155
6.4	Thermodynamic parameters of mild steel corrosion with and without GCE in 1 M HCl and $0.5 \text{ M H}_2\text{SO}_4$	156
6.5	Impedance parameters of mild steel in 1 M HCl and 0.5 M H ₂ SO ₄ with and without GCE	161
6.6	Potentiodynamic polarization parameters of mild steel in 1 M HCl and 0.5 M H ₂ SO ₄ with and without GCE	162
6.7	Surface roughness parameters of mild steel by AFM analysis	166
6.8	Quantum mechanical parameters (in eV) of HCA (I) and HCA lactone (II)	167
6.9	Experimental and predicted IE% from weight loss measurements and BBD in HCl medium	169
6.10	Experimental and predicted IE% from weight loss measurements and BBD in H ₂ SO ₄ medium	170

6.12	Analysis of variance for corrosion inhibition efficiency in H ₂ SO ₄ medium	171
	CHAPTER 7	
7.1	Phytochemical screening of CILE and CIRE	178
7.2	Weight loss measurements of mild steel with and without CILE and CIRE in 1 M HCl and 0.5 M H ₂ SO ₄ at room temperature for 24 hrs	181
7.3	Corrosion rate (v) and inhibition efficiency (η %) of CIRE and CILE in 1 M HCl and 0.5 M H ₂ SO ₄ at different temperatures for 24 hrs	183
7.4	Thermodynamic parameters of mild steel corrosion with and without CILE/CIRE in 1 M HCl and 0.5 M H ₂ SO ₄	186
7.5	Langmuir adsorption parameters of mild steel in 1 M HCl and 0.5 M H ₂ SO ₄ with CILE and CIRE from weight loss measurements at room temperature	187
7.6	Impedance parameters of mild steel in 1 M HCl and 0.5 M H ₂ SO ₄ with and without CILE and CIRE	189
7.7	Potentiodynamic polarization parameters of mild steel in 1 M HCl and 0.5 M H ₂ SO ₄ with and without CILE and CIRE	191
7.8	Quantum mechanical parameters (in eV) of clerodin (I) and scutellarin (II)	194
7.9	Experimental and predicted IE% from weight loss measurements and CCD	195
7.10	Analysis of variance for corrosion inhibition efficiency	197
	CHAPTER 8	
8.1	Phytochemical screening of DBE	202
8.2	Weight loss measurements of mild steel with and without DBE in 1 M HCl and 0.5 M H ₂ SO ₄ at room temperature for 24 hrs	203
8.3	Corrosion rate (v) and inhibition efficiency (η %) of DBE in 1 M HCl and 0.5 M H ₂ SO ₄ at different temperatures for 24 hrs	204
8.4	Thermodynamic parameters of mild steel corrosion with and without DBE in 1 M HCl and $0.5 \text{ M H}_2\text{SO}_4$	206
8.5	Adsorption parameters of mild steel in 1 M HCl and 0.5M H ₂ SO ₄ with DBE from weight loss measurements at room temperature	207
8.6	Impedance parameters of mild steel in 1 M HCl and $0.5 \text{ M H}_2\text{SO}_4$ with and without DBE	208
8.7	Potentiodynamic polarization parameters of mild steel in 1 M HCl and 0.5 M H ₂ SO ₄ with and without DBE	211
8.8	Quantum mechanical parameters (in eV) of bafoudiosbulbin A (I), diosgenin (II) and kaempferol (III)	215
8.9	Experimental and predicted IE% from weight loss measurements and BBD	217
8.10	Analysis of variance for corrosion inhibition efficiency	218

	CHAPTER 9	
9.1	Morphological characteristics of bacterial isolate MICBT7	224
9.2	Weight loss measurements of mild steel in control, biotic and Schiff base inhibitor systems	226
9.3	Impedance parameters for mild steel in control, biotic and Schiff base inhibitor systems	227
9.4	Potentiodynamic polarization parameters for mild steel in control, biotic and Schiff base inhibitor systems	230
9.5	Antibacterial effects of the Schiff base inhibitors at 500 µgdisc ⁻¹ in DMSO against <i>Escherichia coli</i>	231

