	Contents Pa	ige No.
	List of Figures	vii-xiv
	List of Tables	xv-xvi
Chapte	er 1 Introduction and Literature Review	1-20
1.1	Introduction to conducting polymer nanocomposites	3
1.2	Polythiophene and its derivatives	3
1.3	Organic/inorganic fillers in conducting polymer nanocomposites	5
1.4	Carbon nanotubes as fillers in conducting polymer nanocomposites	5
1.5	Synthetic strategies and development of conducting polythiophene- carbon nanotube nanocomposites	6
1.6	Applications of conducting polythiophene-carbon nanotube nanocomposites	8
161	Sensors	9
1.6.2	Preparation of higher-order nanocomposites	10
1.6.3	Supercapacitor applications	10
1.6.4	EMI shielding	11
1.6.5	Photovoltaic cells and photodiodes	11
1.6.6	Transistors	12
1.6.7	Thermoelectric materials	13
	References	14
Chapte	er 2 AOT Assisted Preparation of Polythiophene-MWCNT	
	Core-shell Nanocomposites	21-50
2.1	Introduction	23
2.2	Experimental	28
2.2.1	Materials and reagents	28
2.2.2	Measurements and instruments	28
2.2.3	Synthesis of PTCNT-100	29
2.2.4	Synthesis of PTCNT-300 [AOT-0]	29
2.2.5	Synthesis of PT-25	30
2.2.6	Synthesis of PT-25[AOT-0]	30
2.3	Results and discussion	30
2.3.1	Synthesis of polythiophene and polythiophene - MWCNT nanocomposites	30

2.3.2	Characterization of PT and PTCNT nanocomposites	33
2.3.3	Morphological characteristics of PT and PTCNT nanocomposites	37
2.3.4	Role of AOT in the formation of nanocomposite	38
2.3.5	Mechanism of composite formation	40
2.3.6	Enhancement of properties	41
2.4	Conclusion	45
	References	46
Chapte	er 3 Polythiophene-functionalized MWCNT Nanocomposite:	
	Preparation and Properties	51-79
3.1	Introduction	53
3.2	Experimental	58
3.2.1	Materials and reagents	58
3.2.2	Measurements and instruments	58
3.2.3	Synthesis of MWCNT-COOH 5M	59
3.2.4	Synthesis of PTCNT-COOH 300	59
3.2.5	Synthesis of PT2CNT-COOH 300	59
3.3	Results and Discussion	60
3.3.1	Synthesis and characterization of functionalized MWCNT-COOHs	60
3.3.2	Synthesis and characterization of PTCNT-COOH nanocomposites	63
3.4	Conclusion	74
	References	75
Chapte	er 4 Silver Nanoparticles Entangled Polythiophene-	
	Functionalized MWCNT Ternary Nanocomposites: A Green Synthetic Approach and Enhancement in	
	Properties 8	81-105
4.1	Introduction	83
4.2	Experimental	86
4.2.1	Materials and reagents used	86
4.2.2	Measurements and instruments	86
4.2.3	Synthesis of PTCNT-COOH 300 Ag	87
4.2.4	Synthesis of MWCNT-COOH Ag	87
4.2.5	Leaching study of PTCNT-COOH 300 Ag with different pH	87
4.3	Results and Discussion	88
4.3.1	Synthesis and characterization of PTCNT-COOH 300 Ag and	

	MWCNT-COOH Ag	88
4.3.2	Morphological analysis of ternary and binary silver nanocomposites	93
4.3.3	Electrical conductivity and thermal stability of ternary and binary	
	nanocomposites	95
4.4	Conclusion	100
	References	101
Chapte	er 5 Active Solvent Hydrogen Enhanced Catalytic Reduction	
	of p-Nitrophenol using Binary and Ternary Silver	
	Nanocomposites and its Antibacterial Action 10	7-145
5.1	Introduction	109
5.2	Experimental	112
5.2.1	Materials and reagents	112
5.2.2	Measurements and Instruments	112
5.2.3	Reaction kinetics using different nanocatalyst concentrations	113
5.2.4	Recycling studies using nanocatalysts	113
5.2.5	Recycling effects of nanocatalysts on morphology and composition	114
5.2.6	TNC catalyzed reduction in different volume percentages of glycerol- water mixtures	114
5.2.7	Calibration curve of 4-aminophenolate to find the relative yield of product	114
5.2.8	Large scale reduction of p-nitrophenol	115
5.2.9	Antibacterial study using ternary nanocatalyst TNC	115
5.3	Results and Discussion	116
5.3.1	Comparison of TNC and BNC nanocatalysts	116
5.3.2	Optimization of nanocatalyst amount	122
5.3.3	Recycling studies	124
5.3.4	Elemental composition and morphology of recycled nanocatalysts	125
5.3.5	Optimization of solvent-water mixture for reduction	129
5.3.6	Optimization of [P-NP]: [NaBH4] molar ratio	130
5.3.7	The proposed mechanism for catalytic reduction	132
5.3.8	Relative yield and industrial-scale reduction of p-nitrophenol	134
5.3.9	Antibacterial activity	136
5.4	Conclusion	139

References	140
· J · · · · · · · · · · · · · · · · · ·	-

Chapte	er 6 Ternary and Binary Silver Nanocatalysts for Reduction	
	Azobenzene	47-175
6.1	Introduction	149
6.2	Experimental	153
6.2.1	Materials and reagents	153
6.2.2	Measurements and Instruments	153
6.2.3	Catalytic decolourisation study of methyl orange and congo red using BNC-0.04 catalyst	153
6.2.4	UV-vis absorption study of reductive decolourisation of methyl orange and congo red	152
6.2.5	Catalytic decolourisation study of methyl red and sudan III using BNC-0.04 catalyst	155
6.2.6	<i>UV-vis absorption study of reductive decolourisation of methyl red and sudan III</i>	154
6.2.7	Large scale reduction of azobenzene	154
6.2.8	Recycling studies using nanocatalysts	155
6.3	Results and discussion	155
6.3.1	Ternary and binary silver nanocomposites (TNC and BNC) as nanocatalyst for reductive decolourisation of azo dyes	155
6.3.2	Optimization of the amount of catalyst for reduction of water-soluble azo dyes	157
6.3.3	Kinetics of reductive decolourisation of water soluble organic azo dyes	158
6.3.4	Optimization of the amount of catalyst for reductive decolourisation of water-insoluble/partially soluble organic azo dyes	150 r 160
6.3.5	Kinetics of reductive decolourisation of water-insoluble/partially soluble organic azo dyes	, 162
6.3.6	Kinetics of catalytic reduction of azobenzene, recyclability studies and mechanism	166

