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Chapter 1

Introduction

1.1 Statistical data

Statistics has captured great importance in every field where decisions needed

such as agriculture, business, health, technology, law, security and demogra-

phy. Statistical methods are capable of gathering conclusions from collected

data without argue. Ordinarily, data are the reliable information documented

for the purpose of analysis. Statistical data are often classified in terms of the

number of aspects being studied at a time into; univariate, bivariate and mul-

tivariate. The univariate data consists of observations measured only on one

attribute. The data which contains a concurrent measurement of two variables

referred to as bivariate data, in which it is possible to find the relation between

variables. The simultaneous measurement of more than two characteristics of

an individual object inherently generates multivariate or multidimensional data

and it demands the use of multivariate statistical analysis.

1.2 Multivariate Statistical Methods

Multivariate analysis is a body of methods that are used to obtain statistical

inferences from two or more simultaneous measurements from one or more sam-
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ples. The measurements refer to variables or individuals and objects refer to

units (research units, sampling units, or experimental units) or observations.

Historically, immense of applications of multivariate techniques can be seen in

the behavioural and biological sciences. However, interest in multivariate meth-

ods has now spread to numerous other fields of investigation such as education,

chemistry, physics, geology, engineering, law, business, literature, religion, public

broadcasting, nursing, mining, linguistics, biology, psychology and so on.

Usually, the variables are measured simultaneously on each sampling unit

and these variables are often correlated. If not, there would be little use for

many of the techniques of multivariate analysis. It is necessary to untangle the

overlapping information provided by correlated variables and peer beneath the

surface to see the underlying structure. Thus the goal of many multivariate

approaches is simplification. It also aims to express what is going on in terms of

a reduced set of dimensions. Such multivariate techniques are exploratory; they

essentially generate hypothesis rather than examination. On the other hand,

if our goal is a formal hypothesis test, it needs a technique that will (1) allow

several variables to be tested and still preserve the significance level and (2) do

this for any intercorrelation structure of the variables. A lot of such tests are

available in the literature.

In the descriptive realm, one can often obtain optimal linear combinations

of variables. The optimality criterion varies from one technique to another,

depending on the goal in each case. Although linear combinations may seem

too simple to reveal the underlying structure they are often used due to two

obvious reasons: (1) they have mathematical tractability (linear approximations

are used throughout all science for the same reason) and (2) they often perform

well in practice. These linear functions may also be useful as a follow-up to

inferential procedures. When statistically significant test results that compare

several groups, one can find the linear combination (or combinations) of variables

12



that leads to the rejection of the hypothesis. Then the contribution of each

variable to these linear combinations is of interest. In the inferential area, many

multivariate techniques are extensions of univariate procedures. The multivariate

inference is especially useful in curbing the researcher’s natural tendency to read

too much into the data. Some of the widely using multivariate techniques are

described below.

1.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a popular statistical method which tries

to describe the covariance structure of the data by means of a small number of

components. These components are linear combinations of the original vari-

ables and often they allow for an interpretation and better understanding of the

different sources of variation. In the classical approach, the first component cor-

responds to the direction in which the projected observations have the largest

variance. The second component is then orthogonal to the first and again max-

imizes the variance of the projected data points. Continuing in this manner

produces all the principal components which correspond to the eigenvectors of

the empirical covariance matrix.

1.2.2 Factor Analysis

Factor analysis explains the interdependencies among variables in terms of a lin-

ear combination of less number of unobservable factors and additional sources

of variation. Clearly, factor analysis is a dimension reduction technique that

accounts the correlation between observed variables. The contribution of the

factors to the variance of an actual variable is termed as factor loadings. The

initial interest of factor analysis is the estimation of factor loadings and two pop-

ular methods exists for this purpose. At first, the principal component method

in which loadings are specified based on the spectral decomposition of the sam-

13



ple covariance matrix of the data. Another convention of maximum likelihood

method used Maximum Likelihood Estimators (MLE) of factor loading with the

assumption of normal distribution.

1.2.3 Discriminant Analysis

The objective of discriminant analysis is to separate the objects into mutually

exclusive classes on the basis of some apriori information. The primary goal of

discriminant analysis is the derivation of a procedure for the optimum allocation.

A good classification rule should have a minimum average cost of misclassifica-

tion. The discrimination can be done by linear composites where each composite

is a linear combination of variables. To study the differences among groups, lin-

ear combinations of predictor variables are formed. These linear combinations

are used to identify the class of an object. The unequal population covariances

lead to the quadratic rule where quadratic functions of variables are used for

classification. The purpose of the analysis is either to describe group differences

or to predict group membership on the basis of response variable measures. The

prediction or identification of group membership is done on the basis of one

or more predictor or explanatory variables along with one criterion variable.

The criterion variable is categorical in nature and measured on a nominal scale.

Sometimes it is dichotomous and sometimes it is polytomous.

1.2.4 Canonical Correlation Analysis

Canonical correlation analysis focuses on the maximum correlation between a

linear combination of the variables in one set and a linear combination of the

variables in another set. It finds a new coordinate system in the space of each set

of the variable in such a way that the new coordinates display unambiguously

the system of correlation. These linear combinations are the first coordinates

in the new system. Then a second linear combination in each set is sought

14



so that their correlation between them is the maximum of correlations between

such linear combinations that are uncorrelated with the first linear combinations.

The procedure is continued until the two new coordinate systems are completely

specified. The pair of linear combinations is called the canonical variables and

their correlations are called canonical correlation.

1.2.5 Multivariate Regression Analysis

Multivariate regression is a methodology that models the relationship between

more than one independent(predictors) variables and more than one depen-

dent(responses) variables. It measures the effect of changes in a set of variables

corresponding to the changes in another set of independent variables. Similar to

classical regression, the main objective of the analysis is to estimate the coeffi-

cients of the model. Generally, the coefficient matrices are estimated individually

for each dependent variable using the MLE method in multivariate linear regres-

sion models. After the model fits the data, the normality of the residual vectors

is tested to examine the model adequacy.

1.2.6 Multivariate Analysis of Variance

One-way Multivariate Analysis of Variance (MANOVA) deals with testing the

null hypothesis of equal mean vectors across the g considered groups. The setup is

similar to that of the one-way univariate Analysis of Variance (ANOVA) but the

inter-correlations of the independent variables are taken into account. Under the

classical assumptions that all groups arise from multivariate normal distributions,

many test statistics are discussed in the literature, one of the most widely used

being the likelihood ratio test. This test statistic is better known as Wilks’

Lambda in MANOVA. The Wilks’ Lambda is reported as part of the test output

in almost all statistical packages.
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1.2.7 Other Multivariate Techniques

Some tentative methods are accessible to explain the complexity of multivariate

data in the form of a measure of distances. Clustering is an important technique

of analyzing multivariate data by grouping observations on the basis of similarity

among them. Graphical procedures that display multivariate data with different

objectivity are multidimensional scaling and correspondence analysis. In first

method, distances between observations of multivariate data are visualized into

a low-dimensional space whereas correspondence analysis represents the associ-

ations in a contingency table. Biplots are the graphical display of multivariate

data similar to scatter plots.

Multivariate methods rely on the predetermined model assumptions about

the data and these assumptions may not hold in reality due to the presence

of outlying observations. Standard computation of many of these multivariate

techniques is based on the classical estimation of mean vector and covariance

matrix which are excessively influenced by the outlying observations in the data

set.

1.3 Outliers

The ”outlying” observations have always been a concern in statistical data anal-

ysis. Data points that are unrepresentative of the population can mislead the

analytical results. These rogue observations are either noise to the data of pop-

ulation or they are an unexpected situation in the natural variability of the

population. Clearly, outliers are data units that creates inconvenience in model-

ing true characteristics of the rest of the dataset. Inconsistency made by outlying

observation can influence statistical inferences about the data. Hence the devel-

opment of appropriate methodology for dealing with exceptional data points that

are unnoticed by the traditional analysis is necessary. Some typical definitions
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for outliers in literature are given as:

An outlier is defined as “one that appears to deviate markedly from other

members of the sample in which it occurs.” (Grubbs 1969)

An outlier is defined as “an observation which deviates so much from other

observations as to arouse suspicions that it was generated by a different mecha-

nism.” (Hawkins 1980)

An outlier is defined as “a point such that in observing a set of observations

in some practical situation one (or more) of the observations ‘jars’ stands out in

contrast to other observations, as extreme value.” (Barnett and Lewis 1994)

Barnett and Lewis (1994) categorized the causes of outliers as follows:

• Inherent variability : this is the natural variability of the population under

study.

• Measurement error : this consists flaw of measuring equipment or false

recording of values.

• Execution error : This contains the circumstances including selection of

observations which are not in the populations of interest or selection of

biased or misjudged samples.

The erroneous observation due to measurement error and execution error can

be identified from the data. However, the point due to inherent variability should

continue to exist in the data.

Outlier affects the analysis of a dataset in different ways. In 1949 a case

of Hadlum vs. Hadlum held in England is an example of identifying an outlier

which itself is important. Mr.Hadlum appealed the refusal of an earlier petition

for the divorce. The petition is on the ground of Mrs.Hadlum’s claimed adultery

by giving birth to a child on August 12, 1945, 349 days after Mr.Hadlum had

left the country. The gestation period of 349 days is a large outlying observation

compared to the average gestation period of 280 days (Barnett and Lewis 1994).
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Here the petitioner’s interest is to identify outliers as relevant in its own right.

Another example in which outlying observations themselves have significance is in

predicting terrorist activities explained by Wasi et al. (2014). Fraudulent health

care insurance claims identified using matrices designed for outlier detection are

discussed in Van Capelleveen et al. (2016). In this case also the flagged outliers

are prime important and it is referred for further investigation.

On the other hand, assume a scientist studying a particular type of butter-

flies. If the data collected contains another type of butterflies with different

features, the scientist does not want these outlier observations to influence the

statistical inferences of the actual population. The outlying observations that

contaminate the distribution of the sample are needed to be identified. The tech-

nique which accommodates unrepresentative part of the population, but remain

undetected while estimating and analysis are termed as robust. The contami-

nated distribution model for observed data was established by Tukey (1960). It

can be represented as:

F = (1− α)F0 + αG (1.1)

where F0 is the parametric distribution of genuine observations (clean data) and

G is the unknown distribution of contamination and α < 0.5 is the proportion

of outliers in the data. This is the case where a fraction of rows of a data

table may be contaminated. Many methods are available in the literature for

robust estimation. Different measures for testing the robustness of the robust

estimations methods are reviewed in the following section.

1.4 Robust Estimation of Location Vector and

Scatter Matrix in Multivariate Data

Outliers in data on a single variable are simple to define, which is significantly

large or small with respect to others. An observation that contains a measure-

ment of more than single variable is termed as a multivariate observation. De-
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tection of outliers in multivariate data could be more difficult than univariate

methods. In multivariate data, an outlier may not be an extreme point but it

can be anywhere in the data. Simple visual identification of multivariate outliers

is not feasible as the outliers are not endpoints (Gnanadesikan and Kettenring

1972). Barnett and Lewis (1994), has extensively discussed the significance of

outliers in multivariate data and methods to detect the anomaly. Anomalous

observations in a single variable can be detected as outliers when a univariate

outlier detection method is applied in each variable. But a multivariate obser-

vation identified as an outlier refers to a measurement of a combination of the

different variable which are significantly deviate.

An important measure of the robustness of an estimator against outlying

observations is the breakdown point. The definition of breakdown point is the

fraction of arbitrary contaminating observations that can be presented in the

sample before the estimate can become arbitrarily large as provided by Hampel

(1968) and Hampel (1971), motivated from the discussion of Hodge (1967). More

conventional definitions for breakdown value of location vector and covariance

matrix have been presented by Lopuhaä and Rousseeuw (1991). For a multivari-

ate random variable X, the breakdown point εn(µ̂,X) of its location vector µ̂ is

defined by:

εn(µ̂,X) = min
m

{
m

n
; sup

X̃

‖µ̂(X̃)− µ̂(X)‖ =∞
}

(1.2)

where X̃ is the set of observations contaminated by replacing arbitrary values.

On the other hand (1.2) states that the breakdown point of a location vector is

the smallest fraction of observations that can be contaminated by outliers before

the distance between true sample mean and the distorted sample means can

become arbitrarily large.

In the same way the formal definition of the breakdown point of covariance
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estimator Σ̂ is defined by:

εn(Σ̂,X) = min
m

{
m

n
; sup

X̃

D
(
Σ̂(X̃)− Σ̂(X)

)
=∞

}
(1.3)

where D(A,B) = max(|λl(A)−λl(B)|, |λp(A)−1−λp(B)−1|) and λi(A) is the ith

ordered eigenvalue of A. Expression (1.2) states that breakdown point of covari-

ance estimator is the smallest portion of observations that can be contaminated

by the outlying observations before the difference between largest eigenvalues of

actual covariance estimate and that of defected covariance estimate becomes ar-

bitrarily large or the difference between the smallest eigenvalues of two estimates

is near to zero. It is important to note that the highest limit for the breakdown

point is 50%. The breakdown point of the classical estimator of the mean vector

and the covariance matrix is 1/N , where N is the sample size (Donoho and Huber

1982) i.e contamination of single observation that may contort the estimate by

(1.2) and (1.3). Hence, Rousseeuw and Leroy (1987) presents that in estimating

location vector and covariance matrix it is advantageous to use estimator with

maximum breakdown point.

Influence function is a significant measure to evaluate the robustness of an

estimator. Influence function was introduced by Hampel (1968, 1974), in order

to study the infinitesimal behavior of a robust estimator. It was described by

Hampel et al. (1986), as the standardized effect of an outlier at the point x on

the estimator. It describes the infinitesimal stability of an estimator. Ideally,

influence function of a robust estimator should be bounded.

Affine equivariance is another property of a robust estimator. This property

guarantees that the estimate will behave in a deterministic way if the samples

were subjected to an affine transformation. Specifically, a location estimator µ̂

and covariance estimator Σ̂ of a multivariate random variable X ∈ Rp is affine

equivariant if and only if, for any vector a ∈ Rp and nonsingular square matrix
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B of order p.

µ̂(BX + a) = B µ̂(X) + a (1.4)

Σ̂(BX + a) = BT Σ̂B (1.5)

More clearly, affine equivariant estimates can be converted accordingly for data

rotations and location-scale changes. The flexibility to this requirement may

increase the number of available robust estimates or may exist in the case of

non-affine equivariant estimator that performs better, but affine equivariance is

also advantageous to the robust multivariate estimators of location and scatter.

Besides, the effect of masking is also asserting to the breakdown of the outlier

detection method in finding multivariate outliers. The inability to detect out-

liers due to their very presence is termed as masking effect (Wilcox 2017). For

example, a small group of outliers of the same direction could vary the mean

and increase the standard deviation in such a way that it is undetectable. The

amount of masking is measured on the basis of false positives or type II error be-

cause of its condition of incorrect decision making of the true outlier. The study

of the masking breakdown point was conducted by Becker and Gather (1999).

According to Becker and Gather (1999), the masking breakdown value of out-

lier detection is bounded by the breakdown value of the mean and covariance

estimator of that method and it equals the breakdown value of the estimators if

both breakdown values are equal. These explanations prove that a single outlier

can cause masking of non-robust Mahalanobis distance outlier detection.

Another issue regarding the incorrect identification of possible outliers is

termed as swamping effect. This is the phenomenon of identifying uncontami-

nated observation as outliers. Hadi (1992) referred to the swamping effect as

the condition in which all observations with large distances are necessarily not

outliers. For instance, a small cluster of outliers will attract the mean and inflate

the standard deviation in its direction and away from other observations which

belong to the pattern suggested by the majority of observations. One of the
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solutions to avoid such false alarms is the use of robust estimates of mean vector

and covariance matrix in multivariate outlier detection.

Several methods of distinct perspective have been suggested over many years

to detect multiple outliers from multivariate data. As per the conducted survey,

the methods can be classified into three: distance-based methods, projection-

based methods and other robust methods. In distance-based methods, some form

of robust estimators of mean vector and the covariance matrix is defined and then

Mahalanobis distance is determined for observations based on these estimates in

order to identify the potential outliers whose distance exceeds the specific margin

called threshold value or cutoff value. Then, the mean vector and covariance

matrix are robustly estimated using the remaining data points. The projection-

based method constitutes the idea that an outlying multivariate observation can

be projected into a univariate outlier. The other robust methods take advantage

of the statistic of different kinds for manifesting the outlying observations and

robust estimation. Generally, these approaches are computationally easier in

outlier identification.

1.5 Different Multivariate Robust Methods

Several robust distance-based methods of multivariate outlier detection and es-

timation of the location vector and scatter matrix have been proposed over the

years. Review of these methods are explained below.

1.5.1 Distance-Based Methods

1) Method of M-estimation

M-estimation is one of the earliest distance-based robust estimation procedure

of location and scatter introduced by Maronna (1976). Initially, it was proposed

by Huber (1964), for the estimation of a univariate location parameter. Campbell

(1980), applied this affine equivariant estimation method for outlier detection and
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principal component analysis. Later on, Huber (1981), defined M-estimates of

mean vector t and covariance matrix V as the optimum solutions to the following

simultaneous equations:

1

n

n∑

1=1

u1

[{
(xi − t)TV−1(xi − t)

}1/2]
(xi − t) = 0 (1.6)

1

n

n∑

1=1

u2

[{
(xi − t)TV−1(xi − t)

}1/2]
(xi − t)(xi − t)T = V (1.7)

where u1 and u2 are the weight function of Mahalanobis distance defined on

the basis some conditions. The weight functions are basically used for down

weighting the effect of outliers in the estimation. Here, the optimality of iterative

solutions of equation (1.6) and (1.7) is doubtful. According to Maronna (1976),

the major limitation of M-estimator is its least breakdown value 1/(p + 1) (p is

the number of variables) which makes it unsuitable for large dimensional data.

2) MVE and MCD Methods

A high breakdown point alternative for M-estimator, Minimum Volume Ellip-

soid (MVE) and Minimum Covariance Determinant (MCD) of robust estimation

of location and scatter was introduced by Rousseeuw (1985). MVE is based on

the computation of the smallest ellipsoid containing at least h = [n/2] + 1 of the

observations of the data, where n is the number of samples. Here, the location

vector is the center of the ellipsoid and covariance is the ellipsoid itself. Simi-

larly, MCD searches for the smallest covariance determinant which encompasses

at least half of the data points. Mahalanobis distances of each observation are

calculated for identifying outliers in both robust methods. The MVE and MCD

methods are suitable for highly contaminated situations because of its break-

down value 50%. Complexity in finding optimum subgroup is the major demerit

of these robust methods.

Rousseeuw and Leroy (1987), described a resampling algorithm based on the
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idea of searching for a small number of good points rather than for bad points in

which mean and covariance subset of size p+1 drawn from the data are calculated.