FIGURE	TITLE	PAGE
No.		No.
	CHAPTER 1	
1.1	Pictorial representation of local cell theory	3
1.2	Reactions involved in the corrosion of iron	4
1.3	Mild steel coupled with copper showing galvanic corrosion	6
1.4	Pitting corrosion of mild steel	7
1.5	Stress-corrosion cracking of mild steel	8
1.6	Schematic representation of corrosion control methods	10
1.7	Pourbaix diagram for iron in aqueous solution	15
1.8	Randle's circuit	18
1.9	a) Bode plot b) Nyquist plot	20
1.10	a) Tafel plot b) Linear polarization curve	23
1.11	a) Current noise vs time plot b) Pitting index curve c) PSD plot	28
1.12	Structures of active constituents of natural organic corrosion inhibitors (1-10)	39
1.13	Structures of active constituents of natural organic corrosion inhibitors (11-20)	40
1.14	Structures of synthetic organic corrosion inhibitors	43
1.15	Structures of Schiff base corrosion inhibitors	47
1.16	Schematic representation of MIC inhibition strategies	52
1.17	Structure of a) quaternary ammonium Schiff base-alkyl ketoglutarate b) Schiff base derived from vanillin	58
1.18	Structures of three Schiff bases derived from 4- dimethylaminobenzaldehyde	59
1.19	Structure of Schiff base derived from 4-diethyl amino benzaldehyde	59
	CHAPTER 2	
2.1	Plant extracts and structure of significant constituents	64
2.2	Pictorial representation of a three-electrode assembly	68
2.3	Schematic representation of CCD with $\alpha = 1$	71
2.4	Structures of the four synthetic inhibitors understudy	75
2.5	Schematic representation of weight loss measurements	80
2.6	Schematic representation of disc diffusion method	84
	CHAPTER 3	
3.1	Structure of ixorene	85
3.2	FTIR spectrum of ICE	86
3.3	Variation in inhibition efficiency of ICE in a) 1 M HCl b) 0.5 M H ₂ SO ₄ at elevated temperatures	88

LIST OF FIGURES

3.4	Arrhenius plots of a) log K vs 1000/T b) log K/T vs 1000/T in the presence and absence of ICE in 1 M HCl	89
3.5	Arrhenius plots of a) log K vs 1000/T b) log K/T vs 1000/T in the presence and absence of ICE in 0.5 M $\rm H_2SO_4$	89
3.6	Langmuir adsorption isotherm of ICE on mild steel in a) 1 M HCl b) 0.5 M H ₂ SO ₄ at room temperature	91
3.7	Interaction diagram between ixorene and mild steel surface in acid media	91
3.8	UV spectra of a) ICE, CoCl ₂ and ICE.CoCl ₂ b) ICE, Cr(ac) ₂ and ICE.Cr(ac) ₂ c) ICE, Cu(ac) ₂ and ICE.Cu(ac) ₂ d) ICE, FeCl ₃ and ICE.FeCl ₃ e) ICE, Mn(ac) ₂ and ICE.Mn(ac) ₂ f) ICE, NaCl and ICE.NaCl g) ICE, Zn(ac) ₂ and ICE.Zn(ac) ₂	92
3.9	Nyquist plots of mild steel with and without ICE in a) 1 M HCl and b) $0.5 \text{ M H}_2\text{SO}_4$	94
3.10	Bode plots of mild steel with and without ICE in a) 1 M HCl and b) 0.5 M H ₂ SO ₄	94
3.11	a) Tafel plots of mild steel with and without ICE in a) 1 M HCl and b) $0.5 \text{ M H}_2\text{SO}_4$	95
3.12	Linear polarization plots of mild steel with and without ICE in a) 1 M HCl and b) 0.5 M H ₂ SO ₄	95
3.13	Current noise plots of mild steel with and without ICE in a) 1 M HCl b) $0.5 \text{ M H}_2\text{SO}_4$	96
3.14	Power spectral density plots of mild steel in 1 M HCl a) without ICE b) 1% ICE c) 3% ICE d) 5% ICE; Power spectral density plots of mild steel in 0.5 M H ₂ SO ₄ e) without ICE f) 1% ICE g) 3% ICE h) 5% ICE	97
3.15	Pitting index curves of mild steel in 1 M HCl a) without ICE b) 1% ICE c) 3% ICE d) 5% ICE; Pitting index curves of mild steel in 0.5 M H ₂ SO ₄ e) without ICE f) 1% ICE g) 3% ICE h) 5% ICE	98
3.16	SEM images of the surface of mild steel a) bare b) in 1 M HCl c) in 1 M HCl with ICE d) in 0.5 M H ₂ SO ₄ e) in 0.5 M H ₂ SO ₄ with ICE	99
3.17	a) Optimized geometry, b) HOMO and c) LUMO of ixorene	100
3.18	Pareto chart of the standardized effects of mild steel	102
3.19	Residual plots for inhibition efficiency	103
3.20	Main effects plots for inhibition efficiency of mild steel in HCl medium	104
3.21	a) Contour and b) 3-D surface plot for inhibition efficiency	104
3.22	Response optimization plot for inhibition efficiency	105
CHAPTER 4		
4.1	Structures of a) neocrotocembraneic acid b) stigmasterol	107
4.2	FTIR spectrum of CPE	108
4.3	Variation in inhibition efficiency of CPE in a) 1 M HCl b) 0.5 M H ₂ SO ₄ at elevated temperatures	110