6.4	Conclusion	171
	References	172

Chapte	er 7 CTAB Complexed Poly(3-thiophene ethanol)	
	Functionalized MWCNT Nanocomposites for	
	Supercapacitor Application 17	7-204
7.1	Introduction	179
7.2	Experimental	183
7.2.1	Materials and reagents used	183
7.2.2	Measurements and instruments	183
7.2.3	Synthesis of PTE	183
7.2.4	Preparation of PTE-CTAB complex	183
7.2.5	Preparation of PTECNT COOH-10	184
7.2.6	Electrochemical characterization	184
7.3	Results and discussion	184
7.3.1	Preparation of poly(3-thiophene ethanol) (PTE) and PTECNT-COOH nanocomposites	184
7.3.2	Characterisation of PTE and PTECNT-COOH nanocomposites	186
7.3.3	Morphological and dispersion studies of polymer and PTECNT- COOH nanocomposites	189
7.3.4	Thermal stability and electrical conductivity of PTECNT-COOH nanocomposites	192
7.3.5	Electrochemical characterisation of PTECNT-COOH nanocomposites	194
7.4	Conclusion	199
	References	200
Chapte	er 8 Summary and Conclusions 20.	5-209
	Publications and Conference presentations	-212

List	of	figur	es
------	----	-------	----

	Chapter 1: Introduction and Literature Review	_
Figure	Figure caption	Page
no:		No
1.1	Structure of polythiophene and some of the substituted polythiophenes	3
1.2	Structures of positive and negative polarons and bipolarons formed in	
	polythiophene via p-type and n-type doping respectively	4
1.3	PEDOT:PSS/CNT nanocomposites hydrogel (a), alcogel (b) and	
	aerogel (c)	6
1.4	Flexiblemicro-supercapacitorfabricatedfrom	
	MnO2/PEDOT/MWCNT nanocomposites conductive ink with poly-	
	tetrafluoroethylene	8
1.5	Reversible ammonia sensing using polythiophene-carbon nanotube	
	nanocomposites	9
	Chapter 2: AOT Assisted Preparation of Polythiophene-MWCNT	
	Core-shell Nanocomposites	
Figure	Figure caption	Page
no:		No
2.1	(a) Scheme for oxidative chemical polymerization of thiophene using	
	FeCl ₃ oxidant and (b) in-situ chemical oxidative polymerization of	
	polythiophene with multiwalled carbon nanotubes (MWCNT) for	
	nanocomposite preparation	24
2.2	(a) Schematic representation of interaction of carbon nanotubes with	
	poly(9,9-bis (diethylaminopropyl)-2,7-fluoreneco-1,4-phenylene) and	
	(b) illustration of the interaction of carbon nanotubes and different	
• •	conducting polymers	25
2.3	Multiamphiphilic compatibilizer layer formations over CNT surface	26
2.4	Normal and reverse micelles formation in the bulk solution of organic	
	solvents. Cylindrical assembly, hemispherical assembly, and a	
2.5	random assembly of the surfactants over CNT's surface	27
2.5	Schematic representation of the synthesis of polythiophene-MWCNI	01
26	nanocomposite (PICNI) in presence of AOI	31
2.6	Schematic representation of the synthesis of P1-25 in presence of	21
27	AUI	31
2.1	F1-IR spectra of MWCN1, P1-23, P1CN1-100, P1CN1-200, P1CN1- 200 and PTCNT 400	22
20	(A) Bowder V repudiffraction patterns of PT 25 PTCNT 100 PTCNT	33
2.0	(A) Fowaet A-ray algraciion patients of F1-25, F1CN1-100, F1CN1- 200, BTCNT 200 and BTCNT 400 (P) A diagnam orbibiting the natio	
	200, FICNI-300 and FICNI-400. (B) A diagram exhibiting the ratio	
	$O_{J} = O_{NI} (unensuly of the characteristic Y ray diffraction near of polythionhore)$	
	for PTCNT composites	25
20	$\Delta reg under the X-ray diffraction nearly of A) amorphous region and P)$	36
2.9	Area under the A-ray diffraction peaks of A) amorphous region and B)	30

