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1 Introduction
In recent years, considerable interest has been attracted by the so-called fractional calculus, which allows
one to consider integration and di�erentiation of any order, not necessarily integer. There is a revived interest
in fractional integrals and fractional derivatives due to their recently found applications in reaction, di�usion
and reaction-di�usion problems, in solving certain partial di�erential equations, in input-outputmodels and
in related areas. The fractional integration operators involving various special functions, in particular the
Gauss hypergeometric functions, have found signi�cant importance and applications in various sub�elds of
mathematical analysis. This idea provoked many authors to choose a more special case of such kernels and
to develop a theory of the corresponding generalized fractional calculus that featured many applications.

In 1978, Saigo de�ned a pair of fractional integral and di�erential operators involving the Gauss hyper-
geometric function as kernel. Let (Iα,β,η0+ f )(x), (Iα,β,η− f )(x) and (Dα,β,η

0+ f )(x), (Dα,β,η
− f )(x) be de�ned for x > 0

and complex α, β, η ∈ ℂ by

(Iα,β,η0+ f )(x) = x
−α−β

Γ(α)

x

∫
0

(x − t)α−12F1(α + β, −η; α; 1 −
t
x)
f(t)dt, ℜ(α) > 0, (1.1)

(Iα,β,η− f )(x) = 1
Γ(α)

∞

∫
x

(t − x)α−1t−α−β2F1(α + β, −η; α; 1 −
x
t )
f(t)dt, ℜ(α) > 0, (1.2)
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and

(Dα,β,η
0+ f )(x) = (I−α,−β,α+η0+ f )(x) ≡ ( d

dx)
n
(I−α+n,−β−n,α+η−n0+ f )(x), n = [ℜ(α)] + 1, ℜ(α) > 0, (1.3)

(Dα,β,η
− f )(x) = (I−α,−β,α+η− f )(x) ≡ (−1)n( d

dx)
n
(I−α+n,−β−n,α+η− f )(x), n = [ℜ(α)] + 1, ℜ(α) > 0, (1.4)

respectively.Here,ℜ(α)denotes the real part of α, Γ(α) is theEuler gamma function (see [1]) and 2F1(a, b; c; z)
is the Gauss hypergeometric function de�ned for complex a, b, c, ∈ ℂ, c ̸= 0, −1, −2, . . . , by the hypergeo-
metric series (see [1, 2.1(2)])

2F1(a, b; c; z) =
∞

∑
k=0

(a)k(b)k
(c)k

zk

k! , (1.5)

where (z)k is the Pochhammer symbol de�ned for z ∈ ℂ and k ∈ ℕ by

(z)0 = 1, (z)k = z(z + 1) ⋅ ⋅ ⋅ (z + k − 1), k ∈ ℕ0, ℕ0 = ℕ ∪ {0}, ℕ = {1, 2, . . . }.

The series in (1.5) is absolutely convergent for

|z| < 1 and |z| = 1, z ̸= 1, ℜ(c − a − b) > 0.

The operators in (1.1), (1.2) and (1.3), (1.4), knownas the generalized fractional calculus operators,were
introduced by Saigo [10] and their properties were studied by many authors (see [3, Section 7.12]. In partic-
ular, the operators in (1.3) and (1.4) are inverse to the ones in (1.1) and (1.2), that is,

D
α,β,η
0+ = (I

α,β,η
0+ )−1, D

α,β,η
− = (I

α,β,η
− )−1.