4.4	Arrhenius plots of a) log K vs 1000/T b) log K/T vs 1000/T with and without CPE in 1 M HCl	112
4.5	Arrhenius plots of a) log K vs $1000/T$ b) log K/T vs $1000/T$ with and without CPE in 0.5 M H ₂ SO ₄	112
4.6	Langmuir adsorption isotherm of CPE on mild steel in a) 1 M HCl b) 0.5 M H ₂ SO ₄ at room temperature	113
4.7	Interaction diagram between CPE molecules and mild steel surface in acid media	113
4.8	UV spectra of a) CPE, CoCl ₂ and CPE.CoCl ₂ b) CPE, Cr(ac) ₂ and CPE.Cr(ac) ₂ c) CPE, Cu(ac) ₂ and CPE.Cu(ac) ₂ d) CPE, FeCl ₃ and CPE.FeCl ₃ e) CPE, Mn(ac) ₂ and CPE.Mn(ac) ₂ f) CPE, NaCl and CPE.NaCl g) CPE, Zn(ac) ₂ and CPE.Zn(ac) ₂ .	115
4.9	Nyquist plots of mild steel with ad without CPE in a) 1 M HCl and b) $0.5 \text{ M H}_2\text{SO}_4$	116
4.10	Bode plots of mild steel with and without CPE in a) 1 M HCl and b) $0.5 \text{ M H}_2\text{SO}_4$	116
4.11	Tafel plots of mild steel with and without CPE in a) 1 M HCl and b) $0.5 \text{ M H}_2\text{SO}_4$	117
4.12	Linear polarization plots of mild steel with and without CPE in a) 1 M HCl and b) 0.5 M H ₂ SO ₄	118
4.13	Current noise plots of mild steel with and without CPE in a) 1 M HCl b) 0.5 M H ₂ SO ₄	119
4.14	Power spectral density plots of mild steel in 1 M HCl a) without CPE b) 1% CPE c) 3% CPE d) 5% CPE; Power spectral density plots of mild steel in 0.5 M H ₂ SO ₄ e) without CPE f) 1% CPE g) 3% CPE h) 5% CPE	120
4.15	Pitting index curves of mild steel in 1 M HCl a) without CPE b) 1% CPE c) 3% CPE d) 5% CPE; Pitting index curves of mild steel in 0.5 M H ₂ SO ₄ e) without CPE f) 1% CPE g) 3% CPE h) 5% CPE	121
4.16	SEM images of the surface of mild steel a) bare b) in 1 M HCl c) in 1 M HCl with CPE d) in 0.5 M H ₂ SO ₄ e) in 0.5 M H ₂ SO ₄ with CPE	121
4.17	a) Optimized geometry, b) HOMO and c) LUMO of neocrotocembraneic acid; d) Optimized geometry, e) HOMO and f) LUMO of stigmasterol	122
4.18	Residual plots for inhibition efficiency	125
4.19	Pareto chart of the standardized effects of mild steel	126
4.20	Main effects plots for inhibition efficiency of mild steel in 0.5 M H_2SO_4	126
4.21	a) Contour and b) 3-D surface plot for corrosion inhibition efficiency	127
4.22	Response optimization plot for inhibition efficiency	127

	CHAPTER 5	
5.1	Structure of tinosponone	129
5.2	FTIR spectrum of TCE	130
5.3	Variation in inhibition efficiency of TCE in a) 1 M HCl b) 0.5 M H_2SO_4 at elevated temperatures	132
5.4	Arrhenius plots of a) log K vs 1000/T b) log K/T vs 1000/T with and without TCE in 1 M HCl	134
5.5	Arrhenius plots of a) log K vs 1000/T b) log K/T vs 1000/T with and without TCE in 0.5 M H_2SO_4	134
5.6	Langmuir adsorption isotherm of TCE on mild steel in a) 1 M HCl and b) $0.5 \text{ M H}_2\text{SO}_4$	135
5.7	Interaction diagram between tinosponone molecules and mild steel surface in acid media	136
5.8	Nyquist plots of mild steel with and without TCE in a) 1 M HCl and b) $0.5 \text{ M H}_2\text{SO}_4$	137
5.9	Bode plots of mild steel with and without TCE in a) 1 M HCl and b) 0.5 M H ₂ SO ₄	137
5.10	Tafel plots of mild steel with and without TCE in a) 1 M HCl and b) 0.5 M H ₂ SO ₄	139
5.11	Linear polarization plots of mild steel with and without TCE in a) 1 M HCl and b) $0.5 \text{ M H}_2\text{SO}_4$	139
5.12	Current noise plots of mild steel with and without TCE in a) 1 M HCl b) 0.5 M H_2SO_4	140
5.13	Power spectral density plots of mild steel in 1 M HCl a) without TCE b) 1% TCE c) 3% TCE d) 5% TCE; Power spectral density plots of mild steel in 0.5 M H ₂ SO ₄ e) without TCE f) 1% TCE g) 3% TCE h) 5% TCE	140
5.14	Pitting index curves of mild steel in 1 M HCl a) without TCE b) 1% TCE c) 3% TCE d) 5% TCE; Pitting index curves of mild steel in 0.5 M H ₂ SO ₄ e) without TCE f) 1% TCE g) 3% TCE h) 5% TCE	141
5.15	Topography of mild steel surface a) bare b) in 1 M HCl c) in 1 M HCl c) in 1 M HCl with 5 v/v% TCE d) in 0.5 M H ₂ SO ₄ e) in 0.5 M H ₂ SO ₄ with 5 v/v% TCE	142
5.16	a) Optimized geometry, b) HOMO and c) LUMO of tinosponone	143
5.17	Pareto chart of the standardized effects of mild steel	146
5.18	Main effects plots for inhibition efficiency of mild steel in HCl medium	147
5.19	Interaction plot for inhibition efficiency	148
5.20	a, b & c) Contours and d, e & f) 3-D surface plots for inhibition efficiency	149
5.21	Response optimization plot for inhibition efficiency	149