	crystalline region in PT-25 and PTCNT nanocomposites.	
2.10	Scanning electron microscopic (SEM) images of PT-25, MWCNT,	
	PTCNT-100 and PTCNT-30	37
2.11	TEM images of MWCNT and PTCNT-100 and size calculation	38
2.12	Transmission electron microscopic (TEM) images of MWCNT,	
	PTCNT-300 [AOT-0], PTCNT-100 and PTCNT-300	39
2.13	WXRD patterns of PTCNT-300 and PTCNT-300 [AOT-0]. Diagram	
	exhibiting the ratio of I _{CNT} (intensity of characteristic peak of	
	MWCNT) to I _{PT} (intensity of characteristic X-ray diffraction peak of	
	polythiophene) for PTCNT-300 and PTCNT-300[AOT-0] (inset)	40
2.14	Mechanism of the formation of PT-25 and PTCNT nanocomposites	41
2.15	Electrical conductivity of PT-0, PT-25, PTCNT-100, PTCNT-200,	
	PTCNT-400 and pristine MWCNT	42
2.16	Dispersions of MWCNT, PT-25, PTCNT-100 and PTCNT-300 in	
	chloroform (A) and water (B). UV-vis absorption spectra of PTCNT-	
	100, PTCNT-200, PTCNT-300 and PTCNT-400 recorded in	
	chloroform medium (C)	43
2.17	Thermogravimetric analysis of PT-25, PTCNT-100 and PTCNT-300	44
2.18	Illustration of the role of polythiophene, MWCNT and AOT in the	
	PTCNT nanocomposite formation	45
	Chapter 3: Polythiophene-functionalized MWCNT Nanocomposite:	
	Preparation and Properties	
Figure	Figure caption	Page
Figure no:	Figure caption	Page No
Figure no: 3.1	Figure caption Different surface functionalization strategies on carbon nanotubes	Page No 54
Figure no: 3.1 3.2	Figure caption Different surface functionalization strategies on carbon nanotubes Combined covalent cum non-covalent functionalization of carbon	Page No 54
Figure no: 3.1 3.2	Figure caption Different surface functionalization strategies on carbon nanotubes Combined covalent cum non-covalent functionalization of carbon nanotubes with molecular and polymer entities	Page No 54 55
Figure no: 3.1 3.2 3.3	Figure caption Different surface functionalization strategies on carbon nanotubes Combined covalent cum non-covalent functionalization of carbon nanotubes with molecular and polymer entities Non-covalent functionalization (modification) of CNT with polymer	Page No 54 55
Figure no: 3.1 3.2 3.3	Figure caption Different surface functionalization strategies on carbon nanotubes Combined covalent cum non-covalent functionalization of carbon nanotubes with molecular and polymer entities Non-covalent functionalization (modification) of CNT with polymer and covalent functionalization (modification) of CNT with	Page No 54 55
Figure no: 3.1 3.2 3.3	Figure caption Different surface functionalization strategies on carbon nanotubes Combined covalent cum non-covalent functionalization of carbon nanotubes with molecular and polymer entities Non-covalent functionalization (modification) of CNT with polymer and covalent functionalization (modification) of CNT with polymer	Page No 54 55 58
Figure no: 3.1 3.2 3.3 3.4	Figure caption Different surface functionalization strategies on carbon nanotubes Combined covalent cum non-covalent functionalization of carbon nanotubes with molecular and polymer entities Non-covalent functionalization (modification) of CNT with polymer and covalent functionalization (modification) of CNT with polymer Schematic representation of the preparation of MWCNT-COOH	Page No 54 55 58 60
Figure no: 3.1 3.2 3.3 3.4 3.5	Figure caption Different surface functionalization strategies on carbon nanotubes Combined covalent cum non-covalent functionalization of carbon nanotubes with molecular and polymer entities Non-covalent functionalization (modification) of CNT with polymer and covalent functionalization (modification) of CNT with polymer Schematic representation of the preparation of MWCNT-COOH FTIR spectra of Pristine MWCNT, MWCNT-COOH 5M, MWCNT-	Page No 54 55 58 60
Figure no: 3.1 3.2 3.3 3.4 3.5	Figure caption Different surface functionalization strategies on carbon nanotubes Combined covalent cum non-covalent functionalization of carbon nanotubes with molecular and polymer entities Non-covalent functionalization (modification) of CNT with polymer and covalent functionalization (modification) of CNT with polymer Schematic representation of the preparation of MWCNT-COOH FTIR spectra of Pristine MWCNT, MWCNT-COOH 5M, MWCNT- COOH 10M and MWCNT-COOH-N 5M	Page No 54 55 58 60 61
Figure no: 3.1 3.2 3.3 3.4 3.5 3.6 2.7	Figure caption Different surface functionalization strategies on carbon nanotubes Combined covalent cum non-covalent functionalization of carbon nanotubes with molecular and polymer entities Non-covalent functionalization (modification) of CNT with polymer and covalent functionalization (modification) of CNT with polymer Schematic representation of the preparation of MWCNT-COOH FTIR spectra of Pristine MWCNT, MWCNT-COOH 5M, MWCNT- COOH 10M and MWCNT-COOH-N 5M Raman spectra of purified MWCNT and MWCNT-COOH	Page No 54 55 58 60 61 62
Figure no: 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Figure caption Different surface functionalization strategies on carbon nanotubes Combined covalent cum non-covalent functionalization of carbon nanotubes with molecular and polymer entities Non-covalent functionalization (modification) of CNT with polymer and covalent functionalization (modification) of CNT with polymer Schematic representation of the preparation of MWCNT-COOH FTIR spectra of Pristine MWCNT, MWCNT-COOH 5M, MWCNT- COOH 10M and MWCNT-COOH-N 5M Raman spectra of purified MWCNT and MWCNT-COOH Schematic representation of synthesis of PTCNT-COOH	Page No 54 55 58 60 61 62
Figure no: 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Figure caption Different surface functionalization strategies on carbon nanotubes Combined covalent cum non-covalent functionalization of carbon nanotubes with molecular and polymer entities Non-covalent functionalization (modification) of CNT with polymer and covalent functionalization (modification) of CNT with polymer Schematic representation of the preparation of MWCNT-COOH FTIR spectra of Pristine MWCNT, MWCNT-COOH 5M, MWCNT- COOH 10M and MWCNT-COOH-N 5M Raman spectra of purified MWCNT and MWCNT-COOH Schematic representation of synthesis of PTCNT-COOH nanocomposite	Page No 54 55 58 60 61 62 63
Figure no: 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Figure caption Different surface functionalization strategies on carbon nanotubes Combined covalent cum non-covalent functionalization of carbon nanotubes with molecular and polymer entities Non-covalent functionalization (modification) of CNT with polymer and covalent functionalization (modification) of CNT with polymer and covalent functionalization (modification) of CNT with polymer Schematic representation of the preparation of MWCNT-COOH FTIR spectra of Pristine MWCNT, MWCNT-COOH 5M, MWCNT- COOH 10M and MWCNT-COOH-N 5M Raman spectra of purified MWCNT and MWCNT-COOH Schematic representation of synthesis of PTCNT-COOH nanocomposite FT-IR spectra of pristine MWCNT, MWCNT-COOH, PTCNT-COOH Nanocomposite	Page No 54 55 58 60 61 62 63
Figure no: 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 2.0	Figure captionDifferent surface functionalization strategies on carbon nanotubesCombined covalent cum non-covalent functionalization of carbonnanotubes with molecular and polymer entitiesNon-covalent functionalization (modification) of CNT with polymerand covalent functionalization (modification) of CNT with polymerand covalent functionalization (modification) of CNT withpolymerSchematic representation of the preparation of MWCNT-COOHFTIR spectra of Pristine MWCNT, MWCNT-COOH 5M, MWCNT-COOH 10M and MWCNT-COOH-N 5MRaman spectra of purified MWCNT and MWCNT-COOHSchematic representation of synthesis of PTCNT-COOHnanocompositeFT-IR spectra of pristine MWCNT, MWCNT-COOH, PTCNT-COOH100, PTCNT-COOH 200, PTCNT-COOH 300 and PT-25WDSWDSCOOH </td <td>Page No 54 55 58 60 61 62 63 63</td>	Page No 54 55 58 60 61 62 63 63
Figure no: 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Figure captionDifferent surface functionalization strategies on carbon nanotubesCombined covalent cum non-covalent functionalization of carbonnanotubes with molecular and polymer entitiesNon-covalent functionalization (modification) of CNT with polymerand covalent functionalization (modification) of CNT with polymerschematic representation of the preparation of MWCNT-COOHFTIR spectra of Pristine MWCNT, MWCNT-COOH 5M, MWCNT-COOH 10M and MWCNT-COOH-N 5MRaman spectra of purified MWCNT and MWCNT-COOHSchematic representation of synthesis of PTCNT-COOHnanocompositeFT-IR spectra of pristine MWCNT, MWCNT-COOH, PTCNT-COOH100, PTCNT-COOH 200, PTCNT-COOH 300 and PT-25XPS spectra of pristine MWCNT, MWCNT-COOH, PTCNT-COOH100 and DTCNT-COOH 200, DTCNT-COOH	Page No 54 55 58 60 61 62 63 65
Figure no: 3.1 3.2 3.3 3.3 3.4 3.5 3.6 3.7 3.8 3.9 2.10	Figure captionDifferent surface functionalization strategies on carbon nanotubesCombined covalent cum non-covalent functionalization of carbonnanotubes with molecular and polymer entitiesNon-covalent functionalization (modification) of CNT with polymerand covalent functionalization (modification) of CNT with polymerand covalent functionalization (modification) of CNT withpolymerSchematic representation of the preparation of MWCNT-COOHFTIR spectra of Pristine MWCNT, MWCNT-COOH 5M, MWCNT-COOH 10M and MWCNT-COOH-N 5MRaman spectra of purified MWCNT and MWCNT-COOHSchematic representation of synthesis of PTCNT-COOHnanocompositeFT-IR spectra of pristine MWCNT, MWCNT-COOH, PTCNT-COOH100, PTCNT-COOH 200, PTCNT-COOH 300 and PT-25XPS spectra of pristine MWCNT, MWCNT-COOH, PTCNT-COOH100 and PTCNT-COOH 300Boundary X and differencement of (A) MWCNT COOH DT 25 DTCNT	Page No 54 55 58 60 61 62 63 63 65 66
Figure no: 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Figure caption Different surface functionalization strategies on carbon nanotubes Combined covalent cum non-covalent functionalization of carbon nanotubes with molecular and polymer entities Non-covalent functionalization (modification) of CNT with polymer and covalent functionalization (modification) of CNT with polymer and covalent functionalization (modification) of CNT with polymer Schematic representation of the preparation of MWCNT-COOH FTIR spectra of Pristine MWCNT, MWCNT-COOH 5M, MWCNT-COOH 10M and MWCNT-COOH-N 5M Raman spectra of purified MWCNT and MWCNT-COOH Schematic representation of synthesis of PTCNT-COOH nanocomposite FT-IR spectra of pristine MWCNT, MWCNT-COOH, PTCNT-COOH 100, PTCNT-COOH 200, PTCNT-COOH 300 and PT-25 XPS spectra of pristine MWCNT, MWCNT-COOH, PTCNT-COOH 100 and PTCNT-COOH 300 Powder X-ray diffractograms of (A) MWCNT-COOH, PT-25, PTCNT-COOH	Page No 54 55 58 60 61 62 63 63 65 66
Figure no: 3.1 3.2 3.3 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Figure caption Different surface functionalization strategies on carbon nanotubes Combined covalent cum non-covalent functionalization of carbon nanotubes with molecular and polymer entities	Page No 54 55 58 60 61 62 63 63 65 66