The corresponding ellipsoid is inflated or deflated to obtain h observations and

are repeated to retain minimum volume ellipsoid. Rousseeuw and Leroy (1987),

suggested a reweighting technique in order to increase the efficiency of MVE. For

reweighed MVE, mean vector and covariance estimates are recalculated only for

the set of samples whose Mahalanobis distance corresponding to the initial MVE

mean vector and covariance matrix is lower than the suitable appropriate thresh-

old (quantile of Chi-square distribution with p degrees of freedom). Rousseeuw

and Van Zomeren (1990), also recommended this type of reweighting in MVE

method Lopuhaä and Rousseeuw (1991), proved that the breakdown value of

MVE mean vector and covariance matrix are preserved in one step reweighting.

3) Method of S-estimation

In the framework of multiple regression Rousseeuw and Yohai (1984), pro-

posed S-estimator as solution which minimizes the symmetric and continuously

differentiable function of residuals. S-estimator shares the properties of M-

estimator (Maronna 1976). Then Lopuhaä (1989), extended definition of S-

estimator of mean vector and covariance matrix based on the solution (t, V),

where V being a positive definite symmetric matrix, that minimizes |V| subject

to:

1

n

n∑

1=1

ν
[{

(xi − t)TV−1(xi − t)
}1/2]

= b0 (1.8)

Generally, to ensure the consistency at normal distribution, the constant b0 can

be calculated as E0,I(ν ‖ X0 ‖). The ν-function should be symmetric around

zero, twice continuously differentiable and strictly increasing on [0, k] and con-

stant on [k,+∞[. For ν(d) = I(|d| >
√
χ2
p,0.5) and b0 = 0.5, provides MVE

estimator. S-estimators do satisfy the first order conditions of M-estimators

with high breakdown point. Different choices of ν -functions were discussed in
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Rocke (1996), which proves that S-estimators are influenced by the presence of

outliers even if it has the breakdown value 50%.

4) Hadi’s Forward search method

Three major drawbacks of the MVE approach (Rousseeuw and Leroy 1987)

are observed by Hadi (1992). First, a number of subsamples must be decided

by the user. This suggestion is not feasible because it directly depends on the

number of outliers in the data, which is clearly unknown. The second issue is

that the covariance estimate for the computation of distance is based on the sub-

sample of size p + 1, which can be unrealistic in practice. The third problem is

that the several sub-samples may have singular covariance estimates and different

sub-samples may have different covariance. If these are assigned to the user,

the MVE estimate will be different as well. Thus, the uniqueness of the MVE

estimate is unclear.

A non-affine equivariant MVE based method for multivariate outlier detec-

tion is proposed by Hadi (1992), to rectify the limitations of the classical MVE

resampling method. For this method, a coordinate-wise median is estimated from

the original data and this median vector is used for the estimation of covariance.

The observations corresponding to [(n+p+1)/2] smallest distances are selected

and classical mean vector and covariance matrix estimates from this sub-group

are used to compute Mahalanobis distances for all observations of original data.

Again, a subset of size p+1 with the smallest distance is chosen and this is being

refereed as the basic subset. The sub-sample in the MVE resampling method

and the basic subset are different in two aspects. First, the basic subset consists

of observations nearest to the centroid and nearness is based on the robust Ma-

halanobis computed from the coordinate-wise median. Secondly, Hadi’s method

consists of one basic subset, but resampling MVE methods includes hundreds of
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sub-samples and this difference makes Hadi’s method computationally simple.

5) Atkinson’s Forward search method

Similar to Hadi’s forward search method, Atkinson (1993), proposed a for-

ward search algorithm based on the concept of the MVE resampling method.

Atkinson’s forward search algorithm begins with the estimation of the mean vec-

tor and covariance matrix from the randomly selected subset of size m = p+ 1.

Then, the covariance to include h observations of the original data are adjusted

and the volume of the covariance is computed. The resulting covariance is then

used for the computation of the Mahalanobis distance for all observations. The

process is repeated using m + 1 observations with smallest distance and during

the time, observation whose squared Mahalanobis distance which exceeds the

critical value is identified as a potential outlier. Once m = n, the process is

repeated with a new random subset of size m. Likewise, the algorithm can be

executed through the required number of random starting subset. The adjusted

covariance matrix that gave minimum volume among all the trials can be used

for estimating mean vector, covariance matrix and outlier detection. Atkinson

(1993), uses this method in stalactite plots to analyze which of the observation

consistently emerged as an outlier. Atkinson (1994), gave a detailed illustration

of this method as well.

6) Hawkin’s Feasible solution algorithm

To reduce the exhaustive enumeration, Hawkins (1994), suggested a Feasi-

ble Solution Algorithm (FSA) for obtaining global optimum for MCD estimator

(Rousseeuw 1985). FSA procedure starts with an assumption that there exists

atmost k outlier in the data. Sample of n−k observations are randomly selected

from the original data to form an initial subset and the remaining k observations

from the data are trimmed. The mean vector and covariance matrix are esti-

26



mated from this random subset. Study each pair of observations for which one

observation from the random subset and replace it with one from the remaining

trimmed set. Compute the covariance determinant of the new subset and com-

pare it with the determinant of old covariance estimate. If the new determinant

is smaller than the old one, the old covariance estimate is useless and update it

with the new one. This process is repeated for all pairs and find the subset of

n − k observations that produces greatest reduction in covariance determinant.

The whole process can be repeated with other random subsets for an additional

feasible solutions. The subset which has minimum determinant is then consid-

ered for obtaining final MCD estimates.

7) Hybrid algorithm

The method based on robust distances has been discussed in the literature

for a number of strategies, that include: 1) combinatorial methods, in partic-

ular, MVE and MCD; 2) smooth estimators such as M-estimator, referred by

Rocke and Woodruff (1996); and 3) forward search algorithms proposed by Hadi

(1992) and Atkinson (1993). In order to combine the FSA by Hawkins (1994)

and forward search algorithms, Rocke and Woodruff (1996), suggested a hybrid

algorithm. It is also an exploration of Rocke (1996), Rocke and Woodruff (1993),

Woodruff and Rocke (1993) and Woodruff and Rocke (1994). This affine equiv-

ariant multivariate outlier detection method consists of two phases. The purpose

of Phase I is to obtain robust estimates of location and shape for the dataset and

this problem fall in the combinatorial and smooth methods. At first, Hawkins’s

FSA is used to obtain an approximate MCD estimate of location and shape.

The resulting estimates are substituted as the starting point of Atkinson’s for-

ward search method against estimates of mean vector and covariance matrix of

a random subset of p+ 1 point originally suggested by Atkinson. Then, a set of

observations that are free of outlier identified by the Atkinson’s method is used
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to obtain initial estimates of mean vector and covariance matrix. This heuristics

share the property of the better result of forward search method with a good

starting point and the globally optimum M-estimation is close to this solution.

Basically, combinatorial methods such as MCD seeks space that increases expo-

nentially with sample size. The data is partitioned to user-defined cells to cope

with these defects. The robust estimator of mean vector and covariance matrix

are then obtained with minimum covariance determinant.

The results of Phase I are used for computing Mahalanobis distance to all ob-

servations of Phase II. Scale the resulting distances in order to be consistent with

the distances obtained from multivariate normal data and compare the scaled

distances to a suitable critical value (suitable quantile of Chi-square distribution

with p degrees of freedom).

8) Method of Resampling by Half-Mean and Smallest Half-Volume

The multivariate outlier detection techniques such as MCD and M-estimator

rely on large computational effort and restrict the usefulness in high-dimension.

Egan and Morgan (1998), introduced two simple methods to detect outliers in

high-dimensional data: 1) Resampling by Half-Mean (RHM) method 2) Small-

est Half-Volume (SHV) method. In the RHM method, n/2 observations are

randomly selected from the dataset without replacement and each observation is

used to make a new matrix, ith sample matrix X(i). Then, mean and standard

deviation of each column of X(i) are computed and used for rescaling the origi-

nal data matrix. The magnitude of each observation of rescaled observations is

calculated, which is equal to the distance of each rescaled observations from the

centroid of data.

The computed distances are used to form ith column of distance matrix L.

After the desired number of samples are generated, each column of matrix L

is sort in ascending order. The largest 5% of values in each column of L are
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identified, observations that appear in the largest 5% with high frequency are

detected as outliers. The main drawback of this method is the unclear idea and

subjective decision about the number of appearances that indicate outliers.

The second intuitive outlier detection method, SHV method begins by stan-

dardizing each column of original data using the respective column mean, which

is termed as auto-scaling. The Euclidean distance between each observation is

then computed and used to form a n × n matrix with zero diagonal elements.

Each column of the distance matrix is sorted in ascending order and the sum

of the first n/2 observations is measured. The column with the lowest sum is

identified and the observations that are used to measure the sum are character-

ized as good observations. Then the subset with good observations is used to

estimate mean vector and covariance matrix and used as robust estimates for

classical Mahalanobis distance to detect outliers.

9) Bivariate Box Plot Method

A less-formal method, box plot for detecting univariate outlier reveal the lo-

cation, spread, and skewness of the data graphically. To construct a bivariate

box plot and then to detect multivariate outliers, Zani et al. (1998), proposed

a method in which the inner region is determined through convex hull peeling

(Bebbington 1978). Convex hull peeling technique begins by identifying and

trimming the observations on the convex hull of the data and repeating this pro-

cess until a specific percentage of original data remains. Bivariate plot proposed

by Zani et al. (1998), suggested to trim the data until 50% of observations remain

in the set. The remaining observations create the inner region of bivariate box

plot. The method of B-splines (Ammeraal 1992) make sure the smoothness of

contours of the inner region. The arithmetic mean of observations remaining in

the inner region defines the centroid of the bivariate box plot. Zani et al. (1998),

propounded to create a bivariate box plot for each pair of variables. Remove the
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observations which fall outside 90% convex hull in any box plot, 75% is appro-

priate for small sample sizes. Then, the rest of the observations are used for the

starting point of the forward search method by Hadi (1992, 1994) or Atkinson

(1994). The assertion behind this method is that the initial subset for the for-

ward search should contain more than p + 1 observations, which makes further

analysis of outliers computationally effective.

10) Partitioning Method

After computational experiments Rocke and Woodruff (1996), observed that

the proposed hybrid algorithm is inadequate in detecting outliers from contami-

nated multivariate data when fraction of outliers is 35% or more. Besides, Kosin-

ski (1998), recognized the obtained half-sample based on MCD does include out-

liers. To reduce this insufficiency of outlier identification at highly contaminated

situations Kosinski (1998) proposed an alternative outlier detection method that

aims to find a partition of data that distinguishes good observations from out-

lying ones. This partitioning method is a repetition of Hadi’s and Atkinson’s

forward search method in a way that is applied to get multiple random starting

subset. The choices of initial subsets are specified to ensure that at least one

good partition contains none of the outliers.

11) FAST-MCD Method

The MVE and MCD method are initially proposed by Rousseeuw (1985).

Among these method MVE gained more consideration in multivariate outlier de-

tection on the grounds of simplicity in computation. Later, Butler et al. (1978)

has shown that MCD is asymptotically normal and this leads to better statistical

efficiency than MVE and Davies (1992) proved that MVE has lower convergence

rate. Based on the observations of Rousseeuw and Van Driessen (1999), MCD has

better theoretical advantages than MVE. However, MCD lacks computational in-
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tricacies to find the half-sample subset with a minimum covariance determinant.

To minimize the drawback, Rousseeuw and Van Driessen (1999), constructed an

algorithm for MCD which is claimed to be faster than MVE algorithms. The

initial theorem by Rousseeuw and Van Driessen (1999), states that one can or-

der all observations in terms of Mahalanobis distance based on the mean vector

and covariance matrix of an initial random subset from the original data. Using

these estimates, compute the Mahalanobis distance and select a new subset with

smallest distance. The covariance determinant of the new subset will be less than

or equal to covariance determinant of the old subset. This process referred by

the theorem is termed as C-step. Applying C-step several times to the dataset

converges to an optimum MCD solution. The examination based on the exper-

iments indicates that C-step is used only two times for the convergence of the

solution. Further, ten different subsets with minimum determinant are used for

the third subset for C-step convergence.

12) BACON Method

According to Billor et al. (2000), better multivariate outlier detection meth-

ods may not reduce the computational complexity of robust estimation. Also ob-

served that the affine-equivariant estimators may add substantial computational

complexity to the methods without a proportional improvement in outlier iden-

tification. To attain computationally efficient robust estimator and multivariate

outliers detection methods, Billor et al. (2000), proposed the Blocked Adap-

tive Computationally Efficient Outlier Nominator (BACON) method that uses

iterative procedure without optimality conditions. BACON methods includes

two versions of outlier detection algorithms, first works as an affine-equivariant

with breakdown point of 20% and the second works as an approximately affine-

equivariant with breakdown point of 40%. The BACON method is derived from

Hadi’s forward search method (Hadi 1992, 1994) and the algorithm begins by
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selecting an initial outlier free subset. The initial basic subset can be chosen

in two ways, in the first case the initial basic subset consists of p + 1 observa-

tions with smallest Mahalanobis distance based on the estimates of mean vector

and covariance matrix of entire dataset. In the second case, the initial sub-

set consists of p + 1 observations with the smallest Mahalanobis distance based

on the component-wise median vector and covariance matrix derived from the

component-wise median vector. The second algorithm gives a more robust and

less affine equivariant estimator since the component-wise median is not affine-

equivariant. The mean vector and covariance matrix of the initial basic subset

are then used to compute the Mahalanobis distance of entire observations. These

computed distances are compared to a suitable quantile of Chi-Square distribu-

tion with p degrees of freedom.

13) OGK Method

On the contrary to the early methods of time complexity, Maronna and Za-

mar (2002), proposed an Orthogonalized Gnanadesikan-Kettenring (OGK) esti-

mator in which a general method is applied to make a scatter matrix estimate,

positive-definite and approximately affine-equivariant. The non positive-definite

matrix is constructed by applying the robust covariance estimator introduced by

Gnanadesikan and Kettenring (1972), to each pair of variables. The resulting

scatter matrix and component-wise medians are then orthogonalized to make

robust estimates of location vector and covariance matrix for outliers detection.

This approximately affine-equivariant method performs better even under highly

collinear situations. The re-weighting steps are applied to improve the efficiency

of the OGK estimators.

14) MCD-EHD Method

Generally, univariate outlier detection methods use iterative deletion tech-

32



nique in which most distant observations are deleted from the data. Then, delete

the second most observation, repeat the iteration until no other observations

are identified. Caroni and Prescott (1992) introduced a sequential approach

to the Wilks (1963) test for a single outlying observation from a multidimen-

sional sample. Further, Viljoen and Venter (2002) proposed Minimum Covari-

ance Determinant-Extreme Hotelling Deviate(MCD-EHD) method that used the

sequential procedure with a starting subset based on the FAST-MCD algorithm

proposed by Rousseeuw and Van Driessen (1999).

15) RMCD Method

The limitations of outlier detection methods that rely on the comparison of

the robust distances with the Chi-Square distribution are pointed out by Ce-

rioli (2010). The Chi-Square approximation of distances to decide the critical

value may be adequate if it is certain that the data contains outliers. Caroni and

Prescott (1992) developed a sequence of critical values to make simultaneous cor-

rections in comparing distances of the entire data. To obtain good performance in

the robust estimation, even though the data is free of outliers, Cerioli (2010) pro-

posed a Reweighted Minimum Covariance Determinant (RMCD) method. This

procedure begins with the MCD estimate of mean vector and covariance matrix,

multiplied by a correction factor to attain consistency and unbiasedness on the

multivariate normal distribution. The squared robust Mahalanobis distances are

calculated on the basis of obtained MCD estimates and weight 0 is assigned to

corresponding observation whose distance exceeds the threshold value (suitable

quantile of Chi-Square distribution with p degrees of freedom) to get subset with

smallest distances. The robust estimates mean vector and covariance matrix

computed using these subsets are called as RMCD estimates, the correction fac-

tor guarantees consistency of RMCD covariance estimate. Cerioli (2010), also

proposed an iterated version of RMCD, on the intention of increasing the power
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of multiple outlier detection rules.

16) Optimized Method

A more optimized outlier detection method to compete with MVE and MCD

methods, specifically for data that contains fewer outliers was developed by

Oyeyemi and Ipinyomi (2010). Initially, all possible combinations of a subset

of size p+1, where p is the dimension of the dataset, are obtained. Oyeyemi and

Ipinyomi (2010), were interested to select the sub-sample such that eigenvalues

of the estimated covariance matrix satisfy three optimality criteria; it should

be the minimum of minimum eigenvalues, minimum of the product of eigenval-

ues, minimum of the harmonic mean of eigenvalues. Utilizing this sub-sample,

the mean vector and covariance matrix are estimated to compute Mahalanobis

distance and select p + 1 least distant observations. Repeat this process until

the sub-sample include h = (n + p + 1)/2 observations, where, n is the size of

the original sample and p is the dimension. However, optimized robust method

for Hotelling’s T 2 control outperformed MVE and MCD for very limited sample

sizes and dimensions.

17) Comedian Method

In spite of the computational complexity, robust methods such as MVE,

MCD, and OGK are affected by swamping and masking problems. In the in-

terest of reducing the insufficiency, Sajesh and Srinivasan (2012) developed a

robust procedure for estimating the mean vector and covariance matrix, known

as comedian method. Falk (1997) introduced a non-positive semi-definite robust

covariance estimator known as the comedian that generalizes Median Absolute

Deviation(MAD) (Huber 1981). The comedian method of outlier detection uti-

lizes the properties of the highest breakdown point along with equivariance of

comedian and correlation median and a robust correlation estimate is derived
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from it. To solve the lack of positive definiteness and affine-equivariance of co-

median estimator, the orthogonalization technique provided by Maronna and

Zamar (2002), was applied. The Mahalanobis distance is calculated for all entire

data based on the orthogonalized component-wise median and comedian matrix.

The observations corresponding to the distance that exceeds an adjusted critical

value are identified as outliers. The rest of the observations are used to sub-

sequent robust estimation of mean vector and covariance matrix. Sajesh and

Srinivasan (2012), recommended a reweighing process to increase the efficiency

of outlier detection. This method is stated to be more efficient in high dimen-

sional data with less masking and swamping effect.

18) DetMCD Method

The Majority of robust estimators of the mean vector and covariance matrix

include the computational burden of drawing a large number of sub-samples

to at least one initial set of uncontaminated observations. In the case of the

MCD estimator, introduced by Rousseeuw (1985), its computation would not

be feasible till FAST-MCD is established (Rousseeuw and Van Driessen 1999).

Hubert et al. (2012), proposed a deterministic way of approximation of the MCD

denoted as DetMCD, possibly faster than FAST-MCD.

The selection of sub-samples in DetMCD would not be random but the it-

erations are the same as that of FAST-MCD. To make the process, location

and scale equivariant, each variable is standardized by subtracting its median

and dividing by Qn estimate proposed by Rousseeuw and Croux (1993). The

primal estimates of the mean vector and scatter matrix are then subjected to

the eigenvector transformations. Then, these estimates are substituted for the

calculations of Mahalanobis distances of all observations. Thus, the robust dis-

tances were calculated using different orthogonalized estimates, observations of

size dn/2e with least distance were selected to estimate robust distances again
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and applied C-steps up to convergence.