CHAPTER 6		
6.1	Structure of a) hydroxycitric acid b) hydroxycitric acid lactone	151
6.2	FTIR spectrum of GCE	152
6.3	Variation in inhibition efficiency of GCE in a) 1 M HCl b) 0.5 M H_2SO_4 at elevated temperatures	155
6.4	Arrhenius plots of a) log K vs 1000/T b) log K/T vs 1000/T with and without GCE in 1 M HCl	156
6.5	Arrhenius plots of a) log K vs 1000/T b) log K/T vs 1000/T with and without GCE in 0.5 M H ₂ SO ₄	156
6.6	a) Frumkin adsorption isotherm of GCE on mild steel in 1 M HCl and b) Freundlich isotherm of GCE on mild steel in 0.5 M H_2SO_4	157
6.7	UV spectra of a) GCE, CoCl ₂ and GCE.CoCl ₂ b) GCE, Cr(ac) ₂ and GCE.Cr(ac) ₂ c) GCE, Cu(ac) ₂ and GCE.Cu(ac) ₂ d) GCE, FeCl ₃ and GCE.FeCl ₃ e) GCE, Mn(ac) ₂ and GCE.Mn(ac) ₂ f) GCE, NaCl and GCE.NaCl g) GCE, Zn(ac) ₂ and GCE.Zn(ac) ₂	159
6.8	Nyquist plots of mild steel with and without GCE in a) 1 M HCl and b) $0.5 \text{ M H}_2\text{SO}_4$	160
6.9	Bode plots of mild steel with and without GCE in a) 1 M HCl and b) $0.5 \text{ M H}_2\text{SO}_4$	160
6.10	Tafel plots of mild steel with and without GCE in a) 1 M HCl and b) $0.5 \text{ M H}_2\text{SO}_4$	162
6.11	Linear polarization plots of mild steel with and without GCE in a) 1 M HCl and b) 0.5 M H ₂ SO ₄	162
6.12	Current noise plots of mild steel with and without GCE in a) 1 M HCl b) $0.5 \text{ M H}_2\text{SO}_4$	164
6.13	Power spectral density plots of mild steel in 1 M HCl a) without GCE b) 1% GCE c) 3% GCE d) 5% GCE; Power spectral density plots of mild steel in 0.5 M H ₂ SO ₄ e) without GCE f) 1% GCE g) 3% GCE h) 5% GCE	164
6.14	Pitting index curves of mild steel in 1 M HCl a) without GCE b) 1% GCE c) 3% GCE d) 5% GCE; Pitting index curves of mild steel in 0.5 M H ₂ SO ₄ e) without GCE f) 1% GCE g) 3% GCE h) 5% GCE	165
6.15	Topography of mild steel surface a) bare b) in 1 M HCl c) in 1 M HCl c) in 1 M HCl with 5 v/v% GCE d) in 0.5 M H ₂ SO ₄ e) in 0.5 M H ₂ SO ₄ with 5 v/v% GCE	166
6.16	a) Optimized geometry, b) HOMO and c) LUMO of HCA; d) Optimized geometry, e) HOMO and f) LUMO of HCA lactone	167
6.17	Pareto chart of the standardized effects of mild steel in a) HCl b) H ₂ SO ₄ medium	171
6.18	Main effects plots for inhibition efficiency of mild steel in a) HCl b) H ₂ SO ₄ medium	172