3 1 1	PTCNT-COOH 300, PT2CNT-COOH 300 and PT3CNT-COOH 300 EE-SEM images of (A) MWCNT-COOH (B) PTCNT-COOH 100 (C)	67
2.12	PTCNT-COOH 300 and (D) HR-TEM image of PTCNT-COOH 300	68
3.12	Illustration of the utilisation of defect group functionalization for the	60
3.13	Dispersion of MWCNT-COOH in different solvents (A) and an aqueous dispersion of different nanocomposites (B). UV-vis spectra of PTCNT-COOH 100 in chloroform [a], PTCNT-COOH 300 in chloroform [b], PTCNT-COOH 300 in ethanol [c] and MWCNT-	09
	COOH in water [inset] (C)	70
3.14	Four probe electrical conductivity of PTCNT-COOH 100, PTCNT-COOH 200, PTCNT-COOH 300, MWCNT-COOH and pristine	
0.15	MWCNT	71
3.15	TGA (A) and DTA (B) analysis of MWCNT-COOH, PTCNT-COOH	70
3 16	Illustration of debundling affect of earbor varioubles by earborylia	12
5.10	acid functionalization followed by non-covalent functionalization with	
	polymer	73
	Chapter 4: Silver Nanoparticles Entangled Polythiophene -	
	Functionalized MWCNT Ternary Nanocomposites: A Green Synthetic Approach and Enhancement in Properties	
Figure	Figure caption	Page
Figure no:	Figure caption	Page No.
Figure no: 4.1	Figure caption Metal nanoparticles incorporation with different polymer-carbon nanotube nanocomposites and their scanning electron microscopic	Page No.
Figure no: 4.1	Figure caption <i>Metal nanoparticles incorporation with different polymer-carbon</i> <i>nanotube nanocomposites and their scanning electron microscopic</i> <i>images</i>	Page No. 83
Figure no: 4.1 4.2	Figure caption Metal nanoparticles incorporation with different polymer-carbon nanotube nanocomposites and their scanning electron microscopic images Different possibilities for the formation of carbon nanotube-metal	Page No. 83
Figure no: 4.1 4.2	Figure caption Metal nanoparticles incorporation with different polymer-carbon nanotube nanocomposites and their scanning electron microscopic images	Page No. 83 84
Figure no: 4.1 4.2 4.3 4.4	Figure caption Metal nanoparticles incorporation with different polymer-carbon nanotube nanocomposites and their scanning electron microscopic images	Page No. 83 84 88
Figure no: 4.1 4.2 4.3 4.4	Figure caption Metal nanoparticles incorporation with different polymer-carbon nanotube nanocomposites and their scanning electron microscopic images Different possibilities for the formation of carbon nanotube-metal nanoparticle nanocomposites Schematic representation of the synthesis of PTCNT-COOH 300 Ag FT-IR spectra of MWCNT-COOH, MWCNT-COOH Ag and PTCNT- COOH 300 Ag	Page No. 83 84 88 89
Figure no: 4.1 4.2 4.3 4.4 4.5	Figure caption Metal nanoparticles incorporation with different polymer-carbon nanotube nanocomposites and their scanning electron microscopic images Different possibilities for the formation of carbon nanotube-metal nanoparticle nanocomposites Schematic representation of the synthesis of PTCNT-COOH 300 Ag FT-IR spectra of MWCNT-COOH, MWCNT-COOH Ag and PTCNT- COOH 300 Ag FT Raman spectra of MWCNT-COOH Ag and PTCNT-COOH 300 Ag	Page No. 83 84 88 89 90
Figure no: 4.1 4.2 4.3 4.4 4.5 4.6	Figure caption Metal nanoparticles incorporation with different polymer-carbon nanotube nanocomposites and their scanning electron microscopic images Different possibilities for the formation of carbon nanotube-metal nanoparticle nanocomposites Schematic representation of the synthesis of PTCNT-COOH 300 Ag FT-IR spectra of MWCNT-COOH, MWCNT-COOH Ag and PTCNT- COOH 300 Ag FT Raman spectra of MWCNT-COOH Ag and PTCNT-COOH 300 Ag XPS spectra of PTCNT-COOH 300 and PTCNT-COOH 300 Ag	Page No. 83 84 88 89 90 91
Figure no: 4.1 4.2 4.3 4.4 4.5 4.6 4.7	Figure caption Metal nanoparticles incorporation with different polymer-carbon nanotube nanocomposites and their scanning electron microscopic images Different possibilities for the formation of carbon nanotube-metal nanoparticle nanocomposites Schematic representation of the synthesis of PTCNT-COOH 300 Ag FT-IR spectra of MWCNT-COOH, MWCNT-COOH Ag and PTCNT- COOH 300 Ag FT Raman spectra of MWCNT-COOH Ag and PTCNT-COOH 300 Ag XPS spectra of PTCNT-COOH 300 and PTCNT-COOH 300 Ag WXRD pattern of PTCNT-COOH 300 Ag and MWCNT-COOH Ag	Page No. 83 84 88 89 90 91 91
Figure no: 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Figure caption Metal nanoparticles incorporation with different polymer-carbon nanotube nanocomposites and their scanning electron microscopic images Different possibilities for the formation of carbon nanotube-metal nanoparticle nanocomposites Schematic representation of the synthesis of PTCNT-COOH 300 Ag FT-IR spectra of MWCNT-COOH, MWCNT-COOH Ag and PTCNT- COOH 300 Ag FT Raman spectra of MWCNT-COOH Ag and PTCNT-COOH 300 Ag XPS spectra of PTCNT-COOH 300 and PTCNT-COOH 300 Ag MXRD pattern of PTCNT-COOH 300 Ag and MWCNT-COOH Ag (B) in different solvents. UV-vis spectra of PTCNT-COOH 300 Ag and MWCNT-COOH Ag in water and ethanol (C). UV-vis spectra of	Page No. 83 84 88 89 90 91 91 91
Figure no: 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Figure caption Metal nanoparticles incorporation with different polymer-carbon nanotube nanocomposites and their scanning electron microscopic images Different possibilities for the formation of carbon nanotube-metal nanoparticle nanocomposites Schematic representation of the synthesis of PTCNT-COOH 300 Ag FT-IR spectra of MWCNT-COOH, MWCNT-COOH Ag and PTCNT- COOH 300 Ag FT Raman spectra of MWCNT-COOH Ag and PTCNT-COOH 300 Ag XPS spectra of PTCNT-COOH 300 and PTCNT-COOH 300 Ag WXRD pattern of PTCNT-COOH 300 Ag and MWCNT-COOH Ag Dispersion of PTCNT-COOH 300 Ag (A) and MWCNT-COOH Ag (B) in different solvents. UV-vis spectra of PTCNT-COOH 300 Ag and MWCNT-COOH Ag in water and ethanol (C). UV-vis spectra of PTCNT-COOH 300 Ag in water with different concentrations (D)	Page No. 83 84 88 89 90 91 91 91
Figure no: 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Figure caption Metal nanoparticles incorporation with different polymer-carbon nanotube nanocomposites and their scanning electron microscopic images	Page No. 83 84 88 89 90 91 91 91