DetMCD method used different scatter estimators as initial estimator which

include classical correlation matrix, Spearman rank correlation matrix, correla-

tion of normalized quantiles, spatial sign covariance, mean vector and covariance

matrix produced by the first algorithm of BACON method (Billor et al. 2000)

and OGK estimates in which, median and Qn were the initial location and scale

estimates. Among these estimates, the result corresponding to the minimum co-

variance determinant is chosen as raw DetMCD estimates, re-weighting steps are

employed for final DetMCD estimates. The DetMCD algorithm neither depends

on a single initial estimate nor a unique objective, the algorithm confides on the

six estimators of a different perspective. Deterministic nature as well as the time

complexity related to the randomness in the C-step and duration of the initial

estimates.

19) DetS and DetMM Methods

Fast-S estimation method was developed by Salibián-Barrera, Van Aelst and

Willems (2006) to minimize the computation complexity of S-estimator (Lop-

uhaä 1989), in optimizing the objective function. For Fast-S estimator, scatter

matrix V is replaced by shape matrix σ2Γ in equation (1.8), where σ be the scale

estimate, Γ = |V|−1/pV be the shape matrix selected such that |Γ| = 1 and p

be the dimension of V, so that |Γ| = 1 always. Therefore, the objective is to

estimate the triplet (t̂, Γ̂, σ̂) that minimizes s such that,

1

n

n∑

1=1

ν

[{
(xi − t)TΓ−1(xi − t)

}1/2

s

]
= b0 (1.9)

where t ∈ Rp , Γ be semi-positive definite square matrix of order p, |Γ| = 1, and

s be a positive scalar.

The fast algorithm starts with selecting N sub-samples at random from

the original dataset. Sub-group solutions using equation (1.9) are denoted as,
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(t̂0l , Γ̂
0
l , σ̂

0
l ), for l = 1, ..., N , where σ̂0

l is median of Mahalanobis distances using

t̂0l and Γ̂0
l . Then, these estimates are improved by applying I-step, The jth I-step

refinement of scale estimate begins with,

σ̂jl = σ̂j−1l

1

nb0




n∑

1=1

ν




{
(xi − t̂j−1l )T (Γ̂j−1

l )−1(xi − t̂j−1l )
}1/2

σ̂j−1l







1/2

Thus, the weighted mean t̂jl and weighted covariance V̂j
l σ̂

j
l determined using

weights W j
i = ν ′(u)/u, where u =

{
(xi − t̂j−1l )T (Γ̂j−1

l )−1(xi − t̂j−1l )
}1/2

σ̂j−1l

and

results refinement of Γ̂j
l = |V̂j

l |−1/pV̂j
l . The scale estimates can be improved by

applying the refinement until convergence by keeping mean and scatter fixed.

Like wise refine the triplet estimates for specific number of typically less than l

smallest iterated scales and not for all initial sub-group estimates. Choose mean

vector and covariance V̂F = (σ̂F )2Γ̂F corresponding to the smallest scale among

all and after complete refinements as final estimates.

Motivated by the high breakdown point and robustness of DetMCD method,

Hubert et al. (2015) proposed DetS estimator to increase the robustness of Fast-

S estimation. DetS method begins by calculating six primary scatter estimates

of scales variables using three-step orthogonalization in OGK method much like

DetMCD. The shape matrix and scale are estimated using each estimate. Fur-

ther, These values replace the initial triplet estimates to six sub-samples in

Fast-S estimator denoted by (t̂0l , Γ̂
0
l , ŝ

0
l ), for l = 1, ..., 6, . Then, continue the

remaining processes of k I-step in the Fast-S estimation using scaled variables

and determined six estimates. The scale estimates are refined again by fix-

ing estimates of mean vector and shape matrix. Select two smallest scale es-

timates among them and perform I-step until convergence. The resulting es-

timates (t̂F , Γ̂F , ŝF ) are used to estimate location vector and scatter matrix

of original data i.e, t̂(X) = Qt̂F + median(X) and V(X) = QV̂FQ, where
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Q = diag(Qn(X1), ..., Qn(Xp) and V̂F = (ŝF )2Γ̂F .

Along with DetS Hubert et al. (2015) proposed DeMM estimator. The pro-

cedure of DetMM estimation consists of two steps. At first, the multivariate

estimates of mean vector and covariance matrix (t̃, Ṽ) are obtained by solving

objective function of S-estimation in equation (1.8) and the estimate s̃ = |Ṽ|1/2p.

Secondly, find (t̂, Γ̂) which minimizes

1

n

n∑

1=1

u1

[{
(xi − t)TΓ−1(xi − t)

}1/2

s̃

]

where t ∈ Rp and Γ is a semi-positive definite matrix with |Γ| = 1. This

yields the DetMM estimator of location t̂ and scatter V̂ = (ŝ)2Γ̂.

Hubert et al. (2015) found that DetS method performs better than Fast-

S method that is an arbitrary number of subsamples to ensure at least one

clean subset, which is unrealistic. Also observed that both robust methods are

permutation invariant and almost affine-equivariant.

20) MDP Algorithm

The traditional methods of robust distance are unreliable when the dimension

of data exceeds sample size. To address the problems with high dimensionality,

a modified Mahalanobis distance was suggested by Ro et al. (2015), defined to

be:

d2i (µ,D) = (xi − µ)TD(xi − µ) (1.10)

where, D diagonal matrix with diagonal elements of covariance matrix Σ. Ro et

al. (2015), proposed the Minimum Diagonal Product (MDP) algorithm, which

includes two sets of algorithms using modified distance. Similar to the MCD

method, the first algorithm aims to find a subset of h observations in which

product of marginal variances will be minimum and the estimates µ̂MDP , Σ̂MDP

and D̂MDP are accordingly the sample mean, sample covariance and diagonal
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matrix with diagonals of covariance matrix. If multiple solutions occur in this

minimization, MDP estimators are selected arbitrarily. Repeat the process by

choosing the second set of h observations with the smallest distances in equation

(1.10) by applying previous MDP estimates. This procedure is employed for m

initial subsets. Next, choose the subset with MDP value for further estimation.

Ro et al. (2015), used reweighting, presented by Cerioli (2010), to increase the

efficiency of MDP.

The second algorithm computes initial estimates of first algorithm for h =

[n/2] + 1 where D̂MDP is multiplied with a consistency constant. Finally, second

step is reweighted using the threshold value, a function of estimated correlation

matrix. Ro et al. (2015), suggested that MDP algorithm is fast even when

n = 100 and p = 400.

21) MRCD Method

MCD estimators are not applicable when dimension exceeds sample size.

Hence to confront this situation Boudt et al. (2019) proposed, Minimum Regu-

larized Covariance Determinant (MRCD) method. For a multivariate data X, of

order n× p, the MRCD method which generalizes the MCD method was intro-

duced by Rousseeuw (1985), begins with standardized variable like in DetMCD

method. Boudt et al. (2019), then regularized covariance matrix for target matrix

(T) and regularization parameter (ρ) is defined as K(H) = ρT+(1−ρ)cαSU(H),

where SU(H) is the covariance estimator using MCD method for standardized

data U and cα is the consistency factor.

Singular value decomposition is then performed for T, i.e T = QΛQT and es-

timated transformed standardized observations wi = Λ−1/2QTui. It follows that

SW(H) = Λ−1/2QTSU(H)QΛ−1/2. To find MRCD subsets, six robust and well-

conditioned initial estimates of location mi and scatter Si are obtained by using

different initial scatter estimator of Hubert et al. (2012). Then, select the subsets
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of W consisting h observations with lowest Mahalanobis distance based on each

mi and Si. The smallest value ρi is then determined for each well-conditioned reg-

ularized covariance. Then set ρ = max
i

ρi if ρi ≤ 0.1, ρ = max{0.1,median
i

ρi}.

If ρi ≤ ρ for initial subset, repeat the C-step using the standardized and regular-

ized covariance of the last subset and ensure that the final MRCD subset has the

lowest determinant of regularized covariance. The final estimates of the mean

vector and covariances are estimated using the obtained subset. This method

aims to regularize the covariance before minimizing its determinant and claimed

to be performed better and faster than MCD in all ranges of dimensions.

22) SM Method

Considering median is a robust measure of central tendency, multivariate

outlier detection methods are constructed based on component wise median.

Multivariate expansion of univariate median is termed as spatial median (Brown

1983). Applying spatial median as the robust measure of multivariate location

and covariance based on Sajana and Sajesh (2018b) developed Spatial Median

(SM) method based on Mahalanobis distance. The SM method performed effi-

ciently with low masking and swamping for at most 25% contamination in the

data.

23) Other Distance Based Methods

Parsimony issues in the low sample and high dimension was discussed in

Ahn, Lee and Zi (2018) and presented a robust distance-based solution to han-

dle this problem. To address similar situations in high dimensional data, Yang

et al. (2018), proposed threshold-based method for outlier detection. Leys et al.

(2018) studied the outliers of different viewpoints of experimental social psychol-

ogy. They suggested a variant Mahalanobis distance-based method to address

this issue. Weighted likelihood estimators of multivariate location and scatter
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have been presented by Agostinelli and Greco (2019). The proposed methods

performed adequately for a small proportion of outliers.

1.5.2 Projection-based Methods

1) Stahel-Donoho estimator

Stahel-Donoho estimator was independently proposed by Stahel (1981) and

Donoho (1982), to estimate the mean vector and covariance matrix in which ob-

servations are down-weighted relative to some projection of data to one-dimensional

space. It is found that the estimators asymptotically attain a breakdown value

of 50%. Rousseeuw and Leroy (1987), applied Stahel-Donoho estimator in the

calculation of robust distance. Stahel-Donoho measure of outlyingness of a mul-

tivariate observation xi for a p-dimensional projection vector v is defined as:

ui = sup
‖v‖=1

| xivT −med
j

(xjv
T ) |

med
k
| xkvT −med

j
(xjvT ) | (1.11)

Further, mean vector and covariance matrix are estimated using measured ui of

each observation as follows:

T (X) =

n∑
i=1

w(ui)xi

n∑
i=1

w(ui)
(1.12)

V (X) =

n∑
i=1

w(ui)(xi − T (X))(xi − T (X))T

n∑
i=1

w(ui)
(1.13)

where w(ui) is a decreasing weight function. Stahel-Donoho method is able to

combine affine equivariance and breakdown property together. But the computa-

tional complexity in the calculation of outlyingness of the observations essentially

adverse the properties and limit its practical use in outlier detection. However,

Gasko and Donoho (1982), provided a robustification using these estimators for
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leverage diagnostics in multiple regression.

2) Projection Pursuit Detection

To refrain from methods that used Mahalanobis distance in identifying out-

liers and to avoid the masking and swamping effect, Pan et al. (2000), proposed

a projection pursuit method. This method projects multivariate data into uni-

variate observations, then used the univariate method to detect outliers from the

projected observations. Thus, the outlier identifier creates a Gaussian process

on p-dimensional unit hypersphere. Pan et al. (2000), recommended that the

method flags relatively less false positives. On the other hand, there is no spe-

cific indication of the number of projection points needed to scatter on the unit

hypersphere to generate multivariate data. Therefore the application in large

dimensional dataset will be difficult.

3) Kurtosis Method

The computational difficulties of projection-based methods such as the Stahel-

Donoho algorithm rely on the amount of randomly generated directions. Reduc-

tion of the number of successful directions is a solution to improve the efficiency

of these kinds of methods. Peña and Prieto (2001) suggested a method in which

kurtosis coefficients are used to obtain directions. The sample points are pro-

jected on to a set of 2p directions, where p is the dimension of the data. These

directions are determined through minimizing and maximizing the kurtosis co-

efficients of projected points.

The kurtosis coefficient measures the peakedness of a distribution. Outliers

from the symmetric contamination model increase the kurtosis coefficient. A

small amount of asymmetrical outliers leads to a higher kurtosis coefficient as

well. Conversely, it decreases to a very small value for a large number of asymmet-

rical outliers. Accordingly, obtaining the directions that minimize and maximize
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the kurtosis coefficient of projection would be advantageous to outlier detection

(Peña and Prieto 2001).

Determination of direction is a global optimization problem, which is not

practically efficient instead local minimizers and local maximizers are computed.

Peña and Prieto (2001) showed that these local optimizers assure to find ei-

ther: direction to the outlier or a direction orthogonal to it. The uncertainty

of obtained directions carries off the procedure of projecting the data onto a

subspace orthogonal to the computed directions and other directions obtained.

Then, this process is repeated to attain p direction for the maximizer of the pro-

jected kurtosis coefficient and p direction for the minimizer of projected kurtosis

coefficient. To decide the outlyingness of observation on any of these 2p direc-

tions based on the univariate median and Median Absolute Deviation (MAD),

the maximum distance of observation form the median exceeds a suitable cutoff

value. Thus, mean and covariance estimates are calculated using observations

that are not outliers. These estimates are then used to compute Mahalanobis

distance for entire data and the observations are labeled as outliers whose dis-

tance exceeds the desired quantile of χ2 distribution with p degrees of freedom.

The performance of kurtosis coefficient directions was not satisfactory for large

contamination levels. To improve the result of this situation Peña and Prieto

(2007), suggested a method based on the combination of specific direction and

random directions. Stratified sampling is applied to generate random directions.

This semi-deterministic procedure was an improvement of the Kurtosis method.

1.5.3 Other Robust Methods

Most of the distance-based methods constraint the choice of at least one un-

contaminated initial subset. The iterative computations to select an outlier-free

subsample becomes time consuming. An alternative identification principle other

than distance has equal importance in the robust field. To detect the lack of fit
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of individual observation, Rao (1964) suggested a method that uses a sum of

squared length of projections other than robust distance. This technique has

been applied by Gnanadesikan and Kettenring (1972), to detect outliers. To de-

termine the deviated observations from the linear space of the smallest principal

components, the sum of squares is calculated. The large value of sum indicates

the outlyingness of the corresponding observation. The reliability of these meth-

ods entrusted on the subjectivity in identifying outliers. A procedure based on

the decomposition of Mahalanobis distance was explained by Kim (2000). On the

assumption of normality, the Mahalanobis distance is decomposed and provides

a component scatter plot for placing the outliers.

An outlier detection method based on the estimated angles has been proposed

by Juan and Prieto (2001) to separate the clustered outliers. They described

that the angle between distribution (uniform distribution) of uncontaminated

data and the reference direction (u0) is a function of the Beta distribution. After

obtaining the angles, they suggested to drawing the Q-Q plot to test presence of

outliers using the lack of fit. The spacing test for goodness-of-fit has been studied

by Pyke (1965). Then, the distribution of spacing between each consecutive

ordered observations is determined. The cutoff of outlier identification has been

calculated from the spacing distribution using the largest interval of normalized

spacing. Chiang et al. (2003) proposed an algorithm that makes use of PCA as

well as significant tests. To test whether the observation is an outlier, the p− a

the eigenvectors are used, where p is the dimension of original data. Q-statistic,

presented by Jackson and Mudholkar (1979), used to test the outlyingness of the

observations. If the Q-statistic of an observation exceeds the respective threshold

specified by Chiang et al. (2003), then the observations are flagged as outliers

and repeat the process flagged between iterations.

Another subjective procedure based on eigenvalue and eigenvector was estab-

lished by Gao et al. (2005), referred to as Max-Eigen Difference (MED) method.
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The initial step of this method is the determination of eigenvalue and eigenvector

of the scatter matrix of the original data. The covariance matrix is calculated

for each dataset with ith observation removed and eigenvalue and eigenvector are

obtained for these covariance matrices. As specified by Gao et al. (2005), the ob-

servation with a larger MED value is marked as outliers. Kirschstein et al. (2013)

proposed pruning Minimum Spanning Tree (pMST) method that considers the

entire dataset in a network. The MST method begins by designing a sphere

around each observation with a radius. The number of spheres in the largest

connected set of spheres is used to find the subsample of good observations and

can be used for robust estimation purposes. Obviously, the observations that are

not part of the largest connected sphere are identified as outliers. When there

are more a fraction of outliers and fraction of good samples, the pMST method

performs better than MCD. But for other cases of higher dimensions, the MCD

is better.

An algorithm is proposed by Liebscher et al. (2013), in which the Delaunay

triangulation is adopted to select the uncontaminated subset. Wang and Zwilling

(2015) established an outlier detection based on the Voronoi diagram explained in

Preparata and Shamos (1985). It is automatically constructing the neighborhood

relationship of the observations in original data.

1.6 Aims and Objectives of the Study

The literature review included traditional and non-traditional methods, some of

them are derived and determined uniquely for the purpose of robust estimation

and others are the compound of earlier strategies. The discussion of previous

studies has shown that all methods have commendable properties as well as

limitations. The main limitation, however, is the effect due to masking and

swamping. Most of these methods undergo highly complicated computations as

well. Another challenge lies in the breakdown point of the outlier detection and
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robust estimation. The maximum proportion of outliers that the estimate can

safely tolerate is termed as the breakdown value of an estimator. Similarly, the

maximum proportion of outliers that can successfully detect can be defined as

the breakdown value of an outlier detection method. Many of these methods fail

when the data contains more than 20% outliers. There are a few methods with

a higher level of breakdown points, but still, there is scope for improvement.

In this thesis, an attempt is made to propose a multivariate outlier detection

procedure that considers the primary issues confronted in the preceding study.

It also presents a robust estimator for mean vector and covariance matrix based

on the outlier detection method which can deal with multiple outliers from large

dimensional data. The performance evaluation is conducted in the classical con-

tamination model in terms of Rate of Successful Detection (RSD) and Rate of

False Detection (RFD). RSD measures the rate of successful detection of true

outliers while RFD represents the false detection of inliers as outliers. In fact,

RSD and RFD are the way of assessing the masking effect and swamping effect

respectively. The RSDs and RFDs can also be used to measure the breakdown

value. Moreover, the efficiency of the robust estimates of the mean vector and

the covariance matrix can be evaluated using Mean Squared Errors (MSE). Ro-

bust statistical techniques based on the proposed method have been discussed

and evaluated.

1.7 Outline of the Thesis

This thesis is organized as six chapters including the current chapter on the

introduction of outliers, robust estimation and is organized as follows.

Chapter 2, consists of a distance-based outlier detection method for a ro-

bust estimation of multivariate linear regression coefficients. The efficiencies of

the proposed estimates compared with some popular methods and results are

provided in terms of mean square errors.
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Chapter 3, presents a robust alternative for covariance estimator based on

robust scale estimator by repeated median measurements. On the basis of pro-

posed robust bivariate dispersion, an robust correlation estimator is proposed

and the efficiencies are examined by calculating weighted mean square errors.

Chapter 4, provides a method to detect outlying observation from multidi-

mensional data and subsequent robust estimation of mean vector and covariance

matrix. A distance-based approach and adjusted threshold are adopted to iden-

tify the outliers in the multivariate dataset. The performance of the proposed

method is evaluated using masking and swamping effect of the method in Monte

Carlo experiments.