6.19	Interaction plot for inhibition efficiency in a) HCl b) H ₂ SO ₄ medium	173
6.20	a, b & c) Contours and d, e & f) 3-D surface plots for inhibition efficiency in HCl	174
6.21	a, b & c) Contours and d, e & f) 3-D surface plots for inhibition efficiency in H_2SO_4	174
6.22	Response optimization plot for inhibition efficiency in a) HCl b) H_2SO_4 medium	174
	CHAPTER 7	
7.1	Structure of a) clerodin b) scutellarin	177
7.2	FTIR spectra of a) CILE b) CIRE	179
7.3	Variation in inhibition efficiency of CILE in a) 1 M HCl b) 0.5 M H ₂ SO ₄ at elevated temperatures	182
7.4	Variation in inhibition efficiency of CIRE in a) 1 M HCl b) 0.5 M H ₂ SO ₄ at elevated temperatures	182
7.5	a) Arrhenius plots b) log K/T vs 1000/T plots in 1 M HCl c) Arrhenius plots d) log K/T vs 1000/T in 0.5 M H_2SO_4 with and without CILE	184
7.6	a) Arrhenius plots b) log K/T vs 1000/T plots in 1 M HCl c) Arrhenius plots d) log K/T vs 1000/T in 0.5 M H_2SO_4 with and without CIRE	184
7.7	Langmuir adsorption isotherm of CILE and CIRE on mild steel in 1 M HCl (a & c) and 0.5 M H ₂ SO ₄ (b & d)	186
7.8	Nyquist plots of mild steel with CILE and CIRE in 1 M HCl (a & c) and in 0.5 M H ₂ SO ₄ (b & d)	188
7.9	Bode plots of mild steel with CILE and CIRE in 1 M HCl (a & c) and in 0.5 M H ₂ SO ₄ (b & d)	188
7.10	Tafel plots of mild steel with CILE and CIRE in 1 M HCl (a & c) and in 0.5 M H ₂ SO ₄ (b & d)	190
7.11	Linear polarization plots of mild steel with CILE and CIRE in 1 M HCl (a & c) and 0.5 M H ₂ SO ₄ (b & d)	190
7.12	SEM images of the surface of mild steel a) bare b) in 1 M HCl c) in 1 M HCl with CILE d) in 1 M HCl with CIRE	192
7.13	a) Optimized geometry, b) HOMO and c) LUMO of clerodin; d) Optimized geometry, e) HOMO and f) LUMO of scutellarin	194
7.14	Residual plots for inhibition efficiency	196
7.15	Pareto chart of the standardized effects of mild steel	197
7.16	Main effects plots for inhibition efficiency of mild steel in 1 M HCl	198
7.17	a) Contour and b) 3-D surface plot for corrosion inhibition efficiency	199
7.18	Response optimization plot for inhibition efficiency	199

CHAPTER 8			
8.1	Structures of a) bafoudiosbulbin A b) diosgenin c) kaempferol	201	
8.2	FTIR spectrum of DBE	202	
8.3	Variation in inhibition efficiency of DBE in a) 1 M HCl b) 0.5 M H_2SO_4 at elevated temperatures	204	
8.4	Arrhenius plots of a) log K vs 1000/T b) log K/T vs 1000/T with and without DBE in 1 M HCl	205	
8.5	Arrhenius plots of a) log K vs 1000/T b) log K/T vs 1000/T with and without DBE in 0.5 M H_2SO_4	205	
8.6	a) Langmuir adsorption isotherm of DBE on mild steel in 1 M HCl and b) Frumkin adsorption isotherm of DBE on mild steel in 0.5 M H ₂ SO ₄	207	
8.7	Nyquist plots of mild steel with and without DBE in a) 1 M HCl and b) $0.5 \text{ M H}_2\text{SO}_4$	208	
8.8	Bode plots of mild steel with and without DBE in a) 1 M HCl and b) $0.5 \text{ M H}_2\text{SO}_4$	208	
8.9	Tafel plots of mild steel with and without DBE in a) 1 M HCl and b) $0.5 \text{ M H}_2\text{SO}_4$	210	
8.10	Linear polarization plots of mild steel with and without DBE in a) 1 M HCl and b) 0.5 M H ₂ SO ₄	210	
8.11	Current noise plots of mild steel with and without DBE in a) 1 M HCl b) $0.5 \text{ M} \text{ H}_2\text{SO}_4$	212	
8.12	Power spectral density plots of mild steel in 1 M HCl a) without DBE b) 1% DBE c) 3% DBE d) 5% DBE; Power spectral density plots of mild steel in 0.5 M H ₂ SO ₄ e) without DBE f) 1% DBE g) 3% DBE h) 5% DBE	212	
8.13	Pitting index curves of mild steel in 1 M HCl a) without DBE b) 1% DBE c) 3% DBE d) 5% DBE; Pitting index curves of mild steel in 0.5 M H ₂ SO ₄ e) without DBE f) 1% DBE g) 3% DBE h) 5% DBE	213	
8.14	SEM images of the surface of mild steel a) bare b) in 1 M HCl c) in 1 M HCl with DBE d) in 0.5 M H ₂ SO ₄ e) in 0.5 M H ₂ SO ₄ with DBE	213	
8.15	a) Optimized geometry, b) HOMO and c) LUMO of bafoudiosbulbin A; d) Optimized geometry, e) HOMO and f) LUMO of diosgenin; g) Optimized geometry, h) HOMO and i) LUMO of kaempferol	215	
8.16	Pareto chart of the standardized effects of mild steel	217	
8.17	Main effects plots for inhibition efficiency of mild steel in HCl medium	219	
8.18	Residual plots for inhibition efficiency	219	
8.19	a, b & c) Contours and d, e & f) 3-D surface plots for inhibition efficiency	220	
8.20	Response optimization plot for inhibition efficiency	221	