	nanoparticles) (B)	94
4.11	Scheme for the formation of silver nanoparticle embedded ternary	
	nanocomposite	95
4.12	Four probe electrical conductivity measurements of PTCNT- COOH	
	300, PTCNT-COOH 300 Ag and MWCNT-COOH Ag and pristine	
	MWCNT (A). The schematic illustration of polythiophene as a	
	connecting bridge between MWCNT-COOH and silver nanoparticles	
	<i>(B)</i>	96
4.13	Thermograms (A) and differential thermograms (B) of PTCNT-COOH	
	300, MWCNT-COOH Ag and PTCNT-COOH 300 Ag	97
4.14	UV-vis spectra of PTCNT-COOH 300 Ag after 3 hours of stirring and	
	washing with different media of different pH	98
4.15	Illustration of the formation of water-dispersible ternary	
	nanocomposite and its advantageous outcomes	100
	Chapter 5: Active Solvent Hydrogen Enhanced Catalytic Reduction	
	of p-Nitrophenol using Binary and Ternary Silver Nanocomposites	
	and its Antibacterial Action	
Figure	Figure caption	Page
no:		No.
5.1	Illustration of formation of colloidal silver nanoparticles without	
	having host material (A) and formation of CNT hosted silver	
	nanoparticles (B)	109
5.2	UV-Vis spectra of p-nitrophenol, p-nitrophenolate ion and reduced	
	product p-amino phenolate ion by adding a reducing agent and a	
	suitable catalyst.	110
5.3	Accounting the benefits of nanocatalysts in model nitrophenol	
	reduction reaction	111
5.4	Schematic representation of reactions of (a) p-nitrophenol with	
	NaBH4 and (b) silver nanocatalysts (BNC/TNC) catalyzed reaction of	
	p-nitrophenol using NaBH4	116
5.5	UV-vis absorption spectra for reduction of p-nitrophenol using	
	catalyst TNC-0.02 (A), BNC-0.02 (B), TNC-0.04 (C), BNC-0.04 (D)	
	TNC-0.06 (E), BNC-0.06 (F), TNC-0.10 (G)and BNC-0.10 (H) in	118
	consecutive time intervals	
5.6	Linear relationship plot of ln (A/A ₀) against time for p-nitrophenol	
	reduction using TNC-0.02 (A), BNC-0.02 (B), TNC-0.04 (C), BNC-	
	0.04 (D) TNC-0.06 (E), BNC-0.06 (F), TNC-0.10 (G)and BNC-0.10	
	(H)	119
5.7	UV-vis absorption spectra of silver nanocolloid after one day of	
	synthesis(A) and silver nanocolloid after 7 days of synthesis(B)	120
5.8	UV-vis absorption spectra of reduction of p-nitrophenol using NaBH ₄	
	using catalyst homogeneous colloidal silver nanoparticles (A) and	
	linear relationship plot of $ln(A/A_0)$ against time on one day after the	