When β = −α, the operators in (1.3) and (1.4) coincide with the classical left-sided and right-sided Riemann–
Liouville fractional di�erentiation operators of order α ∈ ℂ,ℜ(α) > 0, (see [11, Section 5.1])

(Dα,−α,η
0+ f )(x) = (Dα

0+f )(x) ≡ (
d
dx)

n 1
Γ(n − α)

x

∫
0

(x − t)n−α−1f(t)dt, x > 0, n = [ℜ(α) + 1], (1.6)

(Dα,−α,η
− f )(x) = (Dα

−f )(x) ≡ (−
d
dx)

n 1
Γ(n − α)

∞

∫
x

(t − x)n−α−1f(t)dt, x > 0, n = [ℜ(α) + 1]. (1.7)

If β = 0 and for complex α, η ∈ ℂ,ℜ(α) > 0 and n = [ℜ(α)] + 1, the operators in (1.3) and (1.4) take the form

(Dα,0,η
0+ f )(x) = (D+η,α f )(x) ≡ (

d
dx)

n
(I−α+n,−α,α+η−n0+ f )(x), x > 0, n = [ℜ(α) + 1], (1.8)

(Dα,0,η
− f )(x) = (D−η,α f )(x) ≡ (−

d
dx)

n
(I−α+n,−α,α+η− f )(x), x > 0, n = [ℜ(α) + 1]. (1.9)

These operators can be called Erdélyi–Kober fractional di�erentiation operators as inverse to the correspond-
ing Erdélyi–Kober fractional integration operators (see [11, (18.5) and (18.6)]). For suitable functions f , they
can be represented by

(D+η,α f )(x) = x−η(
d
dx)

n 1
Γ(n − α)

x

∫
0

tα+η(x − t)n−α−1f(t)dt, (1.10)

(D−η,α f )(x) = xη+α(
d
dx)

n 1
Γ(n − α)

∞

∫
x

t−η(t − x)n−α−1f(t)dt, (1.11)

for x > 0, α, η ∈ ℂ,ℜ(α) > 0 and n = [ℜ(α)] + 1.
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Our paper is devoted to the study of compositions of the generalized fractional di�erentiation opera-
tors (1.3) and (1.4) with the product of Bessel functions Jν(z) of the �rst kind, which is de�ned for complex
z ∈ ℂ, z ̸= 0, and ν ∈ ℂ,ℜ(ν) > −1, by (see [2, 7.2(2)])

Jν(z) =
∞

∑
k=0

(−1)k( z2 )
ν+2k

Γ(ν + k + 1)k! . (1.12)

We prove that such compositions are expressed in terms of the generalized Lauricella function due to Srivas-
tava and Daoust [13], which is de�ned by

FA:B
�;...;B(n)

C:D�;...;D(n) [[[
[

z1
...
zn

]]]

]

= FA:B
�;...;B(n)

C:D�;...;D(n)[[(a):θ� ,...,θ(n)], [(b�):ϕ�];...;[(b)(n):ϕ(n)];
[(c):ψ� ,...,ψ(n)], [(d�):δ�];...;[(d)(n):δ(n)]; z1, . . . , zn]

=
∞

∑
k1 ,...,kn=0

∏A
j=1(aj)k1θ�j+ ⋅⋅⋅+knθ(n)j

∏C
j=1(cj)k1ψ�

j+ ⋅⋅⋅+knψ
(n)
j

∏B�
j=1(b�j )k1ϕ�

j
⋅ ⋅ ⋅∏B(n)

j=1 (b
(n)
j )knϕ(n)

j

∏D�
j=1(d�j )k1δ�j ⋅ ⋅ ⋅∏D(n)

j=1 (d
(n)
j )knδ(n)j

zk11
k1!

⋅ ⋅ ⋅
zknn
kn!

, (1.13)

where the coe�cients

θ(m)
j , j = 1, . . . , A, ϕ(m)

j , j = 1, . . . , B(m), ψ(m)
j , j = 1, . . . , C, δ(m)

j , j = 1, . . . , D(m),

are real and positive for all m ∈ {1, . . . , n} and (a) abbreviates the array of A parameters a1, . . . , aA,
(b(m)) abbreviates the array of B(m) parameters b(m)

j , j = 1, . . . , B(m), for all m ∈ {1, . . . , n}, with similar
interpretations for (c) and (d(m)), m = 1, . . . , n. The multiple series (1.13) converges absolutely when
(i) ∆i > 0, i = 1, . . . , n, for all complex values of z1, . . . , zn, or
(ii) ∆i = 0, i = 1, . . . , n, provided in addition |zi| < ϱi, i = 1, . . . , n,
and diverges when ∆i < 0, i = 1, . . . , n, except for the trivial case z1 = ⋅ ⋅ ⋅ = zn = 0, where