CHAPTER 9		
9.1	a) Nyquist plots b) Bode plots of mild steel in control, biotic and Schiff base inhibitor systems	227
9.2	a) Linear polarization and b) Tafel plots in control, biotic and Schiff base inhibitor systems	229
9.3	Antibacterial effects of a) Tetracycline b) NHP2M c) NHP3M d) 2PHEP e) 2TAEP against <i>E. coli</i> at 500 µgdisc ⁻¹ in DMSO	231
9.4	FTIR spectra of corrosion products formed on mild steel surfaces of control, biotic and inhibitor systems	233
9.5	XRD spectra of mild steel surface immersed in control, biotic and inhibitor systems	234
9.6	Optical micrographs of mild steel coupons exposed in a) control b) biotic c) NHP2M d) NHP3M e) 2PHEP f) 2TAEP	235
9.7	UV-Visible spectra of 2PHEP, FeCl ₃ and 1:1 mixture of 2PHEP and FeCl ₃	236

PREFACE

In recent years, the regulation of metal corrosion had a great interest in the field of scientific research. Ready availability, notable mechanical strength and affordable cost make mild steel a widely used alloy in industrial applications. However, the deterioration of mild steel remains a critical issue for the community by considering safety and economic matters. Acid media is used to clean boilers and massive equipment made from mild steel in large scale production units. But it causes metal corrosion. Mitigation of metal corrosion during acid treatment requires appropriate acid solutions. High-cost synthesis and hazardous influence on the atmosphere and human beings make synthetic inhibitors unfriendly inhibitors. The application of extracts from natural products like leaves, fruits, stems, seeds and roots as green corrosion inhibitors can overcome the limitations of the synthetic inhibitors. Plant products can adsorb the surface of the metal either by physical or chemical adsorption. This shielding behaviour of the natural products on the metal surface is due to numerous phytochemicals, which can interact with the metal surface by donating lone pair of electrons of heteroatoms, unsaturated and aromatic systems. Thus, the employment of eco-friendly corrosion inhibitors has a significant role in chemical research.

Microbial induced corrosion (MIC) is the destruction of a metal by the activity of living organisms either directly by enhancing the electrochemical reactions or indirectly because of their metabolic products. Various environments such as soil, natural waters, seawater, natural petroleum products and oil emulsion cutting fluids encounter corrosion by such biological activity. MIC is termed for corrosion by the occupancy and activities of microbes within biofilms at metal surfaces. Biocides are a standard chemical method applied as a MIC mitigation solution. Plant extracts are considered natural sources of antimicrobial agents. Schiff bases accounted for their high inhibition efficiency among various synthetic organic inhibitors due to their electronic and structural properties. They can coordinate with the metal surface through π -electrons from double bonds and lone pairs of electrons from nitrogen.

The present work is an effort to find out potentially active natural corrosion inhibitors for mild steel in acid media and apply Schiff base inhibitors for MIC in marine environments. Some of the medicinal plants primarily available in our countryside are investigated as natural inhibitors for acid corrosion.

This thesis is divided into nine chapters.

CHAPTER 1: Introduction and Review

This chapter encompasses the introductory session and thorough review of this thesis. It provides an idea about the social and economic aspects of corrosion, types of corrosion, corrosion chemistry, and the need and methods for corrosion control. An introduction to MIC, causes of MIC and strategies to reduce MIC are also discussed in this chapter. The different experimental and quantum mechanical calculations adopted in the investigation for monitoring corrosion and the theories behind all these methods are included here. This chapter reviews natural and synthetic compounds as acid corrosion inhibitors and MIC corrosion inhibitors, respectively. This chapter is concluded by giving the scope and aim of the present investigations.

CHAPTER 2: Materials and Methods

This chapter deals with the experimental details regarding the whole work. The preparation of the extracts, materials and medium for acid corrosion are described here. The technical details of various corrosion monitoring studies, the operational aspects of quantum mechanical studies and statistical analysis methods are explained in this session. It also contains methods and reagents used for preparing medium for MIC inhibition studies, isolation and identification of bacterium from original seawater and

MIC corrosion monitoring techniques.