Chapter 5, presents an application of the proposed robust estimation method

in discriminant analysis which is one of the significant multivariate statistical

technique for data analysis. The produced robust discriminant analysis is ex-

amined using simulated training dataset and validation dataset. The overall

misclassification probabilities are computed for different classification datasets

of various ranges of contaminations.

Chapter 6, contains summary and discussion of the main results of the thesis

has been presented along with scope and directions for future research.
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Chapter 2

Robust Estimation of
Multivariate Linear Regression

Parameters1

2.1 Introduction

The regression analysis has an important part in studying the relationship be-

tween variables in statistical data. It consists of modeling, analysis of several

variables and aims to find the relationship between response variables and predic-

tor variables. Clearly regression analysis focuses on understanding the changes

made by differences of predictor variables in response variable. In the multi-

variate regression model, the study is between multiple predictor variables and

multiple response variables. Thus the multivariate regression model is defined as

follows

yi = Bxi +αi + εi, i = 1, ...n (2.1)

where xi = (xi1, ..., xip) ∈ Rp, yi = (yi1, ..., yiq) ∈ Rq. The p× q slope matrix

B, the intercept vector α ∈ Rq and independently and identically distributed

random variables εi with zero mean and symmetric and positive definite scatter

Σε are the parameters in multivariate linear regression model (Rousseeuw et al.

2004).

The location vector µ and scatter matrix Σ of the joint variable (x,y) can

1Some part of this chapter is based on Sajana and Sajesh (2018a)
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be partition in the following form,

µ =



µx

µy


 and Σ =




Σxx Σxy

Σyx Σyy




Let MLE of µ and Σ can be denotes as µ̂ and Σ̂. Therefore MLE of multivariate

regression parameters in equation (2.1) are defined as

B̂ = Σ̂−1xx Σ̂xy (2.2)

α̂ = µ̂y − B̂T µ̂x (2.3)

Σ̂ε = Σ̂yy − B̂T Σ̂xxB̂ (2.4)

These estimators are inappropriate for the situations where the data contains

outliers since MLE is highly affected by the presence of outliers. Outliers are

observations inconsistent with the remainder of the dataset (Barnett and Lewis

1994). Hence, classical estimation methods are not robust against presents of

outliers in the dataset (Barnett and Lewis 1994). As a solution to this problem,

one may replace these classical estimates by highly robust estimates which are

less sensitive to outliers and perform robust analysis.

Koenker and Portnoy (1990) investigated the application of M-estimator to

each coordinate of the responses and Bai et al. (1990) suggested to minimize the

sum of the Euclidean norm of residuals for estimating multivariate linear regres-

sion models, these methods are not affine equivariant. An overview of the robust

multivariate regression technique is explained by Maronna and Yohai (1997) in

the context of simultaneous equation models. Ollila et al. (2002) introduced the

robust estimation procedure of multivariate regression based on the sign covari-

ance matrix. Rousseeuw (1985) discussed the application of MCD method which

possesses a high breakdown point and Rousseeuw et al. (2004) developed the

reweighted versions of the MCD estimator in multivariate regression estimation.

The MCD methods provide better robust estimates of multivariate regression
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coefficients compared to many other methods, the computational complexity in-

volved in this method limits its application. Sajesh and Srinivasan (2013) studied

different techniques for outlier detection in multidimensional data.

Sajesh and Srinivasan (2012) proposed a highly robust technique called co-

median method for the estimation of mean vector and covariance matrix. They

showed that comedian estimates posses high breakdown point. The method of

comedian approach was adopted by Sajana and Sajesh (2018a) for the estima-

tion of multivariate linear regression parameters. The efficiency of the proposed

method is evaluated through empirical experiments and the results are compare

with MLE, MCD and OGK estimators. The performance the method at real

scenario is illustrated using bench mark datasets.

2.2 Robust Estimation of Multivariate Regres-

sion Coefficients

Let Z be a n× (p + q) data matrix consisting of p predictor variables and q

response variables. Consider zi (i = 1, 2, .., n) and Zj (j = 1, 2, .., (p+ q)) are the

rows and columns of the data matrix. Thus, the comedian matrix COM(Z) is

defined as

COM(Z) = (COM(Zi,Zj)), i, j = 1, 2, ..., p+ q (2.5)

where COM(Zi,Zj) = med{(Zi − med(Zi))(Zj − med(Zj))}. Since COM(Z)

is not positive semi-definite (Falk 1997), to solve this issue the orthogonaliza-

tion technique to attain positive-definite and approximately scatter matrices,

described by Maronna and Zamar (2002) is applied. In order to do so a robust

correlation matrix is then determined based on COM(Z) is defined as

δ(Z) = DCOM(Z)DT (2.6)

where D is the diagonal matrix with elements 1/MAD(Zi) (1 = 1, 2, ..., p + q)

and MAD(Zi) = med(|Zi −med(Zi)|)
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The following orthogonalization process is used to obtain the robust estimates

of location vector and scatter matrix for estimating multivariate linear regression

parameters. Consider a square matrix E with columns are eigenvectors of δ(Z).

Let Q = D(Z)−1E and wi = Q−1zi, i = 1, 2, ..., n. Thus W be the orthogonal-

ized matrix with rows wi (i = 1, 2, ..., n) and columns Wj (j = 1, 2, ..., (p + q)).

The resulting robust estimates of location vector and scatter matrix are then

defined as

µR = Ql and Σ = QΓQT (2.7)

where l = (med(W1), ...,med(Wp+q)) and Γ = diag(MAD(W1)
2, ...,MAD(Wp+q)

2).

The procedure can be iterated to compute ΣR and µR for W, then expressing

them in the original coordinate system. These estimates can be improved by a

reweighting step using the robust Mahalanobis distance defined as,

rdi = (zi − µR)TΣ−1R (zi − µR), i = 1, 2, ..., n (2.8)

Let m be the weighting function, then define weighted mean vector and covari-

ance matrix respectively as,

µRW =

∑n
i mizi∑n
i mi

and ΣRW =

∑n
i mi(zi − µRW )(zi − µRW )T∑n

i mi

(2.9)

where weight function mi = 1 for rdi ≤ cv and equals 0 otherwise and the cutoff

value (cv) of hard rejection is determined as

cv = 1.4826
χ2
p+q,0.95 med(rd1, ..., rdn)

χ2
p+q,0.5

(2.10)

Thus, the resulting estimates of equation (2.9) can be partitioned to attain the

comedian estimates of multivariate linear regression parameter and are defined

by

B̂R = Σ̂−1RxxΣ̂Rxy (2.11)
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α̂R = µ̂Ry − B̂T
Rµ̂Rx (2.12)

Σ̂Rε = Σ̂Ryy − B̂T
RΣ̂RxxB̂R (2.13)

2.3 Finite Sample Efficiency

To investigate the finite sample efficiency of comedian multivariate regression,

following simulation study is performed. Generated m datasets of sample size (n)

from a distribution Np+q(0, I), where I is the identity matrix. The experiment

has been conducted for different choices of n, p and q to ensure the performance

evaluation of various situations. For each dataset Z(k) (k = 1, 2, ...,m), comedian

method has been carried out for yielding p×q slope matrix B̂(k), intercept vector

α̂(k) and q× q covariance matrix estimate Σ̂
(k)
ε of errors. To measure the sample

efficiency, MSE is computed. The MSE of a univariate estimator is defined to be

MSE(T ) = n ave
k

(T (k) − θ)2

where θ is the true value of the parameter. Similarly MSE of B̂ and α̂ are defined

as

MSE(B̂) = ave
i,j

(MSE(B̂i,j)), i = 1, 2, ..., p and j = 1, 2, ..., q (2.14)

MSE(α̂) = ave
j

(MSE(α̂j)), j = 1, 2, ..., q (2.15)

Likewise for the diagonal and off-diagonal of Σ̂ε

Table 2.1 gives the results of the comparative study. The results of the

proposed comedian regression is compared with results of MLE, MCD and OGK

regression estimators. All simulation are performed with m = 1000 replications

for various values of n between 50 and 1000. From the table it is clear that,

in uncontaminated situation comedian regression has the MSE same as that of

MLE estimation method, but this is not true for other methods. Simulations for
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Table 2.1: Finite sample comparison of Comedian, MLE, MCD and OGK esti-
mators based on MSE for p = q = 6

n

50 200 500 1000

Comedian regression:
Slope 1.202 1.051 1.014 1.002
Intercept 1.176 1.032 1.003 1.004
Σdiagonal 2.641 2.126 2.065 2.050
Σoff−diagonal 0.897 0.983 0.996 0.997

MLE:
Slope 1.201 1.051 1.013 1.002
Intercept 1.176 1.032 1.003 1.004
Σdiagonal 2.641 2.126 2.065 2.050
Σoff−diagonal 0.897 0.983 0.996 0.997

MCD:
Slope 3.571 1.541 1.245 1.171
Intercept 2.290 1.297 1.137 1.086
Σdiagonal 6.323 2.883 2.412 2.325
Σoff−diagonal 3.187 1.540 1.235 1.179

OGK:
Slope 1.732 1.428 1.353 1.329
Intercept 1.522 1.260 1.225 1.205
Σdiagonal 5.322 5.774 8.046 12.440
Σoff−diagonal 0.908 1.056 1.074 1.093

other sample sizes n and different dimensions p and q gives similar results and

are presented in Appendix A.

Outliers in regression can be commonly classified into two, vertical outliers

and bad leverage points. Vertical outliers are the observations that do not follow

the linear pattern of the majority of the data due to the outlyingness of response

variables. On the other hand, leverage points are outlying observations due to

the outlyingness of the predictor variables. It can be classified into good leverage

points and bad leverage points with regards to the observation that follows or

does not follow the pattern of rest of the data.
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The datasets are generated with vertical outliers and bad leverage points to

study the proposed method in contaminated situations. In order to include verti-

cal outliers in the data, sample of size n is generated from Np+q(0, I) then replace

the 100γ% (γ=rate of contamination) observations of each response variable by

N(2
√
χ2
p+q,0.99, 0.1). The finite sample results from data with γ = 0.1, 0.2 vertical

outliers are shown in Table 2.2 and Table 2.3 respectively. The MSE comparison

for other choices of contamination and dimension is presented in Table A.2, Ta-

ble A.3 and Table A.4 of Appendix. The MSE values form these tables indicated

that the co-median regression produces less error compared to MLE, MCD and

OGK methods.

To incorporate the bad leverage points in the data, sample of size n is

generated from Np+q(0, I) then replace the 100γ% observations of p predictor

variables and q response variables by independently generated samples from

N(2
√
χ2
p,0.99, 0.1) and N(2

√
χ2
q,0.99, 0.1). The simulation is repeated m = 1000

times for computing MSE values of comedian regression estimates. The results

of experiment conducted for data with bad leverage points are presented in Table

2.4 and Table 2.5 respectively for γ = 0.1, 0.2. In the same manner, the finite

sample error values for γ = 0.4 and different variable dimensions are provided

in Table A.5, Table A.6 and Table A.7 of Appendix. From these tables it is also

evident that, MSE of comedian regression are less affected by the presence of

bad leverage points when compared to MLE, MCD and OGK estimates.

In the previous tables, the data with independent variables are considered.

For the purpose of investigating the behavior of comedian regression estimator

in the correlated dataset, m = 1000 datasets of sample size n from a distribution

Np+q(0, I0.5), where I0.5 is the covariance matrix with unit variance and covari-

ance=0.5 is generated. Further, the presence of vertical outliers and bad leverage

points are also studied for correlated dataset. The MSE values of comedian re-

gression estimator, MLE, MCD and OGK for vertical outliers and bad leverage
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Table 2.2: Finite sample comparison of Comedian, MLE, MCD and OGK es-
timators based on MSE for p = q = 6 when the data contains 10% of vertical
outliers

n

50 200 500 1000

Comedian regression:
Slope 1.335 1.144 1.141 1.109
Intercept 1.299 1.121 1.150 1.147
Σdiagonal 2.935 2.421 2.283 2.226
Σoff−diagonal 0.996 1.060 1.129 1.092

MLE:
Slope 12.545 10.731 10.792 10.537
Intercept 54.249 211.368 523.930 1051.373
Σdiagonal 3424.488 16510.274 42681.683 86414.403
Σoff−diagonal 3584.411 16937.652 43621.652 88193.685

MCD:
Slope 3.226 1.516 1.344 1.264
Intercept 2.229 1.344 1.236 1.205
Σdiagonal 6.288 4.373 5.875 9.717
Σoff−diagonal 3.336 1.749 1.556 1.459

OGK:
Slope 1.876 1.515 1.515 1.508
Intercept 1.651 1.365 1.349 1.357
Σdiagonal 4.988 5.050 6.501 9.192
Σoff−diagonal 0.964 1.132 1.226 1.248
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Table 2.3: Finite sample comparison of Comedian, MLE, MCD and OGK es-
timators based on MSE for p = q = 6 when the data contains 20% of vertical
outliers

n

50 200 500 1000

Comedian regression:
Slope 1.608 1.346 1.355 1.349
Intercept 1.491 1.282 1.303 1.260
Σdiagonal 3.501 2.901 2.850 2.932
Σoff−diagonal 1.073 1.213 1.239 1.236

MLE:
Slope 21.442 18.3134 18.259 17.677
Intercept 212.177 839.032 2100.356 4193.410
Σdiagonal 10932.928 52231.799 134780.7 272669.8
Σoff−diagonal 11340.839 53554.466 137901.5 278789.0

MCD:
Slope 4.270 1.585 1.437 1.401
Intercept 10.351 1.401 1.350 1.283
Σdiagonal 656.347 8.218 16.027 30.803
Σoff−diagonal 669.310 2.057 1.865 1.825

OGK:
Slope 2.121 1.662 1.659 1.696
Intercept 1.799 1.486 1.564 1.591
Σdiagonal 5.109 4.558 5.328 7.223
Σoff−diagonal 1.022 1.257 1.371 1.488
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Table 2.4: Finite sample comparison of Comedian, MLE, MCD and OGK esti-
mators based on MSE for p = q = 6 when the data contains 10% of bad leverage
points

n

50 200 500 1000

Comedian regression:
Slope 1.369 1.209 1.191 1.179
Intercept 1.372 1.148 1.148 1.124
Σdiagonal 2.989 2.514 2.628 2.70
Σoff−diagonal 0.968 1.077 1.111 1.140

MLE:
Slope 2.562 6.396 14.293 27.484
Intercept 1.469 1.385 1.555 1.759
Σdiagonal 2.328 2.480 3.458 4.951
Σoff−diagonal 1.989 5.311 11.881 22.086

MCD:
Slope 3.158 1.547 1.329 1.265
Intercept 2.496 1.355 1.238 1.158
Σdiagonal 6.544 4.438 6.095 10.023
Σoff−diagonal 3.224 1.737 1.511 1.496
OGK:
Slope 1.857 1.537 1.499 1.511
Intercept 1.671 1.3408 1.341 1.302
Σdiagonal 5.013 4.743 6.465 9.535
Σoff−diagonal 0.948 1.137 1.207 1.280

points with γ = 0.1 exhibited in Table 2.6 and Table 2.7. The results in the

correlated cases are same as that of uncorrelated cases.

2.4 Robustness Properties of Comedian Regres-

sion Estimator

The robustness properties of the proposed estimator is studied in terms of

breakdown point and affine equivariance.

2.4.1 Breakdown Point

Sajesh and Srinivasan (2012) proposed an empirical method to find the break-
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Table 2.5: Finite sample comparison of Comedian, MLE, MCD and OGK esti-
mators based on MSE for p = q = 6 when the data contains 20% of bad leverage
points

n

50 200 500 1000

Comedian regression:
Slope 1.609 1.381 1.333 1.309
Intercept 1.559 1.317 1.299 1.290
Σdiagonal 3.539 3.012 2.963 2.938
Σoff−diagonal 1.089 1.202 1.238 1.284

MLE:
Slope 2.753 6.640 14.725 28.236
Intercept 1.717 1.583 1.692 1.877
Σdiagonal 3.362 3.306 3.754 4.614
Σoff−diagonal 1.687 4.456 10.021 19.102

MCD:
Slope 6.360 9.697 16.943 30.317
Intercept 5.372 4.302 3.340 3.179
Σdiagonal 8.228 14.267 18.583 27.013
Σoff−diagonal 3.159 5.111 9.340 16.748

OGK:
Slope 1.945 1.607 1.558 1.609
Intercept 1.836 1.519 1.528 1.608
Σdiagonal 5.302 4.907 5.593 7.172
Σoff−diagonal 1.032 1.240 1.324 1.414
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Table 2.6: Finite sample comparison of Comedian, MLE, MCD and OGK esti-
mators based on MSE for p = q = 6 when the correlated data contains 10% of
vertical outliers

n

50 200 500 1000

Comedian regression:
Slope 1.372 1.209 1.191 1.120
Intercept 1.324 1.142 1.148 1.169
Σdiagonal 3.029 2.444 2.628 2.228
Σoff−diagonal 1.509 1.412 1.111 1.375

MLE:
Slope 12.269 10.638 10.507 10.585
Intercept 55.468 211.066 526.237 1048.54
Σdiagonal 3464.352 16519.968 42702.460 86430.679
Σoff−diagonal 3540.396 16713.615 43120.248 87225.074

MCD:
Slope 3.233 1.575 1.322 1.265
Intercept 2.514 1.364 1.229 1.397
Σdiagonal 6.501 4.244 5.856 6.423
Σoff−diagonal 4.185 2.340 2.555 1.782

OGK:
Slope 1.913 1.535 1.477 1.470
Intercept 1.622 1.369 1.328 1.397
Σdiagonal 4.848 4.498 5.301 6.423
Σoff−diagonal 1.909 1.780 1.839 1.782
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Table 2.7: Finite sample comparison of Comedian, MLE, MCD and OGK esti-
mators based on MSE for p = q = 6 when the correlated data contains 10% of
bad leverage points

n

50 200 500 1000

Comedian regression:
Slope 2.369 5.246 11.336 21.539
Intercept 0.743 0.661 0.649 0.657
Σdiagonal 13.915 41.994 99.519 194.702
Σoff−diagonal 2.491 1.291 2.769 5.208

MLE:
Slope 2.583 6.499 14.611 28.170
Intercept 0.714 0.662 0.695 0.729
Σdiagonal 14.491 46.623 111.574 218.959
Σoff−diagonal 0.489 1.385 3.104 5.937

MCD:
Slope 4.300 5.585 11.469 21.610
Intercept 1.497 0.775 0.683 0.677
Σdiagonal 10.776 31.335 75.158 146. 56
Σoff−diagonal 1.304 1.729 3.423 6.406

OGK:
Slope 2.734 5.563 11.729 22.052
Intercept 0.914 0.767 0.761 0.766
Σdiagonal 17.139 50.168 117.845 229.100
Σoff−diagonal 0.444 1.167 2.456 4.646
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Table 2.8: MSE comparison for breakdown point

p, q
Normal data 48% contaminated with vertical outliers

Slope Intercept Σdiagonal Σoff−diagonal Slope Intercept Σdiagonal Σoff−diagonal

6,6 1.000 1.008 2.037 1.008 1.000 1.008 2.037 1.008
6,10 1.012 1.016 2.020 0.991 1.012 1.016 2.020 0.991
10,6 1.002 0.983 2.110 0.987 1.002 0.983 2.110 0.987
10,10 1.017 1.022 2.107 0.982 1.017 1.022 2.107 0.982
15,15 1.013 1.005 2.244 0.986 1.013 1.005 2.244 0.986

Table 2.9: MSE comparison for breakdown point

p, q
Normal data 48% contaminated with bad leverage points

Slope Intercept Σdiagonal Σoff−diagonal Slope Intercept Σdiagonal Σoff−diagonal

6,6 1.065 1.160 2.456 0.997 1.065 1.160 2.456 0.997
6,10 1.048 1.030 2.332 1.006 1.048 1.029 2.321 1.005
10,6 1.047 1.027 2.544 0.997 1.047 1.026 2.536 0.996
10,10 1.048 1.019 2.416 1.014 1.048 1.019 2.416 1.014
15,15 1.044 1.023 2.472 1.001 1.044 1.023 2.470 1.001

down value of an outlier detection method. Similarly, the breakdown value of

regression estimator can be computed using the finite sample MSE. For the pur-

pose of obtaining breakdown value of proposed estimator, a sample of size n is

simulated from the distribution Np+q(0, I) and compute the MSE of estimates.