∆i ≡ 1 +
C
∑
j=1
ψ(i)
j +

D(i)
∑
j=1
δ(i)j −

A
∑
j=1
θ(i)j −

B(i)
∑
j=1
ϕ(i)
j , i = 1, . . . , n,

and
ϱi = min

µ1 ,...,µn>0
{Ei}, i = 1, . . . , n,

where

Ei = (µi)1+∑
D(i)
j=1 δ(i)j −∑B(i)j=1 ϕ(i)

j
∏C
j=1(∑

n
i=1 µiψ

(i)
j )ψ

(i)
j ∏D(i)

j=1(δ
(i)
j )δ

(i)
j

∏A
j=1(∑

n
i=1 µiθ

(i)
j )θ

(i)
j ∏B(i)

j=1(ϕ
(i)
j )ϕ

(i)
j

.

(For more details, see [13].)
Special cases of (1.13) are established in terms of the generalized hypergeometric function of one and

two variables, respectively. For the sake of completeness,we de�ne these functions here. A generalized hyper-
geometric function pFq(z) is de�ned for complex ai , bj ∈ ℂ, bj ̸= 0, −1, . . . , i = 1, 2, . . . , p, j = 1, 2, . . . , q,
by the generalized hypergeometric series (see [1, 4.1(1)])

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞

∑
k=0

(a1)k ⋅ ⋅ ⋅ (ap)k
(b1)k ⋅ ⋅ ⋅ (bq)k

zk

k! .

This series is absolutely convergent for all values of z ∈ ℂ if p ≤ q and it is an entire function of z. We de�ne
a generalization to the Kampé de Fériet function by means of the double hypergeometric series (see [13])

Fp:q;kl:m;n[
(ap):(bq);(ck);
(αl):(βm);(ãn); x, y] =

∞

∑
r,s=0

∏p
j=1(aj)r+s∏

q
j=1(bj)r∏

k
j=1(cj)s

∏l
j=1(αj)r+s∏

m
j=1(βj)r∏

n
j=1(ãj)s

xr

r!
ys

s! . (1.14)

The abovedouble series is absolutely convergent for all values of x and y if p+ q < l+m+1 and p+ k < l+ n+1.
Also, if p + q = l + m + 1 and p + k = l + n + 1, we must have any one of the sets of conditions
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(i) p ≤ l for max{|x|, |y|} < 1, or
(ii) p > l for |x|1/(p−l) + |y|1/(p−l) < 1.

The paper is organized as follows. In Section 2, two preliminary lemmas are presented. In Section 3,
formulas of compositions of the di�erential transforms (1.3) and (1.4) with the product of Bessel functions
(1.12) are proved in terms of the generalized Lauricella function (1.13). The corresponding results for com-
positions of Riemann–Liouville and Erdélyi–Kober fractional integrals (1.6), (1.7) and (1.10), (1.11) with the
product of Bessel functions are also presented in Section 3. Special cases of Jνj (aj tρj ) for νj = −12 and νj = 1

2
and ρj = 1, j = 1, . . . , n, giving compositions of fractional integrals with cosine and sine functions are con-
sidered in Sections 4 and 5, respectively. Finally, statistical interpretations of fractional-order integrals and
derivatives are established in Section 6.

2 Preliminary lemmas
Ourmain results in Section 3 are based on twopreliminary assertions giving composition formulas of the gen-
eralized fractional di�erential operators (1.3) and (1.4) with a power function. These assertions are based on
the corresponding statements for the generalized fractional integrals (1.1) and (1.2) obtained in [5]. The left-
sided generalized di�erentiation (1.3) of a power function is given by the following results.

Lemma 2.1 (5, Lemma 3). Let α, β, η ∈ ℂ be such that

ℜ(α) > 0, ℜ(σ) > −min[0, ℜ(α + β + η)].