CHAPTER 3: *Ixora coccinea* Extract: Natural Corrosion Inhibitor for Mild Steel in Acid Media

This chapter discusses the corrosion inhibition behaviour of *Ixora coccinea* leaf extract (ICE). Phytochemical screening, FTIR spectroscopy, Weightloss measurements, Electrochemical impedance spectroscopy (EIS), Potentiodynamic polarization, Electrochemical noise measurements, adsorption, UV-Visible spectroscopy, temperature studies and surface morphological studies were carried out. Theoretical calculations of the major component ixorene have been performed. Statistical analysis of factors has also been studied using Response surface methodology and Central composite design. It was proved that ICE act as a good inhibitor for mild steel corrosion in 1 M HCl and 0.5 M H₂SO₄.

CHAPTER 4: Croton persimilis Extract: Natural Corrosion Inhibitor for Mild Steel in Acid Media

This chapter encompasses the study of the anti-corrosion behaviour of *Croton persimilis* leaf extract (CPE). The ethanolic extract of CPE was investigated as inhibitor for mild steel in 1 M HCl and 0.5 M H₂SO₄ media at room temperature. Electrochemical studies revealed the excellent inhibition capacity of CPE in 0.5 M H₂SO₄ than 1 M HCl, which was supported by adsorption studies, temperature and surface morphological studies. Theoretical calculations of the significant components neocrotocembraneic acid and stigmasterol have been performed. Statistical analysis of factors has also been studied using Response surface methodology and Central composite design.

CHAPTER 5: *Tinospora cordifolia* Extract: Natural Corrosion Inhibitor for Mild Steel in Acid Media

The inhibiting capacity of *Tinospora cordifolia* extract (TCE) has been evaluated on mild steel in 1M HCl and 0.5 M H_2SO_4 by physicochemical and electrochemical techniques and by utilizing statistical tools such as response surface methodology (RSM) and Box-Behnken design (BBD) in this chapter. Surface properties have been ascertained by atomic force microscopy (AFM) to confirm the adsorption performance of the inhibitor molecules on the surface of the metal. Experimental results were found to agree with quantum chemical calculations of the active principle of TCE, Tinosponone.

CHAPTER 6: Garcinia cambogia Extract: Natural Corrosion Inhibitor for Mild Steel in Acid Media

This chapter illustrates the corrosion-resistant power of the ethanol extract of *Garcinia cambogia* (GCE) leaves for mild steel in 1 M HCl and 0.5 M H₂SO₄. Gravimetric, electrochemical and morphological studies have been established to authenticate inhibiting power of GCE. Quantum mechanical investigations of chief constituents, hydroxycitric acid and hydroxycitric acid lactone have been shown the anticorrosion behaviour of GCE. Statistical analysis using response surface methodology and Box-Behnken design was proved a good agreement with experimental results.

CHAPTER 7: *Clerodendrum infortunatum* Extract: Natural Corrosion Inhibitor for Mild Steel in Acid Media

This chapter deals with physicochemical, electrochemical and surface morphological studies of the inhibitive interaction of *Clerodendrum infortunatum* leaf and root extracts (CILE and CIRE) on the mild steel surface in 1 M HCl and 0.5 M H₂SO₄. The extracts showed appreciable efficiencies in varying inhibitor concentrations. The major components clerodin and scutellarin have also been analyzed for their inhibitory action. Predicted inhibition efficiency of CIRE at different CIRE concentrations and operating temperature in 1 M HCl evaluated by RSM was in perfect agreement with the data obtained from weight loss measurements.

CHAPTER 8: *Dioscorea bulbifera* Extract: Natural Corrosion Inhibitor for Mild Steel in Acid Media

This chapter explores the potent corrosion inhibition property of green *Dioscorea* bulbifera leaf extract (DBE) on the mild steel in 1 M HCl and 0.5 M H₂SO₄ using

physicochemical, electrochemical and surface morphological techniques. Three essential chemical components, bafoudiosbulbin A, diosgenin and kaempferol, have been subjected to quantum mechanical studies to supplement the corrosion inhibition mechanism of the leaf extract in more detail. By designing BBD, response surface methodology has been applied to validate the interdependence between DBE concentration, HCl concentration, and temperature on the inhibition efficiency. DBE was found to be an efficient corrosion inhibitor for mild steel corrosion exposed in 1 M HCl and $0.5 \text{ M H}_2\text{SO}_4$.

CHAPTER 9: Schiff Bases Derived from Pyridine Carbonyl Compounds: Synthetic Microbial Induced Corrosion Inhibitor for Mild Steel in Marine Environment

This chapter deals with microbial induced corrosion (MIC) behaviour of four synthetic inhibitors derived from pyridine carbaldehyde and acetyl pyridine on mild steel in the artificial seawater medium, 1) *N*-hydroxy-1-(pyridin-2-yl)methanimine, NHP2M 2) *N*-hydroxy-1-(pyridin-3-yl)methanimine, NHP3M 3) (E)-2-(1-(2-phenylhydrazono) ethyl)pyridine, 2PHEP and 4) (E)-2-(1-triazylidineethyl)pyridine, 2TAEP. It includes isolation and identification of bacterium from original seawater and corrosion monitoring methods like physicochemical and electrochemical techniques of these Schiff bases. Mechanism of corrosion was established by *in vitro* antibacterial effects of Schiff bases, surface analysis, microscopic surface analysis and UV-Vis spectroscopy.