Then insert additional 100γ% percentage of contamination into the existing data

and measure the MSE values of comedian regression estimates of entire dataset.

Identify maximum amount of outliers as breakdown point that the estimator can

tolerate with out deviating MSE values.

The breakdown point study consists of two kinds of contamination: vertical

outliers and bad leverage points as described in the previous section. Empirical

comparison of MSE to determine the breakdown value for vertical outliers and

bad leverage points are shown in Table 2.8 and Table 2.9 respectively. From

these tables, the MSEs for normal (uncontaminated) dataset and contaminated

data set seems equal for different combination of dimensions up to γ = 0.48.
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2.4.2 Affine Equivariance

Rousseeuw and Leroy (1987) generalized the affine equivariance properties of

multivariate regression estimators. Adding a linear function of the predictor

variable to the response variable is equivalent to adding the linear coefficients

with the estimator is termed as regression equivariance. Assume that T(X,Y) =

(B̂T , α̂), where X is n× p matrix and Y is n× q matrix. Then, the estimator T

is said to be regression equivariant if

T(X,Y + XC + InvT) = T(X,Y) + (CT,v)T (2.16)

where C is any p× q matrix, v is any q × 1 vector and In = (1, ..., 1)T ∈ Rn

The estimator T is said to be y-affine equivariant, if the linear transformation

of response variables and the corresponding linear transformations and this can

be expressed as

T(X,YM + InrT) = T(X,Y)M + (OT
pq, r)T (2.17)

where M be any nonsingular q × q matrix, r is any q × 1 vector and Opq is the

p× q matrix consisting of zeros. Similarly the estimator T is said to be x-affine

equivariant if

T(YNT + IndT,Y) = (B̂TN−1, α̂− B̂TN−1d)T (2.18)

where N is any nonsingular p× p matrix and d is any p× 1 vector.

The equivariance properties are empirically proven with the help of simulated

samples and MSE in all possible situations by varying parameter. Table 2.10

shows the finite sample results of affine equivariance and it contains the MSE

values of the transformed data and transformed estimates of untransformed data

according to left hand side and right hand sides of the equivariance equations
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Table 2.10: MSE comparison for different affine equivariance with n = 1000

p, q
Transformed data

Regression Equivariance Y Equivariance X Equivariance

B α B α B α

6,6 336.409 332.911 0.389 330.204 0.374 1.839
6,10 333.429 326.539 0.385 336.376 0.378 1.931
10,6 335.287 342.927 0.370 338.949 0.375 2.441
10,10 333.188 340.942 0.379 335.341 0.379 2.465
15,15 334.682 330.545 0.375 332.042 0.379 3.064

p, q
Transformed estimate

Regression Equivariance Y Equivariance X Equivariance

B α B α B α

6,6 336.409 332.911 0.389 330.204 0.377 1.841
6,10 333.429 326.539 0.385 336.376 0.379 1.901
10,6 335.163 342.927 0.370 338.949 0.373 2.380
10,10 333.188 340.942 0.379 335.341 0.377 2.444
15,15 334.682 330.545 0.375 332.042 0.379 3.019

(2.16), (2.17) and (2.18). From the table, it is possible to see that MSE values

for both cases are equal and this indicates that the proposed comedian possess

affine equivariance property.

Another significant advantage of proposed regression estimators is the less

time complexity. A simulation is performed different choices of n and this pro-

cess is repeated 1000 times, the average time for an estimation procedure is

tabulated for different methods is given in Table 2.11. The table shows that

the comedian regression method required relatively less time for estimation than

other methods.

64



Table 2.11: Average time consumption of different method in R Programming

n p, q
Time(s)

Comedian MCD OGK

50 4,4 0.017 0.030 0.023
100 4,4 0.021 0.090 0.027
500 4,4 0.030 0.219 0.038
1000 4,4 0.064 0.249 0.086
50 6,6 0.040 0.069 0.059
100 6,6 0.034 0.162 0.052
500 6,6 0.057 0.421 0.082
1000 6,6 0.083 0.340 0.117
50 10,10 0.089 0.159 0.139
100 10,10 0.115 0.467 0.176
500 10,10 0.139 0.982 0.212
1000 10,10 0.209 1.519 0.317

2.5 Illustration Using Example

The Pulp-Fiber dataset presented by Lee (1992) consists of 62 observations from

four predictor variables and four response variables. The predictor variable de-

scribes properties of pulp fiber: arithmetic fiber length, long fiber fraction, fine

fiber fraction and zero span tensile. The response variables measured: breaking

length, elastic modulus, stress at failure and burst strength. Rousseeuw et al.

(2004) studied the dataset and showed that the observations 46-48 and 58-62 can

be considered as outliers

The diagnostic plot of Pulp-Fiber data is presented in Figure 2.1 in which the

robust residual distances plotted against robust distances of the observations.

The vertical and horizontal cutoff lines are chosen to be
√
χ2
4,0.975. From the

figure, observations 56, 58, 59, 60, 61 and 62 lie far from both the cutoff lines,

these six sample points are then identified as outliers (bad leverage points). The

observations 22, 28, 51 and 52 are vertical outliers since they have small residuals.

Thus the comedian regression estimates of the Pulp-Fiber data are,
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Figure 2.1: Diagnostic plot for Pulp-Fiber data

B̂R =




−4.814 −1.727 −2.515 −0.719

0.257 0.077 0.137 0.052

0.109 0.035 0.058 0.020

78.448 21.292 38.523 17.117




α̂TR =

(
−74.785 −19.466 −42.363 −19.758

)

Σ̂Rε =




0.632 0.175 0.317 0.150

0.175 0.058 0.088 0.043

0.317 0.088 0.160 0.075

0.150 0.043 0.075 0.039




2.6 Summary

In this chapter a comedian based method is proposed for the robust estimation

of multivariate regression parameters. The efficacy of the proposed method is
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investigated through simulation study and compared results with MLE, MCD

and OGK methods using the parameter MSE. In all the experiments, MSE values

of comedian regression estimators are much less compared to that of other three

methods. The simulation study for time complexity shows that the proposed

method is much faster than other methods. A benchmark dataset has been used

to investigate the efficiency of the proposed method in real-life situation and it

is identified that the proposed method is suitable for the robust estimation of

multivariate regression coefficients.
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Chapter 3

Robust Estimation using Sn
covariance1

3.1 Introduction

Bivariate data consists of measurements of exactly two variables and statisti-

cians are always interested to establish the relationship between these variables.

Simply, the direction of the linear relationship between random variables can be

measured using covariance estimation. Correlation coefficient is a scaled measure

of association between two random variables. Unfortunately, classical covari-

ance and correlation coefficients are not robust against the existence of possible

outliers. Hence it is necessary to propose a robust covariance and correlation

coefficient estimator that resists against the presence of outliers in the dataset.

A robust estimator of covariance and correlation of bivariate random vari-

ables where introduced by Gnanadesikan and Kettenring (1972), that can be

computed by substituting any robust scale estimator. On the observation that

the classical correlation coefficient estimators have very low breakdown point,

Abdullah (1990) proposed a robust correlation coefficient estimator on the basis

of Least Median of Squares (LMS). The empirically proved breakdown value of

this LMS based correlation estimator is nearly 50%. Shevlyakov (1997) provided

a study of robust correlation coefficient on a bivariate normal distribution. He

found that the median based correlation coefficient attained closes to the true

1Some part of this chapter is based on Sajana and Sajesh (2019)
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value correlation in a highly contaminated situations as well. Falk (1997) pro-

posed a median based robust alternative to the sample covariance between two

random variables X and Y called comedian and the corresponding correlation co-

efficient is termed as correlation median. It turns out that MAD is a special case

of comedian. Li et al. (2006) and Shevlyakov and Smirnov (2011) presented an

extensive review and comparison of robust correlation methods through Monte

Carlo experiments.

Similar type of estimator which robustly measure the degree of relation be-

tween two random variables has been developed by Sajana and Sajesh (2019).

Here a location free scale estimator is used to define the dependence among two

random variables. The scope for location free robust covariance and correlation

estimators are discussed by Falk (1997). The characteristics of proposed robust

covariance is compared to classical correlation estimator and some other well

known alternative robust correlation coefficient estimators by utilizing theoret-

ical and empirical results. A benchmark dataset is adopted to investigate the

efficiency of the proposed estimator.

3.2 Robust Sn Covariance Estimator

Median is the most extensively known robust estimator for location of a random

variable X. Usually, it gives [n/2]th order statistic from n independent observa-

tions x1, x2, ..., xn of X when n is odd. In the case where n is even, median is the

average of [n/2]th and ([n/2] + 1)th order statistic. It is clear that median posses

the optimal breakdown point 50%.

Several median based scale estimators are available in literature. A very

popular median based robust scale estimator is Median Absolute Deviation from

median (MAD) raised by Hampel (1974) and he established that it is an ap-

proximation of M estimator of scale. The asymptotic variance and influence

function of MAD was derived by Huber (1981). A detailed study on limit the-
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orems and strong consistency of MAD has been developed by Hall and Welsh

(1985). MAD has breakdown point which is equal to that of median. Despite

of high breakdown value, MAD has only 37% Gaussian efficiency in symmetric

distributions. More efficient alternative for MAD with 50% breakdown point

is discussed by Rousseeuw and Croux (1993). A pairwise distance estimator

Qn(X) = 2.2219 {|xi − xj| ; i < j}(k) where k ≈ (n
2)
4

is one of the alternative to

MAD. Another reliable substitute for MAD is

Sn(X) = 1.1926 med
i

med
j
|xi − xj|

where med stands for low median ([n+1
2

]th order statistic) for outer median and

high median (([n
2
] + 1)th order statistic) for inner median and 1.1926 is the con-

sistency factor for normal distributions. Sn estimator of scale assures bounded

influence function and optimal breakdown point 50%. Even though Sn is less

efficient than Qn, Sn is more applicable because of its low gross error sensitivity.

Thus, Sn is more robust than Qn (Rousseeuw and Croux 1993).

Thus, classical covariance estimator is defined as

Consider the bivariate random variable (X, Y ) and let (X1, Y1), (X2, Y2), ..., (Xn, Yn)

be n independent observations of (X, Y ). Then X̄ =
∑n

i=1Xi and Ȳ =
∑n

i=1 Yi

are the sample means of X and Y respectively. Empirical covariance between X

and Y is defined as

̂COV (X, Y ) = (n− 1)−1
n∑

i=1

(Xi − X̄n)(Yi − Ȳn) (3.1)

It is clear that, ̂COV (X, Y ) is highly influenced by the presence of outliers which

decreases its breakdown point 1/n. Asymptotically it will become zero.

The location free covariance estimator proposed by Sajana and Sajesh (2019),

71



denoted as SnCov(X, Y ) is defined as follows

SnCov(X, Y ) = med
i
{med
j 6=i

[(xi − xj) (yi − yj)]} (3.2)

where 1 6 i, j 6 n and med stands for low median ([n+1
2

]th order statistic). The

square of consistency factor (1.1926) of Sn(x) can be multiplied to SnCov(X, Y )

in order to get consistency at normal distribution. The repeated use of me-

dian was introduced by Tukey (1977) and it is applied in estimation of linear

regression by Siegel (1982). Clearly, the defined robust covariance estimator is

designed on the basis of repeated median idea. Due to lemma by Siegel (1982),

repeated median values are bounded. Further properties of proposed estimators

are discussed below.

Assume that {zi = (xi, yi); i = 1, ...n} are independent observations from a

Euclidean space X with common distribution L = F ×G (F and G are distribu-

tion functions of X and Y respectively). Define a kernel function u : X×X→ R

where u(zi, zj) = (xi − xj)(yi − yj). Let T1 and T2 be sample medians. For

each z, let U(z) = T1(Hz(t)) and θ = T2(H) where Hz(t) and H are distribution

functions u(z, Z) and U(Z) respectively. Here, θ be the covariance that need to

estimate. For estimating θ, first estimate U(zi) by Û(zi) = T1(Hzi,n−1(t)), where

Hzi,n−1(t) is the empirical distribution of {u(zi, zj); j 6= i, i fixed}. Then put

θ̂n = T2(Hn), where Hn is the empirical distribution of Û(z1), ..., Û(zn).

Now, define the distribution function Hz(t) i.e,

Hz(t) = P (u(z, Z) ≤ t) = 1−
∫ x

−∞

∫ y− t
x−x′

−∞
l(x′, y′)d(y′)d(x′)−

∫ ∞

x

∫ ∞

y− t
x−x′

l(x′, y′)d(y′)d(x′)

(3.3)

where l is the density function of L

Lemma 1. If X and Y are independent and continuous with F−1(0.5) = G−1(0.5) =

0, then SnCov(X, Y ) = 0
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Proof. Since X and Y are independent

Hz(t) = 1−
∫ x

−∞
G(y − t

x− x′ )dF (x′)−
∫ ∞

x

[1−G(y − t

x− x′ )]dF (x′) (3.4)

Here, U(z) solves for Hz(U) = 0.5. By (3.4), and since

sgn(F (t)− 0.5) = sgn(G(t)− 0.5) = sgn(t)

where sgn(t) = −1 if t < 0, = 0 if t = 0 and = 1 if t > 0

Hz(0) = 1− F (x)G(y)− (1− F (x))(1−G(y)) < 0.5, if sgn(xy) > 0

= 0.5, if sgn(xy) = 0

> 0.5, if sgn(xy) < 0

Hence, based on the similar arguments that of Hössjer et al. (1992), sgn(U(z)) =

sgn(xy).

Also

H(0) = P (sgn(xy) ≤ 0) = 1− F (0)G(0)− (1− F (0))(1−G(0)) = 0.5

This follows,

H−1(0.5) = med
Z∼L

U(Z) = 0

SnCov(X, Y ) = 0

Considering the two equalities in lemma 1.1 and 1.3 by Falk (1997), it is clear

that Sn(aX + b) = |a|Sn(X) and SnCov(X, Y ) = aSn(X)2 when Y = aX + b

where a, b ∈ R. Let X = Y , SnCov(X,X) = Sn(X)2, this states that Sn is

a special case of SnCov. Moreover SnCov is symmetric, location invariant and
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scale equivariant, i.e.

SnCov(X, aY + b) = aSnCov(X, Y ) = aSnCov(Y,X)

A robust location free alternative to the coefficient of correlation ρ =
COV (X, Y )

σxσy
is therefore the Sn correlation is denoted by ξ(X, Y ) is defined as

ξ = ξ(X, Y ) =
SnCov(X, Y )

Sn(X)Sn(Y )

By lemma 1, if X and Y are independent and symmetric ξ(X, Y ) = 0. Similarly

in the case where there is complete dependence i.e Y = aX + b for bivariate

normal random variable ξ(X, Y ) = sgn(a), almost surely. Hence, ξ ∈ {−1, 1}.

3.3 Performance Analysis

Sn correlation is using simulation study. Also the method is applied on real life

dataset to check the efficiency of the proposed method in real life situation.

3.3.1 Simulation Study

Croux and Dehon (2010) compared nonparametric correlation coefficient esti-

mation using finite sample variances. Finite sample efficiencies are estimated

through Mean Square Error (MSE) and it is defined as

MSE =
1

k

k∑

i=1

(ρ̂− ρ)2 (3.5)

where ρ̂ is the estimated correlation coefficient.

The same parameter is adopted to compare the proposed method with other

similar method. Sn correlation is compared with Gnanadesikan-Kettenring cor-

relation coefficient proposed by Gnanadesikan and Kettenring (1972), correlation
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median suggested by Gnanadesikan and Kettenring (1972) and classical correla-

tion coefficient. Gnanadesikan and Kettenring (1972) defined the robust corre-

lation coefficient as

rσ̃ =
σ̃2(v1)− σ̃2(v2)

σ̃2(v1) + σ̃2(v2)

where v1 = (X/σ̃(X) +Y/σ̃(Y ))/
√

2, v2 = (X/σ̃(X)−Y/σ̃(Y ))/
√

2 and σ̃ is the

robust estimators of scale.

Shevlyakov and Smirnov (2011) substituted MAD, Sn and Qn for σ̃ in

Gnanadesikan-Kettenring correlation estimator and compare the efficiencies. The

corresponding robust estimators of correlation coefficients are denoted by rMAD,

rSn and rQn . This study includes these three estimates of robust correlation

coefficient for the comparison.

The following simulation aims to give a performance evaluation of robust

correlation coefficient defined using proposed covariance estimator. The MSE of

proposed estimator is compared with the robust correlation coefficients discussed

in Shevlyakov and Smirnov (2011), correlation median established by Falk (1997)

and the classical coefficient of correlation r.

The simulation is preformed for k = 10000, ρ = 0.8 and different sample sizes

n. The results are presented in Table 3.1, Table 3.2 and Table 3.3. Table 3.1

shows the empirical n∗ MSEs of various estimators for datasets without outliers.