	synthesis of silver nanocolloid (B). UV-vis absorption spectra of reduction of p-nitrophenol using NaBH ₄ using catalyst homogeneous colloidal silver nanoparticles (C) and linear relationship plot of $ln(A/A_0)$ against time on seven days after the synthesis of silver nanocolloid (D), UV-vis absorption spectra of reduction of p- nitrophenol using NaBH ₄ using PTCNT-COOH 300 as catalyst (E) and reduction of p-nitrophenol using NaBH ₄ using MWCNT-COOH as catalyst (E)	121
5.9	Plot of (A/A_0) against time for TNC catalysed reactions (A) and BNC catalysed reactions (B) for different concentrations of catalyst 0.02 mg/mL, 0.04 mg/mL, 0.06 mg/mL, and 0.10 mg/mL taken in p-nitrophenol solution	121
5.10	UV-vis absorption spectra of TNC 0.06 catalysed (A) and BNC-0.06 catalysed reaction (B) for successive catalytic cycles. Catalytic conversion percentage of TNC-0.06 (C) and BNC-0.06 (D) in successive catalytic cycles	124
5.11	X-ray diffraction patterns of TNC and recycled TNCs (A), BNC and recycled BNCs (B) after 3^{rd} , 6^{th} and 9^{th} catalytic cycles. FE-SEM images of TNC (C) and BNC (D) as pristing nanocatalyst	125
5.12	WXRD patterns of (A) byproduct separated from the reaction residue (B) BNC-3RC and (C) BNC-3RC after repeated centrifugation and washing	120
5.13	XPS spectra of TNC-3RC and BNC-3RC	127
5.14	FE-SEM images of TNC-3RC (A) and BNC-3RC (B), EDX colour mapping of sodium in TNC-3RC (C), sodium in BNC-3RC (D), silver in TNC-3RC (E) and silver in BNC-3RC (F). Schematic representation of existence of metaborate by-product over recycled catalyst (G)	129
5.15	Time of decolourization plotted against different volume percentage of solvent-water mixture using P-NP: NaBH4 molar ratio 1:1000 with TNC-0.06, BNC-0.06, TNC-0.03 and BNC-0.03 catalysts.	130
5.16	Time of decolourization plotted against different NaBH ₄ concentrations in water and 10% glycerol-water mixture using TNC- 0.06 and BNC-0.06 catalysts (A). UV-vis absorption spectra of reduction of p-nitrophenol using catalyst TNC-0.06 [PNP: NaBH ₄ molar ratio 1:100](B) using BNC-0.06 [PNP: NaBH ₄ molar ratio 1:100] (C) and BNC-0.03 [PNP: NaBH ₄ molar ratio 1:200] [D] in 10% glycerol-water solvent mixture. UV-vis absorption spectra of reduction of p-nitrophenol using catalyst BNC-0.01 [PNP: NaBH ₄ molar ratio 1:200 (E) and linear relationship plot of ln(A/A ₀) against time for BNC-0.01 for PNP: NaBH ₄ molar ratio 1:200 (F) in 10% glycerol-water solvent mixture.	131

5.17	Change in pH of glycerol-water mixture (20%) by the addition of NaBH ₄	132
5.18	Mechanism of active solvent enhanced green catalytic reduction of p-	
	nitrophenol using NaBH4 in 10% glycerol-water mixture	134
5.19	<i>Calibration plot of p-aminophenol in different concentrations (</i> 1×10^{-7}	
	M to 5 $\times 10^{-4}$ M) (A), UV-vis absorption spectra of the standard	
	solution of p-aminophenolate ion, p-aminophenolate obtained from	
	catalytic reduction using TNC-0.06 and BNC-0.06 (in 1×10^{-4} M) (B),	
	reduction of p-nitrophenol in concentrated solution (10 mL, 15 g/L)	
	using P-NP: NaBH ₄ molar ratio 1:25 and BNC-0.18 (0.18 mg/mL) in	
	10% glycerol-water mixture (C), and UV-vis spectrum p-	
	(C) aminophenolate produced by bulk concentration scale reduction (D)	135
5 20	Photographs of mixtures of E coli bacteria culture with different	100
5.20	concentrations of TNC taken after overnight incubation (A) The plot	
	of optical density versus the concentration of TNC for the	
	antibactorial study at 660 nm (B)	136
5 21	Plot of optical density against concentration of TNC in lactose broth	150
5.21	used in antibacterial study (A) and plot and photographs of	
	ased in antibacterial study (A) and piot and photographs of	
	$COOH 200$ A α ND α PNC and TNC (P)	120
5 22	Ulustration of involvement of gotive budrocong in establis	130
3.22	nustration of involvement of active hydrogens in catalytic	120
	nyarogenation of p-nitropnenot	139
	Chapter 6: Ternary and Binary Silver Nanocatalysis for Reduction of	
	water Soluble and Insoluble Azodyes and Azobenzene	
Figure	Figure caption	Page
no:		No.
6.1	Consecutive reduction in azo compounds to form chemo-selective	
	product hydrazo compounds and followed by non-selective product	
	product hydrazo compounds and followed by non-selective product amino aromatics by-products	150
6.2	product hydrazo compounds and followed by non-selective product amino aromatics by-products Illustration of photocatalytic transfer hydrogenation of azobenzene to	150
6.2	product hydrazo compounds and followed by non-selective product amino aromatics by-products Illustration of photocatalytic transfer hydrogenation of azobenzene to hydrazobenzene (A) with alcohol on cadminum sulfide (adapted from	150
6.2	product hydrazo compounds and followed by non-selective product amino aromatics by-products Illustration of photocatalytic transfer hydrogenation of azobenzene to hydrazobenzene (A) with alcohol on cadminum sulfide (adapted from Shiraishi et al.) 2012 and (B) using NaNbO ₃ catalyst (adapted from	150 151
6.2	product hydrazo compounds and followed by non-selective product amino aromatics by-products Illustration of photocatalytic transfer hydrogenation of azobenzene to hydrazobenzene (A) with alcohol on cadminum sulfide (adapted from Shiraishi et al.) 2012 and (B) using NaNbO ₃ catalyst (adapted from Pei et al. 2020)	150 151
6.26.3	product hydrazo compounds and followed by non-selective product amino aromatics by-products Illustration of photocatalytic transfer hydrogenation of azobenzene to hydrazobenzene (A) with alcohol on cadminum sulfide (adapted from Shiraishi et al.) 2012 and (B) using NaNbO ₃ catalyst (adapted from Pei et al. 2020) Synthesis of Hydrazoarenes formation from nitroarenes and	150 151
6.26.3	product hydrazo compounds and followed by non-selective product amino aromatics by-products Illustration of photocatalytic transfer hydrogenation of azobenzene to hydrazobenzene (A) with alcohol on cadminum sulfide (adapted from Shiraishi et al.) 2012 and (B) using NaNbO ₃ catalyst (adapted from Pei et al. 2020) Synthesis of Hydrazoarenes formation from nitroarenes and azobenzene	150 151 151
6.26.36.4	product hydrazo compounds and followed by non-selective product amino aromatics by-products Illustration of photocatalytic transfer hydrogenation of azobenzene to hydrazobenzene (A) with alcohol on cadminum sulfide (adapted from Shiraishi et al.) 2012 and (B) using NaNbO ₃ catalyst (adapted from Pei et al. 2020) Synthesis of Hydrazoarenes formation from nitroarenes and azobenzene Chemical structure of different azo dyes	150 151 151 155
6.26.36.46.5	product hydrazo compounds and followed by non-selective product amino aromatics by-products Illustration of photocatalytic transfer hydrogenation of azobenzene to hydrazobenzene (A) with alcohol on cadminum sulfide (adapted from Shiraishi et al.) 2012 and (B) using NaNbO ₃ catalyst (adapted from Pei et al. 2020) Synthesis of Hydrazoarenes formation from nitroarenes and azobenzene Chemical structure of different azo dyes Photographs of reductive decolourisation of water-soluble azo dyes	150 151 151 155
6.26.36.46.5	product hydrazo compounds and followed by non-selective product amino aromatics by-products Illustration of photocatalytic transfer hydrogenation of azobenzene to hydrazobenzene (A) with alcohol on cadminum sulfide (adapted from Shiraishi et al.) 2012 and (B) using NaNbO ₃ catalyst (adapted from Pei et al. 2020) Synthesis of Hydrazoarenes formation from nitroarenes and azobenzene Chemical structure of different azo dyes Photographs of reductive decolourisation of water-soluble azo dyes methyl orange (initial stage (A), middle stage (B) and final stage (C),	150 151 151 155
6.26.36.46.5	product hydrazo compounds and followed by non-selective product amino aromatics by-products Illustration of photocatalytic transfer hydrogenation of azobenzene to hydrazobenzene (A) with alcohol on cadminum sulfide (adapted from Shiraishi et al.) 2012 and (B) using NaNbO ₃ catalyst (adapted from Pei et al. 2020) Synthesis of Hydrazoarenes formation from nitroarenes and azobenzene Chemical structure of different azo dyes Photographs of reductive decolourisation of water-soluble azo dyes methyl orange (initial stage (A), middle stage (B) and final stage (C), and congo red (initial stage (D), middle stage (E) and final stage (F).	150 151 151 155
6.26.36.46.5	product hydrazo compounds and followed by non-selective product amino aromatics by-products Illustration of photocatalytic transfer hydrogenation of azobenzene to hydrazobenzene (A) with alcohol on cadminum sulfide (adapted from Shiraishi et al.) 2012 and (B) using NaNbO ₃ catalyst (adapted from Pei et al. 2020) Synthesis of Hydrazoarenes formation from nitroarenes and azobenzene Chemical structure of different azo dyes Photographs of reductive decolourisation of water-soluble azo dyes methyl orange (initial stage (A), middle stage (B) and final stage (C), and congo red (initial stage (D), middle stage (E) and final stage (F). Plots of decolourisation time against catalyst concentration used for	150 151 151 155
6.26.36.46.5	product hydrazo compounds and followed by non-selective product amino aromatics by-products Illustration of photocatalytic transfer hydrogenation of azobenzene to hydrazobenzene (A) with alcohol on cadminum sulfide (adapted from Shiraishi et al.) 2012 and (B) using NaNbO ₃ catalyst (adapted from Pei et al. 2020) Synthesis of Hydrazoarenes formation from nitroarenes and azobenzene Chemical structure of different azo dyes Photographs of reductive decolourisation of water-soluble azo dyes methyl orange (initial stage (A), middle stage (B) and final stage (C), and congo red (initial stage (D), middle stage (E) and final stage (F). Plots of decolourisation time against catalyst concentration used for methyl orange(G) and Congo red (H)	150 151 151 155
 6.2 6.3 6.4 6.5 6.6 	product hydrazo compounds and followed by non-selective product amino aromatics by-products Illustration of photocatalytic transfer hydrogenation of azobenzene to hydrazobenzene (A) with alcohol on cadminum sulfide (adapted from Shiraishi et al.) 2012 and (B) using NaNbO ₃ catalyst (adapted from Pei et al. 2020) Synthesis of Hydrazoarenes formation from nitroarenes and azobenzene Chemical structure of different azo dyes Photographs of reductive decolourisation of water-soluble azo dyes methyl orange (initial stage (A), middle stage (B) and final stage (C), and congo red (initial stage (D), middle stage (E) and final stage (F). Plots of decolourisation time against catalyst concentration used for methyl orange(G) and Congo red (H) UV-vis absorption spectra of catalytic reduction of methyl orange (A)	150 151 151 155 157