An overall summary of these investigations is also reported at the end of this part, followed by the bibliography.

LIST OF PUBLICATIONS

- Vidhya Thomas K, Joby Thomas K, Vinod Rapheal P, A.S. Sabu, K. Ragi, Reeja Johnson. "*Tinospora cordifolia* extract as an environmentally benign green corrosion inhibitor in acid media: electrochemical, surface morphological, quantum chemical, and statistical investigations", *Materials Today Sustainability*, vol.13, 100076 (2021) https://doi.org/10.1016/j.mtsust.2021.100076
- Vidhya K Thomas, Joby K Thomas, Vinod P Raphael, K Ragi, Reeja Johnson, Ramesh Babu."Green corrosion inhibition properties of *Croton persimilis* extract on mild steel in acid media", *Journal of Bio and Tribo Corrosion*, vol.7, 121 (2021) https://doi.org/10.1007/s40735-021-00554-z
- Vidhya Thomas K, Joby Thomas Kakkassery, Vinod P Raphael, K Ragi, Reeja Johnson. "*Ixora coccinea* extract as an efficient eco-friendly corrosion inhibitor in acidic media: experimental and theoretical approach", *Current Chemistry Letters*, vol.10, 139-150(2021) <u>http://dx.doi.org/10.5267/j.ccl.2020.12.001</u>
- Ragi. K, Joby Thomas Kakkassery, Vinod P. Raphael, Reeja Johnson, Vidhya Thomas K. "In vitro antibacterial and in silico docking studies of two Schiff bases on Staphylococcus aureus and its protein targets", Future Journal of Pharmaceutical Sciences, vol.7, 1-9(2021) https://doi.org/10.1186/s43094-021-00225-3
- Reeja Johnson, Joby Thomas Kakkassery, Vinod Raphael Palayoor, Ragi Kooliyat and Vidhya Thomas Kannanaikkal. "Experimental and theoretical investigations on the corrosion inhibition action of Thiadiazole derivatives on carbon steel in 1M HCl medium", *Oriental Journal of Chemistry*, vol.36(6), 1179-1188(2020) <u>http://dx.doi.org/10.13005/</u>ojc/360624

LIST OF CONFERENCE PAPERS

- Vidhya Thomas K, Joby Thomas K, Ragi K, Reeja Johnson."Excellent ecofriendly corrosion inhibition behaviour of *Croton persimilis* extract (CPE) for mild steel in acidic media: physicochemical, electrochemical and surface morphological studies", *National seminar on Current Trends in Chemistry* (*CTriC 2020*), CUSAT, February 2020
- Aby Paul, Joby Thomas K, Vidhya Thomas K, Vinod P Rapheal."Synthesis, characterisation and antimicrobial studies of transition metal complexes of Schiff base ligand", *KSCSTE Sponsored National Seminar on Recent Trends in Computational Chemistry and Drug Design*, St. Joseph's College(autonomous), Irinjalakuda, January 2019

- Nimmy Kuriakose, Joby Thomas K, Vidhya Thomas K, Vinod P Rapheal. "Synthesis, characterization and antitumor studies of Cu(II) complexes of heterocyclic Schiff base ligands", *International Conference on Chemistry and Physics of Materials*, St. Thomas' College(autonomous), Thrissur, January 2019
- Shaju K S, Joby Thomas K, Vidhya Thomas K, Vinod P Rapheal."Synthesis, characterization and redox properties of Schiff base derived from 3-mercapto propanoic acid and its Cu(II) complex", *KSCSTE Sponsored National Seminar on Interdisciplinary Chemical Research*, St Joseph's College(autonomous), Irinjalakuda, February 2018.
- Shaju K S, Joby Thomas K, Vidhya Thomas K, Vinod P Rapheal. "Cyclic voltammetric studies of Schiff base derived from 3-Phenylpropanoic acid and its Cu(II) complex in DMSO at the surface of glassy carbon", UGC sponsored National seminar on Recent Advances in Chemistry, Vimala College, Thrissur, January 2017

PAPERS TO BE COMMUNICATED

- Schiff bases derived from pyridine carbonyl compounds as synthetic microbial induced corrosion inhibitor for mild steel in marine environment.
- Influence of leaves and roots extracts of *Clerodendrum infortunatum* as ecofriendly corrosion inhibitor on mild steel in acid media: Experimental and theoretical approach