The simulation is performed with varying amount of contamination and the

results for 10% and 30% contamination is presented in Table 3.2 and Table 3.3

respectively. The results are similar in other cases as well. Table 3.1 shows that

error of ξ is less for small sample sizes as compared to correlation median. On

small and large sample sizes, classical coefficient of correlation r is the best for

symmetric samples. From Table 3.2, it is clear that in contaminated situation

the proposed method perform better than the other methods when n > 50 for

large percentage of contamination.
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Table 3.1: n∗MSE in Symmetric distribution

n

20 50 100 200 1000

Correlation median 1.825 2.17 2.465 4.040 10.333
ξ 1.200 1.54 2.241 5.431 16.312
rMAD 0.778 0.502 0.432 0.389 0.366
rSn 0.462 0.293 0.246 0.238 0.248
rQn 0.326 0.206 0.176 0.175 0.164
r 0.173 0.151 0.135 0.137 0.133

Table 3.2: n∗MSE in Symmetric distribution with 10% outlier

n

20 50 100 300 1000

Correlation median 1.427 1.532 1.721 1.898 5.123
ξ 0.859 0.951 1.143 1.585 3.648
rMAD 0.661 0.418 0.398 0.459 1.729
rSn 0.432 0.276 0.331 0.546 2.906
rQn 0.278 0.236 0.375 0.732 3.875

Table 3.3: n∗MSE in Symmetric distribution with 30% outlier

n

20 50 100 300 1000

Correlation median 0.788 1.190 1.485 2.444 5.673
ξ 0.741 0.745 0.767 0.889 1.734
rMAD 0.529 0.598 1.176 4.345 17.038
rSn 0.439 0.643 1.416 5.330 19.645
rQn 0.288 0.608 1.393 4.857 17.203

76



3.3.2 Example

To understand the performance of correlation coefficient based on SnCov, estima-

tion is conducted for real life dataset. Anscombe’s data consists of four bivariate

dataset with different pattern of association has been described by Anscombe

(1973) and the dataset is available R package. Two datasets consists of 12 ob-

servations are chosen from Anscombe data are used for evaluate the proposed

estimator in real situation. These data consists of 12 observations, the scatter

plot for these datasets are presented in Figure 3.1. The proposed correlation

coefficient estimates are of datasets a and b are 0.35 and 1 respectively.

(a) (b)

Figure 3.1: Scatter plot of Anscombe Data

3.4 Summary

An efficient alternative for robust covariance estimator on the basis of repeated

median is investigated. Covariance based on Sn estimator motivates to realize

that it is a nested L-estimator. A non parametric measure of covariance and co-

efficient of correlation are proposed through this chapter. The SnCov(X, Y ) sat-

isfies characteristic of sample covariance in independent and symmetric random

variables. The proposed estimator assures location invariant and scale equivari-

ant properties as well. The efficiency of Sn correlation is greater than median

correlation in terms of MSE. The error estimate of Sn correlation is lower than

that of rQn for large samples in contaminated situations. The proposed correla-
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tion estimator is also applied in real dataset to prove the robustness of the esti-

mator. This specifies that Sn correlation is more resistant than other estimates

to the presence of outliers in the large sample cases. The direct generalization

of proposed method to higher dimension is not be possible as the corresponding

covariance matrix may not be positive definite. But an orthogonalization similar

to that of developed by Maronna and Zamar (2002) may be helpful in *higher

dimensional cases.
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Chapter 4

Multidimensional Outlier
Detection and Robust

Estimation Using Sn Covariance1

4.1 Introduction

A multivariate outlier is an inconsistent combination of measurements of more

than one variable. Application of univariate outlier detection methods in mul-

tivariate data may identify extreme observations in individual variables. An

extensive use of univariate method to detect multivariate outliers may not be

adequate, since it does not take in to account the relation among variables. In

order to detect multivariate outliers, the distance from the center of mass and

covariance structure must be equally considered. Mahalanobis Distance (MD)

established by Mahalanobis (1936) is a multivariate measure of distance which

consider deviation of observation from mean vector.

Mean vector and dispersion matrix are the only components of MD. Max-

imum likelihood estimates of these parameters are sensitive to the presence of

outliers in the dataset. Hence substitution of these estimate in MD is inap-

propriate for outlier detection. For the purpose of outlier detection a Robust

Mahalanobis Distance (RMD) is to be produced by employing robust estimates

of the location and scatter parameters. Various methods have been introduced

1Some part of this chapter is based on Sajana and Sajesh (2020)
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for robust estimation of location and dispersion of multivariate data in litera-

ture. Minimum Volume Ellipsoid (MVE) and Minimum Covariance Determi-

nant (MCD) are introduced by Rousseeuw (1985) are widely accepted methods

for robust estimation. MVE is based on the computation of minimum volume

ellipsoid containing at least h = [n/2] + 1 of the observations of the data, where

n is the number of samples. MCD searches for smallest covariance determinant

which encompasses at least half of the data points. FAST-MCD was proposed

by Rousseeuw and Van Driessen (1999) as an improved version of MCD. But

it still needs substantial time for detection when the number of dimensions are

more. Peña and Prieto (2001) and Peña and Prieto (2007) established Kurto-

sis algorithm for robust estimation. This method consists of maximization and

minimization of projection of kurtosis coefficients based on some directions gen-

erated using stratified random sampling. This procedure also has some limita-

tions in high dimensions and correlated samples. Orthogonalized Gnanadesikan-

Kettenring (OGK) estimator introduced by Maronna and Zamar (2002) used a

robust covariance matrix defined by Gnanadesikan and Kettenring (1972) which

is non-positive semi definite and not an affine-equivariant. This method con-

tains an orthogonalization technique which makes the covariance matrix positive

definite and affine-equivariant. Similar type of orthogonalization is adopted by

Sajesh and Srinivasan (2012) in the Comedian approach for multivariate outlier

detection. In the context of psychological science, Leys et al. (2018) proposed a

Robust Variant Mahalanobis Distance (RVMD) method for multivariate outlier

detection. The RVMD method constitutes the MCD with two threshold val-

ues for detecting multivariate outliers in the data and both act differently for

various contamination levels. An extension of median into a multidimensional

situation is applied by Sajana and Sajesh (2018b) in detecting multivariate data.

They proposed a multivariate outlier detection using Spatial Median(SM) and

the performances of method is limited to small percentage of contamination in
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the data. The recommended ratio of n and p is n > 5p for the performance of

MCD, in order to rectify this restriction, Boudt et al. (2019) proposed Minimum

Regularized Covariance Determinant(MRCD) method that regularize h− subset

based on a predetermined positive definite target matrix.

In this chapter, a robust distance based approach is proposed using RMD. A

multivariate version of the robust SnCov proposed by Sajana and Sajesh (2019)

and variable wise median are used for the computation of RMD (Sajana and

Sajesh, 2020). The efficiency of proposed outlier detection method is measured

through simulation studies. Robustness properties of this method is tested using

theoretical and empirical approaches. Methods which are popularly known for

multivariate outlier detection like Comedian, Kurtosis, FAST-MCD, OGK, SM

method, RVMD and MRCD are compared with the proposed method.

4.2 Multidimensional Expansion of SnCov

Let X be a n × p data matrix with independent observations xTi = {x1, ..., xn}

and columns Xj(j = 1, ...p) the covariance matrix based on SnCov is defined as

COVSn(X) = (SnCov(Xi, Xj)) , i, j = 1, 2, ..., p (4.1)

Corresponding correlation matrix of COVSn denoted by ξSn is defined as

ξSn(X) = DCOVSn(X)DT (4.2)

where D is diagonal matrix with diagonals 1/Sn(xi), i = 1, ..., p

Since SnCov is a robust alternative for classical bivariate covariance, it is

possible to state that COVSn is a robust alternative to covariance matrix. Ba-

sically, this matrix is non-positive semi definite. In order to solve non-positive

semi definiteness, a procedure implemented by Maronna and Zamar (2002) to

obtain positive definite and approximately affine equivariant scatter estimates is
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adopted. To obtain positive definite dispersion matrix and robust estimates, the

following steps are applied.

1. Define matrix E with columns ej for j = 1, ..., p, where ej is the eigenvector

corresponding to eigenvalue λj of correlation matrix ξSn . Hence ξSn can be

written as ξSn = EΛET , where Λ = diag(λ1, ..., λp)

2. Let R = D−1E and zi = R−1xi. Then assume that zTi (i = 1, ..., n) and

Zj(j = 1, ..., p) are rows and columns of orthogonalized matrix Z.

3. The resulting robust estimates for location vector Lr(X) and scatter matrix

Cr(X) in the following way,

mr(X) = Rν (4.3)

Cr(X) = RΓRT (4.4)

where ν = (med(Z1), ...,med(Zp))
T and Γ = diag(Sn(Z1)

2, ..., Sn(Zp)
2) here

med stands for median and Sn is the robust scale estimate. This process can be

iterated to improve estimates by replacing ξSn with the form of Cr.

Then squared RMD on the basis of robust estimates is defined as

RMD(xi,mr,Cr) = rmdi = (xi −mr)
TC−1r (xi −mr), i = 1, ..., n (4.5)

where mr and Cr are defined in (4.3) and (4.4) respectively. Decision regarding

cutoff value is one of the significant task in outlier detection. In order to increase

the performance of proposed method an adjusted cutoff is considered for different

regions of dimensions i.e,

cv =





bχ2
(0.95,p) if p < 15

χ2
(0.95,p)med(rmd1, ..., rmdn)

χ2
(0.5,p)

if p > 15
(4.6)
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Thus, an xi observation is identified as an outlier if RMD(xi,mr,Cr) > cv.

A positive definite and robust estimate can be formulated by a weight function

on the basis of RMD and cv. Here b is a constant which takes value 1 if p ≤ 5

and 2.5 if p > 5. The resulting method of multivariate outlier detection using

COVSn can be represented as Sn method of outlier detection.

4.3 Simulation

The effectiveness of proposed Sn method is tested through a series of simulation

processes and later experimented with real datasets. Masking and swamping are

the two errors occurring while detecting possible outliers. Two aspects of outlier

identification are assayed i.e, rate of successful complete detection of contained

outliers which is expressed by Rate of Successful Detection (RSD) and Rate of

False Detection (RFD) indicating rate of detection of inliers as outliers. Sajesh

and Srinivasan (2012) presented Comedian method and found out that it is better

than Kurtosis, FAST-MCD and OGK with RSD and RFD. In this article, the

proposed method is compared with Comedian and other methods.

To create a data contaminated with outliers, 100(1−γ) observations are gen-

erated from N(0, I) distribution with dimension p for a given level of contam-

ination γ and 100γ observations are replaced by N(δa, λI) distribution, where

a represents the vector (1, ..., 1)T and I the identity matrix. The test is under-

taken for different choices of dimensions p (p = 5, 10, 20) and contamination level

γ (γ = 0.1, 0.2, 0.3). For determining the ability to identify minor disparities in

data, the experiment is performed for small deviations of δ (δ = 5, 10) and λ

(λ = 0.01, 0.25, 1).

Table 4.1 and Table 4.2 shows the RSD values of Sn, Comedian, Kurtosis,

FAST-MCD, OGK, SM method, RVMD and MRCD for δ = 5 and δ = 10 re-

spectively. Some comparable situation of Comedian method presented by Sajesh

and Srinivasan (2012) is chosen to produce this table. The rates from the table
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shows that Sn method works better than Comedian and Kurtosis apart from two

cases (p = 10, γ = 0.3, δ = 5, λ = 1 and p = 20, γ = 0.3, δ = 5, λ = 0.01 ). Table

4.3 and Table 4.4 exhibits maximum RFD values in all combinations, comparison

of Sn method with other outlier detection methods for location sifts δ = 5 and

δ = 10 respectively. All the combinations of values explained in simulation part

are considered for the maximum RFD estimation. In all the cases, Sn method

performed better than rest of the methods with zero RFD.

Table 4.1: RSD Comparison

δ = 5

p λ γ Sn method Comedian Kurtosis FAST-MCD OGK SM RVMD MRCD
5 0.25 0.1 100 100 100 100 100 100 100 100

0.2 100 100 100 100 100 100 99 100
0.3 95 95 98 60 81 86 0 0

0.01 0.1 100 100 100 100 100 100 100 100
0.2 100 100 99 39 100 100 99 100
0.3 99 70 99 0 34 94 0 0

1 0.1 100 100 100 100 100 100 100 100
0.2 100 100 98 100 100 100 100 100
0.3 100 100 97 100 83 71 0 0

10 0.25 0.1 100 100 100 100 00 100 100 100
0.2 100 100 100 41 100 100 57 100
0.3 100 99 79 0 99 41 0 0

0.01 0.1 100 100 100 100 100 100 100 100
0.2 100 100 99 0 100 100 100 100
0.3 100 83 91 0 38 56 0 0

1 0.1 100 100 100 100 100 100 100 100
0.2 100 100 75 100 100 100 100 100
0.3 97 99 21 99 100 51 0 0

20 0.25 0.1 100 100 100 95 100 100 100 100
0.2 100 100 90 0 100 75 3 100
0.3 100 100 3 0 100 0 0 0

0.01 0.1 100 100 100 0 100 78 42 100
0.2 100 100 85 0 100 81 0 100
0.3 88 99 0 0 52 0 0 0

1 0.1 100 100 49 100 100 52 100 100
0.2 100 100 1 100 100 58 100 100
0.3 100 100 0 2 100 0 97 0

4.3.1 Simulation in correlated data

The behavior of Sn method in correlated data is analyzed because of its lack

of affine-equivariance. Devlin et al. (1981) applied a correlation matrix P of
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Table 4.2: RSD Comparison

δ = 10

p λ γ Sn method Comedian Kurtosis FAST-MCD OGK SM RVMD MRCD

5 0.25 0.1 100 100 100 100 100 100 100 100
0.2 100 100 100 100 100 100 100 100
0.3 100 100 100 100 100 100 0 0

0.01 0.1 100 100 100 100 100 100 100 100
0.2 100 100 100 100 100 100 100 100
0.3 100 100 100 0 100 100 0 0

1 0.1 100 100 46 100 100 100 100 100
0.2 100 100 1 100 100 100 100 100
0.3 100 100 0 100 100 100 0 0

10 0.25 0.1 100 100 100 100 100 100 100 100
0.2 100 100 100 100 100 100 100 100
0.3 100 100 90 0 100 99 0 0

0.01 0.1 100 100 100 100 100 100 100 100
0.2 100 100 100 0 100 100 74 100
0.3 100 100 92 0 100 98 0 0

1 0.1 100 100 100 100 100 100 100 100
0.2 100 100 100 100 100 100 100 100
0.3 100 100 38 100 100 99 0 0

20 0.25 0.1 100 100 100 100 100 52 100 100
0.2 100 100 92 0 100 99 1 100
0.3 100 100 2 0 100 30 0 0

0.01 0.1 100 100 100 86 100 100 100 100
0.2 100 100 94 0 100 100 0 100
0.3 100 100 3 0 100 46 0 0

1 0.1 100 100 46 100 100 100 100 100
0.2 100 100 1 100 100 99 100 100
0.3 100 100 0 2 100 24 97 0

dimension p (p = 6) for generating Monte Carlo data from different distributions.

The correlation matrix P = ((ρij)) has the form

P =




P1 0

0 P2


where P1 =




1 0.95 0.30

0.95 1 0.10

0.30 0.10 1



, P2 =




1 −0.499 −0.499

−0.499 1 −0.499

−0.499 −0.499 1




The dimension of correlation matrix is large enough to study the multivari-

ate estimate. Here the range of correlation is high that helps to investigate the

capability of this method to identify the outliers in highly correlated dataset.

Asymmetrical datasets of size 100 is generated which includes 100(1− γ) obser-

vation from N(0,P) and 100γ observation from N(5a,P) , where a = (1, ..., 1)T .

The RFD values for proposed method in correlated data are presented in Ta-

ble 4.5. The results in Table 4.5 shows that, RFD of Sn method is zero i.e the
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Table 4.3: RFD Comparison

δ = 5

λ p γ Sn method Comedian Kurtosis FAST-MCD OGK SM RVMD MRCD

0.01 5 0.1 0 4 7 17 15 0 15 15
0.2 0 5 7 41 10 0 23 5
0.3 0 4 5 51 10 0 31 25

10 0.1 0 4 6 22 16 0 60 15
0.2 0 6 42 44 13 0 68 5
0.3 0 3 45 54 7 0 70 25

20 0.1 0 1 10 39 18 0 90 15
0.2 0 3 40 47 12 0 80 5
0.3 0 3 40 63 12 5 70 15

0.25 5 0.1 0 3 5 18 16 0 15 15
0.2 0 2 5 11 11 0 13 5
0.3 0 2 5 32 7 0 25 25

10 0.1 0 2 5 24 20 0 61 15
0.2 0 2 7 36 10 0 67 5
0.3 0 2 31 40 9 0 62 25

20 0.1 0 1 9 38 16 0 90 15
0.2 0 2 13 39 10 0 80 5
0.3 0 1 39 40 7 0 70 19

1 5 0.1 0 3 6 14 15 0 15 15
0.2 0 2 6 9 13 0 13 5
0.3 0 2 6 7 7 0 13 25

10 0.1 0 2 9 23 16 0 59 15
0.2 0 2 6 15 13 0 50 5
0.3 0 2 6 13 7 0 44 25

20 0.1 0 2 8 28 16 0 90 15
0.2 0 1 5 18 12 0 80 5
0.3 0 1 4 27 8 0 70 7

proposed method is free from false detection of inliers as outliers.

4.3.2 Equivariance

This section discuss about the equivariance property of proposed method by

simulated data. Equivariance study is significant to the proposed method as the

initial estimate of dispersion is not equivariant. Consider a multidimensional

random variable X = {x1, ...xn} with each x ∈ Rp. Let XA = {Ax1, ...Axn}

where A is p× p nonsingular matrix. If the estimates of location and scatter are

affine-equivariant, then

mA = m(XA) = Am(X) and CA = C(XA) = AC(X)AT
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Table 4.4: RFD Comparison

δ = 10

λ p γ Sn method Comedian Kurtosis FAST-MCD OGK SM RVMD MRCD

0.01 5 0.1 0 3 9 18 11 0 16 15
0.2 0 6 7 12 12 0 14 5
0.3 0 4 5 47 7 0 33 25

10 0.1 0 2 7 23 19 0 59 15
0.2 0 5 5 42 11 0 67 5
0.3 0 5 45 56 9 0 68 2

20 0.1 0 1 8 38 16 0 90 15
0.2 0 3 40 47 14 0 80 5
0.3 0 3 40 61 7 2 70 25

0.25 5 0.1 0 5 7 13 14 0 15 15
0.2 0 3 6 12 10 0 13 5
0.3 0 2 5 8 6 0 11 25

10 0.1 0 2 8 21 17 0 46 15
0.2 0 2 7 15 13 0 52 5
0.3 0 4 24 37 7 0 61 6

20 0.1 0 1 8 28 19 0 90 15
0.2 0 1 14 39 12 0 80 5
0.3 0 1 40 41 9 0 70 25

1 5 0.1 0 3 6 19 14 0 15 15
0.2 0 2 6 10 11 0 13 5
0.3 0 2 6 7 8 0 11 2

10 0.1 0 2 6 23 18 0 63 15
0.2 0 3 6 18 10 0 44 5
0.3 0 1 7 9 7 0 47 25

20 0.1 0 2 9 28 14 0 90 15
0.2 0 1 5 19 11 0 80 5
0.3 0 1 4 30 7 0 70 25

Table 4.5: RFDs of Sn method in correlated samples

γ Sn method Comedian Kurtosis FAST-MCD OGK SM RVMD MRCD

0.1 0 7 10 19 17 2 18 25
0.2 0 4 4 14 11 0 19 25
0.3 0 2 5 7 6 1 25 25

The Mahalanobis distance of XA from mA based on CA holds affine-equivariance

property if both the location and scatter are affine-equivariant. Maronna and

Zamar (2002) generated a random matrices as A = TD where T is a random

orthogonal matrix and D = diag(u1, ..., up), where uj’s are independent and

uniformly distributed in (0, 1).