6.7	Linear relationship plot of ln (A/A_0) against time for reduction of methyl orange (C) and congo red (D) using catalyst BNC-0.04 UV-vis absorption spectra of catalytic reduction of methyl orange (A) and congo red (B) using TNC-0.04 catalyst in different time intervals. Linear relationship plot of ln (A/A_0) against time for reduction of	158
	methyl orange (C) and congo red (D) using catalyst TNC-	
68	0.04 Photographs of reductive decolourisation of water insoluble or	160
0.8	partially soluble azo dyes methyl red (initial stage (A), middle stage (B) and final stage (C), and Sudan III (initial stage (D), middle stage (E) and final stage (F). Plots of decolourisation time against the	
	catalyst concentration used for methyl red (G) and sudan III (H) .	161
6.9	UV-vis absorption spectra of catalytic reduction of methyl red (A) and sudan III (B) using BNC-0.04 catalyst in different time intervals.	
	Linear relationship plot of ln (A/A_0) against time for reduction of methyl red (C) and sudan III (D) using catalyst BNC-0.04	162
6.10	<i>UV-vis absorption spectra of catalytic reduction of methyl red (A) and sudan III (B) using TNC-0.04 catalyst in different time intervals.</i>	102
	Linear relationship plot of $ln (A/A_0)$ against time for reduction of	
C 11	methyl red (C) and sudan III (D) using catalyst TNC-0.04.	163
0.11	BNC-0.04 (A) catalyst and TNC-0.04 (C) in different time intervals	
	Linear relationship plot of $ln (A/A_0)$ against time for reduction of	
	azobenzene using catalyst BNC-0.04 (B) catalyst and TNC-0.04 (D).	167
	Large scale reduction of azobenzene (E)	
6.12	Catalytic conversion percentage of BNC-0.04 (A) and TNC-0.04 (B)	168
612	in successive catalytic cycles of azobenzene reduction.	
0.15	NMR spectra of azobenzene (A) and calatylic reduction product of azobenzene (B) Photographs of purchased azobenzene (C) and	
	isolated product of azobenzene after catalytic reduction with BNC-	169
	0.18 (D)	
6.14	Illustration of plausible mechanism for catalytic chemoselective	
	hydrogenation of azobenzene	170
6.15	Outline of reductive treatment of azo compounds carried out in present study and their advantageous outcomes	171
	Chapter 7: CTAB Complexed Poly(3-thiophene ethanol) -	
	Functionalized MWCNT Nanocomposites for Supercapacitor Application	
Figure	Figure caption	Page
no:		No.
7.1	Schematic representations of three types of capacitance based on	

energy storage mechanism: electrical double layer capacitance (a), reversible faradaic capacitance (b), and reversible intercalation and