Then, we have
(Dα,β,η

0+ tσ−1)(x) = Γ(σ)Γ(σ + α + β + η)Γ(σ + β)Γ(σ + η) xσ+β−1, x > 0. (2.1)

In particular, for x > 0 we have

(Dα
0+t

σ−1)(x) = Γ(σ)
Γ(σ − α) x

σ−α−1, ℜ(σ) > 0, ℜ(α) > 0,

(D+η,α tσ−1)(x) =
Γ(σ + α + η)
Γ(σ + η) xσ−1, ℜ(α) > 0, ℜ(σ) > −ℜ(α + η).

The composition of the right-sided generalized di�erentiation (1.4) with a power function is given by the
following assertion.

Lemma 2.2 (5, Lemma 4). Let α, β, η ∈ ℂ be such that

ℜ(α) > 0, ℜ(σ) < 1, ℜ(σ) < 1 +min[ℜ(−β − n), ℜ(α + η)], n = [ℜ(α)] + 1.

Then, we have
(Dα,β,η
− tσ−1)(x) = Γ(1 − σ − β)Γ(α + η + 1 − σ)Γ(1 − σ)Γ(η − β − σ + 1) xσ+β−1, x > 0.

In particular, for x > 0 we have

(Dα
−tσ−1)(x) =

Γ(1 − σ + α)
Γ(1 − σ) xσ−α−1, ℜ(α) > 0, ℜ(σ) < 1 +ℜ(α) − n,

(D−η,α tσ−1)(x) =
Γ(1 − σ + α + η)
Γ(1 − σ + η) xσ−1, ℜ(α) > 0, ℜ(σ) < 1 +ℜ(α + η) − n.

3 Fractional di�erentiation of the product of Bessel functions of
the �rst kind

First, we consider the generalized left-sided fractional di�erentiation (1.3) of the product of Bessel functions.
It is given by the following result.
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Theorem 3.1. Let α, β, η, σ, νj ∈ ℂ, aj , ρj ∈ ℝ+, j = 1, . . . , n, be such that

ℜ(νj) > −1, j = 1, . . . , n, ℜ(α) > 0, (3.1)

and

ℜ(σ +
n
∑
j=1
ρjνj) > max[0, −ℜ(β), −ℜ(η) −ℜ(β + η)]. (3.2)

Then, we have

(Dα,β,η
0+ tσ−1(

n
∏
j=1
Jνj (aj tρj )))(x) = xσ+β−1(

n
∏
j=1

( ajx
ρj

2 )νj

Γ(νj + 1)
)
Γ(u)Γ(v)
Γ(w)Γ(z)

× F2:0,...,02:1,...,1[
[u:2ρ1 ,...,2ρn],[v:2ρ1 ,...,2ρn]:
[w:2ρ1 ,...,2ρn],[z:2ρ1 ,...,2ρn]:[ν1+1:1],...,[νn+1:1]:;

−
a21x2ρ1

4 , . . . , −a
2
nx2ρn
4 ], (3.3)

where

u = σ +
n
∑
j=1
ρjνj , v = σ + α + β + η +

n
∑
j=1
ρjνj , w = σ + β +

n
∑
j=1
ρjνj , z = σ + η +

n
∑
j=1
ρjνj ,

and F2:0,...,02:1,...,1[ ⋅ ] is given by (1.13).

Proof. First of all, we note that ∆i in (1.13) is given by ∆i = 1 + n > 0, i = 1, . . . , n, n = 1, . . . , and therefore
F2:0,...,02:1,...,1[ ⋅ ] is de�ned in the right-hand side of (3.3).