87



Simulation of untransformed data has been repeated to investigate the per-

formance of proposed method under transformation. Each data matrix is trans-

formed by multiplying random non-singular matrix. The proposed method is

then applied to the transformed data matrix to detect outlier. The experiment

is conducted to different values of p (p = 5, 10, 20) and contamination level γ

(γ = 0.1, 0.2, 0.3). Table 4.6 shows simulated results under transformed data

and it could be observed that the Sn method is able to detect all the outliers in

the dataset, except for some stray situations.

4.3.3 Breakdown value of Sn method

Maximum proportion of outlier that an estimator can safely tolerate before giving

incorrect estimate is termed as breakdown value. Similarly, the breakdown value

of an outlier detection method could be defined as the maximum proportion (γ∗)

of outliers that the method can precisely identify. Clearly, if γ > γ∗ the method

fails to detect majority of the outliers and faultily spot the inliers as outliers or

decreases RSDs and increases RFDs. Hence, it is relevant to use RSD and RFD

for examining the breakdown value of an outlier detection method.

The experiment to find the breakdown value of Sn method contains generation

of symmetrically and asymmetrically distributed contaminations. At first, data

of size n is simulated from N(0, I) with dimension p. Then symmetric outliers are

inserted by multiplying ith observation with 100i. For asymmetric contamination

ith observation was replaced by (100i)1, where 1 = (1, ...1). Different values of

p (p = 10, 30, 50, 80, 100) and γ (γ = 10, 20, 30, 40, 48) were chosen to determine

empirical breakdown value of Sn method. The results for selected sample size

n = 1000 are presented in Table 4.7. This empirical experiment shows 100%

RSD and 0 RFD.
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Table 4.6: RSDs and RFDs of Sn method in transformed data

δ = 5 δ = 10

λ p γ RSD RFD RSD RFD

0.01 5 0.1 100 0 100 0
0.2 100 0 100 0
0.3 99 0 100 0

10 0.1 100 0 100 0
0.2 100 0 100 0
0.3 100 0 100 0

20 0.1 100 0 100 0
0.2 100 0 100 0
0.3 100 0 100 0

0.25 5 0.1 100 0 100 0
0.2 100 0 100 0
0.3 88 0 100 0

10 0.1 100 0 100 0
0.2 100 0 100 0
0.3 100 0 100 0

20 0.1 100 0 100 0
0.2 100 0 100 0
0.3 84 0 100 0

1 5 0.1 100 0 100 0
0.2 100 0 100 0
0.3 100 0 100 0

10 0.1 100 0 100 0
0.2 100 0 100 0
0.3 100 0 100 0

20 0.1 100 0 100 0
0.2 100 0 100 0
0.3 100 0 100 0

4.4 Real Dataset

The efficacy of proposed method in real dataset is explained in this section.

Bushfire data is considered for studying real data application and it was collected

by Campbell (1989) which consist of satellite measurement on 5 frequency bands

each corresponding to 38 pixels. The Bushfire dataset is also openly available at

https:// vincentarelbundock.github.io/ Rdatasets/datasets.html. Maronna and
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Table 4.7: Empirical results for breakdown value

Symmetric Asymmetric

p γ RSD RFD RSD RFD

10 10 100 0 100 0
20 100 0 100 0
30 100 0 100 0
40 100 0 100 0
48 100 0 100 0

30 10 100 0 100 0
20 100 0 100 0
30 100 0 100 0
40 100 0 100 0
48 100 0 100 0

50 10 100 0 100 0
20 100 0 100 0
30 100 0 100 0
40 100 0 100 0
48 100 0 100 0

80 10 100 0 100 0
20 100 0 100 0
30 100 0 100 0
40 100 0 100 0
48 100 0 100 0

100 10 100 0 100 0
20 100 0 100 0
30 100 0 100 0
40 100 0 100 0
48 100 0 100 0

Yohai (1995) analyzed the dataset and concluded that observations 7-11 are

outlying and they can be easily identified by various robust methods. But, the

observations 32-38 are masked by the first group of outliers and Stahel-Donoho

projection estimator implemented by Maronna and Yohai (1995) does not get

effected by this error. Outliers in bushfire data are identified using Sn method,

Comedian, Kurtosis, FAST-MCD, OGK, SM method, RVMD and MRCD and

the diagnostic plot is presented in Figure 4.1. From the figure, it can be see that

the Sn method is able to detect observations 7-11 and 31-38 as possible outliers
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and it has relatively better result with less swamping error. In the case of other

methods, Comedian method identified 8-9 and 30-38 as outliers. kurtosis method

observed that sample 30 and FAST-MCD method indicated that observation 29

are additional outliers. According to OGK method, it is found that sample 28

is also a deviated observation. In addition to Sn method, SM method is able to

detect the possible outliers. But RVMD and MRCD are only capable of detecting

few outliers presented in the dataset.

4.5 Summary

Outlier detection is a significant part of data preprocessing since it could influence

the inferences of analysis. An alternative method to detect multivariate outliers

on the basis of repeated median covariance matrix is presented through this

chapter. The effectiveness of the method is discussed and compared with well-

known methods comedian, kurtosis FAST-MCD, OGK, SM method, RVMD and

MRCD.

The simulation study is executed and explained in different possible choices

of parameters. Simulation results of RSD and RFD shows that the proposed

method performed better than Kurtosis, FAST-MCD, SM method, RVMD and

MRCD. In the case of comparison with comedian and OGK, the proposed method

appeared better in RSD measurements except some rare cases. But it outper-

formed in RFD values. To understand the capability of proposed method in

collinear data, highly correlated data is generated in specific dimension. The

RFDs presented here reflects low swamping error of Sn method in correlated

data. Affine-equvariance property of the method is also tested beacause of lack

of equivariance of COVSn . RSDS and RFDS seems similar in both affinely

transformed and untransformed data. Symmetrically and asymmetrically con-

taminated datasets are generated to estimate the breakdown value of proposed

method. The simulation result of breakdown value shows that, the method is ro-

91



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.1: Outlier detection plot for Bushfire data.(a) Sn method, (b) Comedian,
(c)Kurtosis, (d) FAST-MCD, (e) OGK, (f) SM, (g) RVMD, (h) MRCD
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bust even under highly contaminated situations. In the real datasets SM method

performed equivalent to Sn method, but performance of SM method in simulated

datasets are less uncompromisable. The R Programming code for performing Sn

method is provided in the Appendix B. The application of proposed method in

real dataset reflects its effectiveness of simulated result by detecting possible out-

liers with low swamping. Hence, Sn method can apply in multivariate datasets

for cleansing multiple outliers with minimum errors.
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Chapter 5

Robust Quadratic Discriminant
Analysis Using Sn covariance

5.1 Introduction

Discriminant Analysis (DA) is the multivariate technique that allows separating

random objects into known groups of the population. The theory of discrimi-

nant function was introduced by Fisher (1936) for implementing the treatment

of multiple measurements. The discriminant analysis can be considered as a

statistical decision-making problem (Anderson 2004). The objective of discrim-

inant analysis is the formulation of classification rules based on several training

dataset and these determined rules are applied to classify the actual dataset.

Discriminant analysis method includes Linear Discriminant analysis (LDA) and

Quadratic Discriminant Analysis (QDA) for the assumptions according to equal

and unequal population covariance matrices.

The classical methods of discriminant rules are often adopted to allocate

multivariate observations to population groups and these are functions of sam-

ple mean vector and covariance matrix of the training dataset. Unfortunately,

traditional rules are influential to outlying observations in the dataset which

can mislead the classification of actual data. To overcome this situation, a ro-

bust alternative that is less sensitive to the presence of outlying observations are

required for the estimation of parameters of discriminant rules.
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Several multivariate robust estimation methods have been applied in litera-

ture for constructing robust quadratic discriminant rules. Robust quadratic and

linear discriminant analysis using MCD estimators was investigated by Hubert

and Van Driessen (2004). They showed that the reweighting technique applied

in MCD decreases the misclassification probabilities.Kurtosis method proposed

by Peña and Prieto (2001) was implemented by Lakshmi and Sajesh (2018) in

robust estimation of QDA parameters. Sajesh and Srinivasan (2019) developed

robust QDA using comedian method and presented that the method is better

than that of robust QDA using MCD and classical QDA.

This chapter focuses on the study of Robust Quadratic Discriminant Analysis

(RQDA) using the robust location and scatter based on Sn method discussed

in the previous chapter. The effect of robust quadratic discriminant rules is

investigated by comparing the overall misclassification estimate (MP) proposed

by Hubert and Van Driessen (2004). The proposed robust QDA is compared

with classical estimators and the RQDA’s proposed by Hubert and Van Driessen

(2004) and Sajesh and Srinivasan (2019), to test the efficiency of the method.

Moreover, real data applications are illustrated to ensure the performance of

proposed RQDA in real life situations.

5.2 Classical Quadratic Discriminant Analysis

The theoretical generalization of classification procedure for discrimination with

several groups of population π1, ..., πk can be explained by considering the den-

sity fi(x) associated with population πi to be multivariate normal with mean

vectors µi and covariance matrices Σi (Johnson and Wichern 1992). The de-

rived discriminant rule for allocating the multivariate observation x ∈ Rp to lth

population group is defined as

96



allocate x to πl if

ln plfl(x) = ln pl −
p

2
ln(2π)− 1

2
ln |Σl| −

1

2
(x− µl)TΣ−1l (x− µl) (5.1)

where pi be the membership probability of population group πi. The above dis-

criminant rule can be simplified by ignoring the constant term, then the quadratic

discriminant score will be

dQi (x) = −1

2
ln |Σi| −

1

2
(x− µi)TΣ−1i (x− µi) + ln pi for i = 1, 2, ..., k (5.2)

It is applied to find the discriminant rule with least total misclassification prob-

ability for normal population (Johnson and Wichern 1992). The discriminant

rule is derived as

allocate x to πl if

dQl x = max{dQ1 (x), dQ2 (x), ..., dQk (x)} (5.3)

The quadratic discriminant score is reduced for the homogeneous population

covariance matrices, it will be a linear combination of components of x. Therefore

the linear discriminant score is defined as

dLi (x) = µTi Σ−1x− 1

2
µTi Σ−1µi + ln pi for i = 1, 2, ..., k (5.4)

Practically, the scores are embodied of unknown parameters, µi, Σi and pi (mem-

bership probabilities). Thus, sample mean vector x̄i and sample covariance ma-

trix Si of training datasets are adopted to compute the discriminant score ex-

plained in equations 5.2. The estimated Classical Quadratic Discriminant Rule

(CQDR) or QDAC is then written as
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allocate x to πl if

dCQl x = max{dQ1 (x), dQ2 (x), ..., dQk (x)} (5.5)

where dQi x is defined as

d̂CQi (x) = −1

2
ln |Si| −

1

2
(x− x̄i)

TS−1i (x− x̄i) + ln p̂Ci for i = 1, 2, ..., k (5.6)

The unknown membership probability can be estimated as a constant, i.e p̂Ci =

1/k or can be estimated using relative frequencies of each population group, i.e

p̂Ci = ni/n where n =
∑k

i ni. Since the classical discriminant function directly

depends on the classical estimators of mean vector and covariance matrix of

training data which are highly influenced by the presence of outliers, classification

based on the classical discriminant function will be misleading. In order to solve

the disparity in discrimination of observation due the presence of outliers, it

is preferable to adopt robust estimators of mean vector and covariance matrix

in the classification rule. The robust quadratic discriminant rule based on Sn

estimators is described in the following section.

5.3 Robust Quadratic Discriminant Analysis

(RQDA)

The robust quadratic discriminant rule for RQDA is then defined as,

allocate x to πl if d̂RQl (x) > d̂RQi (x) for all i = 1, 2, ..., k

d̂RQi (x) = −1

2
ln |Σ̂i,Sn|−

1

2
(x− µ̂i,Sn)T Σ̂−1i,Sn

(x− µ̂i,Sn) + ln p̂Ri for i = 1, 2, ..., k

(5.7)

where µ̂i,Sn and Σ̂i,Sn are the estimates of mean vector and covariance matrix

using Sn method. The membership probability can be defined robustly by p̂Ri =

ñi/ñ, where ñ =
∑n

i=1 ñi and ñi is the number of inliers in the ith group. The

performances of the RQDA based on Sn method (RQDASn) is then evaluated
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using estimated MP proposed by Hubert and Van Driessen (2004). The MP is

defined as the weighted mean of the misclassification probabilities where weights

are estimated membership probabilities.

MP =
k∑

i=1

p̂Ri MPi (5.8)

where MPi be the misclassification probabilities. In this chapter the evaluation

of robust discriminant rules are conducted using R-programming language. To

ensure the performance of the proposed RQDASn is compared with the classical

discriminant analysis, RDA based on MCD estimator (Hubert and Van Driessen

2004) and the classical discriminant analysis, using simulated samples.

5.4 Simulation Results

The technique of MP includes splitting the observations randomly into two sets,

one is the training set which is utilized for constructing discriminant rule and

other set is the validation set which is used to estimate misclassification error.

The estimated MP values for different case of contamination is discussed below

The case Ap considers the uncontaminated data with dimension p where 500

observations from each population are drawn as training, which is denoted by

Ap.π1 : 500 Np(µ1,p,Σ1,p)

π2 : 500 Np(µ2,p,Σ2,p)

π3 : 500 Np(µ3,p,Σ3,p)

Training datasets which also contain outliers are samples from another dis-

tribution. These cases are given below.

Bp.π1 : 400 Np(µ1,p,Σ1,p) + 100 Np(6µ1p,Σ4,p)

π2 : 400 Np(µ2p,Σ2p) + 100 Np(6µ1,p,Σ4,p)

π3 : 400 Np(µ3,p,Σ3,p) + 100 Np(6µ2,p,Σ4,p)

Cp.π1 : 800 Np(µ1,p,Σ1,p) + 200 Np(6µ3,p,Σ4,p)
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π2 : 600 Np(µ2p,Σ2,p) + 150 Np(6µ1p,Σ4,p)

π3 : 400 Np(µ3,p,Σ3,p) + π3 : 100 Np(6µ2,p,Σ4,p)

Dp.π1 : 800 Np(µ1,p,Σ1,p) + 200 Np(6µ3,p,Σ4,p)

π2 : 400 Np(µ2,p,Σ2,p) + 100 Np(6µ1,p,Σ4,p)

π3 : 400 Np(µ3p,Σ3,p) + 100 Np(6µ2,p,Σ4,p)

Ep.π1 : 400 Np(µ1,p,Σ1,p) + 100 Np(6µ3,p,Σ4,p)

π2 : 450 Np(µ2p,Σ2,p) + 50 Np(6µ1,p,Σ4,p)

π3 : 350 Np(µ3,p,Σ3,p) + 150 Np(6µ2,p,Σ4,p)

Fp.π1 : 160 Np(µ1,p,Σ1,p) + 40 Np(6µ3,p,25Σ4,p)

π2 : 160 Np(µ2,p,Σ2,p) + 40 Np(6µ1,p,25Σ4,p)

π3 : 160 Np(µ3,p,Σ3,p) + 40 Np(6µ2,p,25Σ4,p)

where µi,p is the zero vector with ith element equal to 1. The different choices

of covariance matrix Σ.

Σ1,3 = diag(0.4, 0.4, 0.4)2

Σ1,5 = diag(0.4, 0.4, 0.4, 0.4, 0.4)2

Σ1,10 = diag(0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4)2

Σ1,10 = diag(0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4)2

Σ2,3 = diag(0.25, 0.75, 0.25)2

Σ2,5 = diag(0.25, 0.75, 0.25, 0.75, 0.25)2

Σ2,10 = diag(0.25, 0.75, 0.25, 0.75, 0.25, 0.75, 0.25, 0.75, 0.25, 0.75)2

Σ2,20 = diag(0.25, 0.75, 0.25, 0.75, 0.25, 0.75, 0.25, 0.75, 0.25, 0.75, 0.25, 0.75, 0.25, 0.75, 0.25, 0.75, 0.25, 0.75, 0.25, 0.75)2

Σ3,3 = diag(0.9, 0.6, 0.3)2

Σ3,5 = diag(0.9, 0.6, 0.3, 0.9, 0.6)2

Σ3,10 = diag(0.9, 0.6, 0.3, 0.9, 0.6, 0.3, 0.9, 0.6, 0.3, 0.9)2
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Σ3,20 = diag(0.9, 0.6, 0.3, 0.9, 0.6, 0.3, 0.9, 0.6, 0.3, 0.9, 0.6, 0.3, 0.9, 0.6, 0.3, 0.9, 0.6, 0.3, 0.9, 0.6)2

where diag stands for diagonal elements. Different situations of data con-

taminations are constructed using 20% outliers in Bp, Cp, Dp, Ep and Fp. From

these various cases of training datasets, the case Bp contains equal number of

observations and outliers. In the case of populations C and D, an unequal group

size is considered. A varying outlier percentages are tested in trial dataset E

and F. Each case is repeated for 100 Monte Carlo simulations and based on the

inliers identified by the Sn method is then used to calculate relative frequencies

of membership probabilities.

Table 5.1 and Table 5.2 respectively shows average of total misclassification

probabilities of 100 Monte Carlo experiments of each training groups and over

all misclassification for p = 10 and p = 20. The results tabulated on both

tables shows that the group wise misclassification probability and the over all

misclassification of RQDASn is less in all cases compared to RQDA MCD and

RQDAC . In comparison with RQDAComedian, RQDASn have less misclassification

measurements in most of the cases. In Table 5.2 the misclassification decreasing

rate increases for increse in the dimension as compared to RQDAComedian.

5.5 Real Life Example

First example of Hemophilia data is considered to evaluate the performance of

RQDASn in real life data. This data consists of measurements of two variables

on 75 women which contains, 45 hemophilia A carriers and 30 normal women,

where the first variable measures log(AHF activity) and second variable measures

log(AHF-like antigen). Johnson and Wichern (1992) studied and analyzed the

dataset.