	exfoliation capacitance (c)	179
7.2	Literature reports of functionalized conducting polymer-carbon	
	nanotube nanocomposites: (A) SWCNT-Pyrene ⁺ -polythiophene	
	nanocomposite (adapted from Rahman et al. 2005), (B)	
	polythiophene-graft-poly(methyl methacrylate) (PMMA), for	
	poly(styreneco-acrylonitrile) (multiwalled carbon nanotube	
	(MWCNT) composite (adapted from Kim et al. 2005) (C) Single-	
	Stranded DNA-Single-Walled Carbon Nanotube Hybrid (adapted	
	from Ghosh et al. 2005) and (D) conducting polyfluorene copolymer-	
	Wrapped Carbon Nanotubes (adapted from Berger et al. 2005).	180
7.3	EDC-coupled 3-thiophene ethanol monomer to functionalized	
	MWCNT and subsequent in-situ polymerization to prepare	
	nanocomposites	181
7.4	Schematic representation of synthesis of PTE-CTAB complex	185
7.5	Synthesis of PTECNT-COOH nanocomposites by solution blending method	186
7.6	FT-IR spectra of PTE, PTE-CTAB complex, MWCNT-COOH,	
	PTECNT-COOH 10, PTECNT-COOH 15 and PTECNT-COOH 20	187
7.7	Wide angle X-ray diffractograms of PTE, PTE-CTAB complex,	
	PTECNT-COOH 10, PTECNT-COOH 15 and MWCNT-COOH (inset)	188
7.8	Field emission scanning electron microscopic images of (a) PTE, (b)	
	MWCNT-COOH, (c) PTECNT-COOH 10 and (d) PTECNT-COOH 15	189
7.9	UV-vis absorption spectra of PTE and PTE-CTAB complex	190
7.10	UV-visible spectra of PTECNT-COOH 10, PTECNT-COOH 15 and	
	PTECNT-COOH 20 in ethanol and DMSO (A) and Dispersions of	
	PTECNT-10, PTECNT-15 and PTECNT-20 in ethanol	101
- 11		191
7.11	Formation mechanism of PTECNT-COOH nanocomposites	192
1.12	Inermal stability of PIE, PIECNI-COOH 10, PIECNI-COOH 15	102
7 1 2		193
/.13	Prove Probe electrical conductivity of PTE, PTECNT-COOH 15, PTECNT-COOH 20 and MWCNT-COOH	194
7.14	Cyclic voltammogram of PTE (a), PTECNT-COOH 10 (b), PTECNT-	
	COOH 15 (c) and PTECNT-COOH 20 (d) in 1M HCl electrolyte	195
7.15	Cyclic voltammogram of PTECNT-COOH 20 for different scan rates	
	in the electrolytes 1M HCl (a), 1M H ₂ SO ₄ (b), 1M KOH (c) and 1M	
	$Na_2SO_4(d)$	196
7.16	Galvanostatic charge-discharge profile of PTECNT-COOH 20 in 1M	
	H ₂ SO ₄ electrolyte (a) and Cycling stability study (cyclic voltammetry)	
	of PTECNT-COOH 20 in $1M H_2SO_4$ electrolyte up to 1000 cycles (b).	197
7.17	Illustration of advantageous outputs of PTECNT-COOH	
	nanocomposites preparation and supercapacitor application	199

List of Tables		
	Chapter 2: AOT Assisted Preparation of Polythiophene-MWCNT	
	Core-shell Nanocomposites	
Table	Table heading	Page
no:		No
2.1	Polythiophene (PT) and PTCNT nanocomposite samples with the	
	amount of thiophene, AOT and MWCNT, monomer to surfactant mole	
	ratio, monomer to $FeCl_3$ mole ratio and yield obtained in the	
	preparation	32
2.2	CHNS elemental analysis data of sulfur, carbon and hydrogen in PT-	24
	25, PT-25[AOT-0], PT-25, PTCNT-100 and PTCNT-300	
	Chapter 3: Polythiophene-functionalized MWCNT Nanocomposite:	
T -1-1-	Table heading	Dese
Table	I able heading	Page
110: 3 1	Defect aroun functionalisation and their relevance studied in literature	1N0
3.1	Millimolas of thiophana AOT and farric chlorida amount of	50
5.2	functionalised MWCNT-COOH mole ratio of monomer/AOT mole	
	ratio of monomer/FeCl ₃ elemental composition of samples and yield	64
3.3	Comparison of conductivity values of MWCNT MWCNT-COOH	01
010	PTCNT and PTCNT-COOH nanocomposites	72
	Chapter 4: Silver Nanoparticles Entangled Polythiophene-	
	Functionalized MWCNT Ternary Nanocomposites: A Green Synthetic	
	Approach and Enhancement in Properties	
Table	Table heading	Page
no:		No.
4.1	Atomic concentration of samples from XPS spectra, pH of the samples,	
	morphology of samples, thermal stability of samples, and electrical	
1.2	conductivity of samples	89
4.2	Comparison study of our work with similar systems reported in the	00
	literature	99
	Chapter 5: Active Solvent Hydrogen Enhanced Catalytic Reduction of	
	p-Nitrophenol using Binary and Ternary Silver Nanocomposites and	
	its Antibacterial Action	
Table	Table heading	Page
no:		No.
5.1	Name of nanocatalyst, Initial concentrations of P-NP, NaBH4,	
	nanocalalysi, jinal concentrations of P-NP, NaBH4, nanocalalysis,	117
	solvents, rule constant (κ), and the activity factor	11/
52	Comparing catalysts concentrations of reagents rate constants and	
	activity factors obtained in the present study with recent other	

	literature reports	123
5.3	The atomic percentage of C, O, Na, B, Ag, and S in TNC-3RC and	
	BNC-3RC	128
	Chapter 6: Ternary and Binary Silver Nanocatalysts for Reduction of	
	Water Soluble and Insoluble Azodyes and Azobenzene	
Table	Table heading	Page
no:		No.
6.1	Literature reports of hydrogenation of azobenzene to hydrazobenzene.	152
6.2	Name of azo compounds, concentration and volume of azo compounds	
	used, amount of NaBH4 used, name of catalyst and concentration of	
	catalyst with respective rate constant and activity factor in the	
	catalytic reduction/decolourisation	156
6.3	Comparison of present study with literature reported for catalytic	
	decolourisation methyl orange, congo red, methyl red and Sudan III	
	using NaBH4 as reducing agent, in terms of the amount of azo dye	
	used, amount of NaBH4 used, the concentration of catalyst, type of	
	catalyst (homogeneous or heterogeneous) and obtained rate constant	164
	Chapter 7: CTAB Complexed Poly(3-thiophene ethanol) -	
	Functionalized MWCNT Nanocomposites for Supercapacitor	
	Application	
Table	Table heading	Page
no:		No.
7.1	PTECNT-COOH samples with the amount of poly(3-thiophene	
	ethanol), CTAB surfactant and MWCNT-COOH used and yield	
	obtained in preparation	186