To determine discriminant rules, 60% of randomly selected data points are

considered as a training dataset an the robust covariance matrix is calculated.
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Table 5.1: Misclassification probability of RQDASn , RQDAComedian RQDAMCD

and RQDAC for p = 10

RQDASn RQDAComedian

MP1 MP2 MP3 MP MP1 MP2 MP3 MP

Ap 0.046 0.033 0.98 0.354 0.047 0.034 0.99 0.355
Bp 0.038 0.097 0.155 0.102 0.039 0.110 0.177 0.114
Cp 0.021 0.073 0.152 0.072 0.025 0.095 0.201 0.093
Dp 0.014 0.641 0.150 0.099 0.014 0.744 0.177 0.115
Ep 0.037 0.137 0.266 0.155 0.036 0.121 0.245 0.139
Fp 0.050 0.036 0.040 0.042 0.051 0.041 0.044 0.046

RQDAMCD QDAC

MP1 MP2 MP3 MP MP1 MP2 MP3 MP

Ap 0.046 0.034 0.9845 0.355 0.044 0.031 0.039 0.38
Bp 0.207 0.097 0.082 0.129 0.142 0.074 0.088 0.101
Cp 0.157 0.089 0.111 0.124 0.134 0.344 0.377 0.285
Dp 0.063 0.452 0.092 0.092 0.126 0.797 0.141 0.355
Ep 0.201 0.160 0.300 0.207 0.151 0.056 0.213 0.141
Fp 0.038 0.046 0.058 0.047 0.001 0.324 0.824 0.384
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Table 5.2: Misclassification probability of RQDASn , RQDAComedian RQDAMCD

and RQDAC for p = 20

RQDASn RQDAComedian

MP1 MP2 MP3 MP MP1 MP2 MP3 MP

Ap 0.021 0.012 0.051 0.016 0.024 0.116 0.99 0.344
Bp 0.082 0.0303 0.109 0.078 0.88 0.020 0.091 0.070
Cp 0.044 0.052 0.147 0.075 0.051 0.041 0.131 0.069
Dp 0.009 0.442 0.089 0.064 0.016 0.381 0.097 0.066
Ep 0.011 0.011 0.043 0.025 0.071 0.025 0.152 0.084
Fp 0.039 0.011 0.018 0.023 0.042 0.018 0.018 0.026

RQDAMCD QDAC

MP1 MP2 MP3 MP MP1 MP2 MP3 MP

Ap 0.024 0.013 0.996 0.344 0.022 0.009 0.014 0.015
Bp 0.276 0. 052 0. 027 0.121 0.094 0.016 0.025 0.045
Cp 0.196 0.092 0.039 0.131 0.083 0.321 0.348 0.251
Dp 0.084 0.782 0.032 0.110 0.064 0.842 0.085 0.330
Ep 0.302 0.187 0.313 0.250 0.101 0.012 0.152 0.088
Fp 0.036 0.031 0.032 0.033 0.012 0.481 0.754 0.411
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The estimated membership probabilities using inliers in the selected training set

are pR1 = 0.4 and pR2 = 0.6. The remaining 30% observations are considered as

validation set to compute misclassification probability and MP. The estimated

group misclassification using RQDASn are 12%for group I, 8% for group II and

over all misclassification 22%. The misclassification estimate is equivalent to

that of CQDA since the data is uncontaminated.

5.6 Summary

Discriminant analysis is related to the discriminant score and classification rule

associated with it. Since the classical discriminant scores are highly sensitive to

the presence of outliers in the dataset, a more efficient RQDA is proposed in this

chapter. The RQDA is constructed based on the robust estimation procedure

developed on the basis of Sn method.

The evaluation of the performance of RQDASn is conducted using Monte

Carlo simulation study and it is compared with RQDAcom, RQDAMCD and

CQDA (QDAC). The simulation study consists of different percentages of con-

tamination in generated population groups. The empirical results of comparison

show that the proposed robust discriminant rule performed better than other

compared methods. The proposed RQDA is also applied in real dataset as well

to understand the efficacy of the proposed method. All these investigations sup-

ports the use of RQDASn for discriminant analysis in high dimensional datasets.
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Chapter 6

Conclusion and Future Research
Directions

Statistical analytical techniques are often used to extract information from

the dataset. The major challenge of making a correct inference depends on the

handling of outlying observations in the dataset. The outlier detection problem

becomes more complex when the dimension of the data increases (curse of dimen-

sionality). The exclusive use of a univariate outlier detection method to detect

multivariate outliers is no longer excusable. The introductory chapter gives a

brief idea about the multivariate statistical techniques and the importance of

outlier detection in multivariate data. An extensive literature study of existing

methods has been conducted in the introductory chapter on multivariate outliers

detection and robust estimation of mean vector and covariance matrix.

Multivariate regression analysis is the statistical technique used to identify

the relation between multivariate random variables. To propose an efficient ro-

bust multivariate regression analysis (Sajana and Sajesh 2018a), a multivariate

robust estimation procedure called comedian method proposed by Sajesh and

Srinivasan (2012) is adopted. The empirical study reveals that the comedian

method showed less error performance than other methods existed in the litera-

ture for the estimation of multivariate robust regression. The technique is applied

in the real-life dataset and it supports the results from simulated samples.

A bivariate robust dispersion estimator termed as SnCov is developed out of

105



univariate robust Sn scale estimator proposed by (Sajesh and Srinivasan 2019).

A robust correlation estimator is established corresponding to the proposed co-

variance estimator. Properties of the proposed estimator are demonstrated using

theoretical and Mote Carlo methods. The efficiency of the proposed robust corre-

lation is compared with some other popular robust correlation methods in terms

of weighted MSE values and it showed better performance relative to others

compared methods.

In the current days of advanced technology, the number of multivariate datasets

that are being recorded every second is huge. The initial concern of a statistician

is the cleansing of the available data and analyzing the data to reveal the mys-

teries contained in it. The most adaptive solution for minimizing the effect of

outlying observation in the statistical analysis is the robustness of the statistical

techniques. Well known methods for outlier detection and robust estimation like

MCD, Kurtosis and OGK are highly affected by swamping and masking prob-

lems due to the presence of outlying observations in the data. Recent methods

like SM method, RVMD, and MRCD are less affected by masking and swamping

but have low breakdown values. According to reviews of available literature, the

comedian method posses an optimum breakdown value and is less affected by

swamping and masking issues. But still, there is space for improvement in terms

of various factors.

This study proposes a robust technique for multivariate outlier detection

by developing robust estimates for location vector and scatter matrix using Sn

covariance proposed by Sajana and Sajesh (2019). The initial dispersion is not

positive semi-definite (positive definite). An orthogonalization technique adopted

from Maronna and Zamar (2002) is applied to make scatter matrix positive

definite. Mahalanobis distance using these estimates is then used for multivariate

outlier detection and robust estimation of scatter matrix and location vector.

Simulation has been conducted by Sn method. The influence of masking and
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swamping effects of multivariate outliers are evaluated using the parameters RSD

and RFD. Sn method is compared with seven existing methods. The results show

that the proposed Sn estimators can effectively overcome masking and swamping

problems. The affine equivariance of the proposed Sn estimators are examined by

generating correlated samples and the results are similar to that of uncorrelated

samples. Simulation study also proved that the Sn posses optimum breakdown

value. The Sn method is able to detect all the possible outliers presented in the

dataset with minimum masking and swamping effect.

The main aim of the proposed Sn method is the development of robust mul-

tivariate techniques. The discriminant analysis is one of the most important

multivariate data analysis techniques for classification. The Sn method approach

of robust quadratic discriminant analysis has been established. The simulated

population groups of different sample sizes and levels of contaminations are gen-

erated for calculating over all misclassification probabilities and the comparison

are performed with quadratic discriminant analysis using classical, MCD and Co-

median estimates. The proposed method has lower misclassification compared

to the other methods for various population groups.

In conclusion, new robust alternative for covariance estimator is introduced

and its multivariate extension towards outlier detection as well as robust estima-

tion of mean vector and covariance matrix are studied in this thesis. The study

starts with introducing relatively fast and efficient robust multivariate regression

on the basis of comedian estimates. Further, the efficiencies and properties are

examined through simulated samples. Later, an efficient and robust alternative

for covariance estimators is developed based on robust scale estimator. The nec-

essary properties are investigated by theoretical and empirical methods. Further,

an efficient method for outlier detection and robust estimation of location vec-

tor and scatter matrix have been established. The proposed estimate, called Sn

method has been developed based on robust Mahalanobis distance. Performance
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of the method has been analyzed through simulation technique and tested in real

datasets as well. Then, the application of proposed robust estimation method in

robust discriminant analysis has been carried out. The efficiency of the proposed

robust discriminant analysis is examined using simulated training dataset and

validation datasets.

Multivariate statistical analysis rely on presuppositions. Suitable techniques

are need to be undertaken to reduce the inconvenience that is made by the

violation of these assumptions. It is relevant to extend the robustness in to

the multivariate techniques that use linear models of continuous measurements.

New method for outlier detection and robust estimations of multivariate location

and scatter are considered in this thesis. Therefore, it is able to use outlier

resistant estimation procedure to the data reduction techniques such as principal

component analysis and factor analysis. This also can be applied in all ranges of

design of experiments as well as MANOVA and related analysis techniques. The

robust estimation of parameters that has been the functions of location vector

and scatter matrix are used in regression analysis as well.

Barnett and Lewis (1994) have studied different methods of detecting outliers

from continuous data. The multivariate data can also be categorical or mixed

type in nature. In this case the application of the outlier detection and robust

estimation can be adopted for robust analysis of similar type of data.
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Appendix A

Tables of Chapter 2
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Table A.1: Finite sample comparison of Comedian, MLE, MCD and OGK esti-
mators based on MSE for p = 4 and q = 10

n

50 200 500 1000

Comedian regression:
Slope 1.324 1.101 1.066 1.074
Intercept 1.279 1.072 1.022 1.016
Σdiagonal 3.723 2.632 2.596 2.554
Σoff−diagonal 0.786 0.969 0.992 0.994

MLE:
Slope 1.317 1.062 1.020 1.022
Intercept 1.272 1.048 0.984 0.995
Σdiagonal 3.686 2.368 2.258 2.094
Σoff−diagonal 0.782 0.944 0.977 0.967

MCD:
Slope 5.219 1.609 1.251 1.182
Intercept 2.992 1.342 1.090 1.095
Σdiagonal 7.583 3.012 2.528 2.356
Σoff−diagonal 2.539 1.523 1.212 1.137

OGK:
Slope 1.958 1.419 1.354 1.335
Intercept 1.770 1.297 1.156 1.212
Σdiagonal 7.676 6.571 8.323 11.632
Σoff−diagonal 0.755 1.029 1.059 1.052
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Table A.2: Finite sample comparison of Comedian, MLE, MCD and OGK es-
timators based on MSE for p = q = 6 when the data contains 40% of vertical
outliers

n

50 200 500 1000

Comedian regression:
Slope 12.487 6.554 8.777 13.157
Intercept 170.516 373.544 1602.672 5444.999
Σdiagonal 5304.519 16483.99 72856.47 250612.3
Σoff−diagonal 5516.615 16957.59 74829.62 2572711.1

MLE:
Slope 31.204 26.305 26.876 25.952
Intercept 846.075 3358.234 8386.028 16783.810
Σdiagonal 24526.030 116970.600 301261.400 608892.0
Σoff−diagonal 25482.450 120633.600 310316.500 626954.0

MCD:
Slope 77.393 50.714 50.593 47.986
Intercept 1818.105 9090.076 22660.577 45244.190
Σdiagonal 50644.300 185423.200 474748.800 962059.400
Σoff−diagonal 52398.640 193795.500 496380.500 1006114.300

OGK:
Slope 51.700 30.970 30.826 29.763
Intercept 1010.802 4416.548 11286.298 22811.280
Σdiagonal 22468.810 122102.500 317716.600 644000.400
Σoff−diagonal 23621.880 127502.900 331643.200 672213.500
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Table A.3: Finite sample comparison of Comedian, MLE, MCD and OGK es-
timators based on MSE for p = 6 and q = 4 when the data contains 20% of
vertical outliers

n

50 200 500 1000

Comedian regression:
Slope 1.613 1.3602 1.308 1.337
Intercept 1.571 1.304 1.252 1.273
Σdiagonal 3.493 3.036 3.010 31.143
Σoff−diagonal 1.119 1.261 1.257 121.721

MLE:
Slope 19.183 16.633 15.994 15.874
Intercept 188.919 744.910 1857.580 3715.516
Σdiagonal 8547.850 40742.983 105371.9 212954.3
Σoff−diagonal 8896.958 41909.972 108167.6 218371.50

MCD:
Slope 3.316 1.605 1.396 1.383
Intercept 3.599 1.409 1.299 1.303
Σdiagonal 78.616 9.352 19.401 37.596
Σoff−diagonal 77.112 2.222 1.955 186.031

OGK:
Slope 2.133 1.693 1.676 1.766
Intercept 1.839 1.472 1.518 1.623
Σdiagonal 4.999 4.546 5.639 778.42
Σoff−diagonal 1.047 1.368 1.501 165.740
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Table A.4: Finite sample comparison of Comedian, MLE, MCD and OGK es-
timators based on MSE for p = 4 and q = 8 when the data contains 20% of
vertical outliers

n

50 200 500 1000

Comedian regression:
Slope 1.511 1.350 1.312 1.317
Intercept 1.403 1.319 1.247 1.268
Σdiagonal 2.948 2.692 2.787 2.975
Σoff−diagonal 1.153 1.225 1.255 1.273

MLE:
Slope 20.427 18.141 17.281 17.807
Intercept 210.978 839.864 2098.754 4191.323
Σdiagonal 12056.328 54645.416 136055.9 273853.9
Σoff−diagonal 12431.623 53360.474 139133.8 279965.6

MCD:
Slope 9.486 1.792 1.395 1.367
Intercept 62.724 8.422 1.288 1.291
Σdiagonal 5848.072 562.044 17.395 3.176
Σoff−diagonal 5924.811 567.824 1.891 1.874

OGK:
Slope 1.970 1.637 1.619 1.716
Intercept 1.662 1.507 1,478 1.574
Σdiagonal 4.148 4.096 5.006 6.895
Σoff−diagonal 1.114 1.277 1.361 1.473
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Table A.5: Finite sample comparison of Comedian, MLE, MCD and OGK esti-
mators based on MSE for p = q = 6 when the data contains 40% of bad leverage
points

n

50 200 500 1000

Comedian regression:
Slope 2.925 6.511 15.399 29.371
Intercept 2.377 2.301 2.653 2.799
Σdiagonal 7.882 25.653 68.981 138.443
Σoff−diagonal 1.186 2.247 4.829 8.849

MLE:
Slope 3.182 6.998 15.173 28.843
Intercept 2.325 2.032 2.250 2.420
Σdiagonal 8.525 17.707 36.775 69.221
Σoff−diagonal 1.082 2.914 6.376 11.892

MCD:
Slope 6.967 11.269 19.374 32.617
Intercept 11.637 16.036 21.838 26.879
Σdiagonal 22.341 100.072 267.437 565.172
Σoff−diagonal 0.828 0.901 1.152 1.567

OGK:
Slope 4.831 8.577 16.855 30.973
Intercept 5.408 4.364 4.509 4.662
Σdiagonal 24.974 77.271 176.076 344.109
Σoff−diagonal 0.404 1.090 2.256 4.085
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Table A.6: Finite sample comparison of Comedian, MLE, MCD and OGK esti-
mators based on MSE for p = 6 and p = 4 when the data contains 30% of bad
leverage points

n

50 200 500 1000

Comedian regression:
Slope 1.904 1.585 1.541 1.528
Intercept 1.768 1.531 1.490 1.497
Σdiagonal 4.067 1.419 3.378 3.553
Σoff−diagonal 1.246 3.497 1.454 1.461

MLE:
Slope 2.599 5.599 12.036 22.836
Intercept 1.128 1.751 1.811 1.911
Σdiagonal 5.795 10.088 19.033 9.951
Σoff−diagonal 1.128 2.495 5.249 34.376

MCD:
Slope 7.508 10.710 16.965 27.591
Intercept 9.203 9.179 8.329 7.734
Σdiagonal 17.458 57.840 117.627 213.090
Σoff−diagonal 1.485 2.082 3.635 5.605

OGK:
Slope 2.328 3.378 7.510 15.562
Intercept 1.990 1.750 1.858 1.956
Σdiagonal 5.981 7.064 11.540 19.888
Σoff−diagonal 1.160 2.014 4.391 9.046
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Table A.7: Finite sample comparison of Comedian, MLE, MCD and OGK esti-
mators based on MSE for p = 4 and p = 8 when the data contains 30% of bad
leverage points

n

50 200 500 1000

Comedian regression:
Slope 1.748 1.582 1.520 1.500
Intercept 1.665 1.493 1.486 1.492
Σdiagonal 3.280 3.020 3.121 3.317
Σoff−diagonal 1.302 1.392 1.428 1.477

MLE:
Slope 6.184 19.748 47.197 92.957
Intercept 2.224 2.327 2.868 3.762
Σdiagonal 2.784 2.683 2.559 2.708
Σoff−diagonal 4.378 15.630 37.905 73.778

MCD:
Slope 9.930 25.153 53.733 100.152
Intercept 7.048 9.617 10.766 10640
Σdiagonal 8.110 34.148 79.427 144.498
Σoff−diagonal 5.054 8.069 16.733 31.765

OGK:
Slope 2,584 3.543 5.306 7.548
Intercept 1.942 1.692 1.748 1.801
Σdiagonal 4.188 4.166 5.167 7.555
Σoff−diagonal 1.676 3.247 5.460 8.766
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Appendix B

R code for Sn method

SnCov=function(x){
p=ncol(x);n=nrow(x)

covSn=function(x,y){
n=length(x)

v=rep(0,n)

for(i in 1:n){
v[i]=((x[i]-x)*(y[i]-y))[-c(i)][order(((x[i]-x)*(y[i]-y))[-c(i)])][n%/%2]

}
return(sncov=v[order(v)][(n+1)%/%2])

}
V=matrix(0,p,p)

D=matrix(0,p,p)

for(j in 1:p){
for(i in 1:p){
if(i<=j){
V[i,j]=covSn(x[,i],x[,j])

D[i,i]=1/sqrt(V[i,i])

}
}}
V[lower.tri(V)]=t(V)[lower.tri(V)]

delta=D%*%V%*%t(D)

ei=eigen(delta)

Q=solve(D)%*%(ei$vectors)

z=t(solve(Q)%*%t(x))

gamma=matrix(0,p,p)
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for(i in 1:p){
for(j in 1:p){
if(i==j){ gamma[i,j]=covSn(z[,i],z[,i]) }}}
I=cbind(colMedians(z))

scatter=Q%*%gamma%*%t(Q)

location=Q%*%I

RD=mahalanobis(x,center=location,cov=scatter)

cv1=qchisq(0.95,df=p)* ifelse(p<5,1,2.5)

cv2=qchisq(0.95,df=p)*median(RD)/qchisq(0.5,df=p)

cv=ifelse(p>=15,cv2,cv1)

wt=ifelse(RD>cv, 0, 1)

wtx=matrix(0,n,p)

k=1

for(i in 1:n){
if(wt[i]==1){
wtx[k,]=x[i,]

k=k+1

}}
wx=wtx[1:sum(wt),]

wcenter=colMeans(wx)

wcov=cov(wx)

result=list(weight=wt,RD=RD,cv=cv,wcenter=wcenter,wcov=wcov)

return(result)

}
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