To prove (3.3), we have

(Dα,β,η
0+ tσ−1(

n
∏
j=1
Jνj (aj tρj )))(x) = (D

α,β,η
0+ {tσ−1Jν1 (a1tρ1 ) ⋅ ⋅ ⋅ Jνn (an tρn )})(x)

= (Dα,β,η
0+ {tσ−1

∞

∑
k1=0

(
(−1)k1( a1 t

ρ1
2 )

ν1+2k1

Γ(ν1 + k1 + 1)k1!
) ⋅ ⋅ ⋅

∞

∑
kn=0

(
(−1)kn ( an t

ρn

2 )
νn+2kn

Γ(νn + kn + 1)kn!
)})(x)

and using (1.3) and (1.13) and changing the orders of integration and summation, we have

(Dα,β,η
0+ tσ−1(

n
∏
j=1
Jνj (aj tρj )))(x) =

∞

∑
k1 ,...,kn=0

(−1)k1( a12 )ν1+2k1

Γ(ν1 + 1)(ν1 + 1)k1k1!
⋅ ⋅ ⋅

(−1)kn ( an2 )νn+2kn

Γ(νn + 1)(νn + 1)kn kn!

× (Dα,β,η
0+ {tσ+ν1ρ1+ ⋅⋅⋅+νnρn+2ρ1k1+ ⋅⋅⋅+2ρnkn−1})(x).

By (3.1) and (3.2), for any kj = 0, . . . , , j = 1, . . . , n, we have

ℜ(σ +
n
∑
j=1
ρjνj) > max[0, −ℜ(β), −ℜ(η), −ℜ(β + η) −ℜ(α + β + η)].

Finally, by applying Lemma 2.1 and using (2.1) with σ replaced by

σ +
n
∑
j=1
ρjνj + 2

n
∑
j=1
ρjkj , j = 1, . . . , n,

we obtain

(Dα,β,η
0+ tσ−1(

n
∏
j=1
Jνj (aj tρj )))(x) =

∞

∑
k1 ,...,kn=0

(−1)k1( a12 )ν1+2k1

Γ(ν1 + 1)(ν1 + 1)k1k1!
⋅ ⋅ ⋅

(−1)kn ( an2 )νn+2kn

Γ(νn + 1)(νn + 1)kn kn!

×
Γ(σ +∑n

j=1(νjρj + 2ρjkj))Γ(σ + α + β + η +∑
n
j=1(νjρj + 2ρjkj))

Γ(σ + β +∑n
j=1(νjρj + 2ρjkj))Γ(σ + η +∑

n
j=1(νjρj + 2ρjkj))

× xσ+β−1+∑
n
j=1(νjρj+2ρjkj).

This in accordance with (1.13) and gives the result in (3.3).
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Corollary 3.2. Let α, σ, νj ∈ ℂ, aj , ρj ∈ ℝ+, j = 1, . . . , n, be such thatℜ(νj) > −1,ℜ(α) > 0 and

ℜ(σ +
n
∑
j=1
ρjνj) > 0.

Then, we have

(Dα
0+t

σ−1(
n
∏
j=1
Jνj (aj tρj )))(x) = xσ−α−1(

n
∏
j=1

( ajx
ρj

2 )νj

Γ(νj + 1)
)

Γ(σ +∑n
j=1 ρjνj)

Γ(σ − α +∑n
j=1 ρjνj)

× F1:0,...,01:1,...,1[
[σ+∑nj=1 ρjνj:2ρ1 ,...,2ρn]:
[σ−α+∑nj=1 ρjνj:2ρ1 ,...,2ρn]:[ν1+1:1],...,[νn+1:1]: ;
−
a21x2ρ1

4 , . . . , −a
2
nx2ρn
4 ].

Corollary 3.3. Let α, η, σ, νj ∈ ℂ, aj , ρj ∈ ℝ+, j = 1, . . . , n be such thatℜ(νj) > −1,ℜ(α) > 0 and

ℜ(σ +
n
∑
j=1
ρjνj) > max[0, −ℜ(η)].

Then, we have

(D+η,α tσ−1(
n
∏
j=1
Jνj (aj tρj ))) (x) = xσ−1(

n
∏
j=1

( ajx
ρj

2 )νj

Γ(νj + 1)
)
Γ(σ + α + η +∑n

j=1 ρjνj)
Γ(σ + η +∑n

j=1 ρjνj)

× F1:0,...,01:1,...,1[
[σ+α+η+∑nj=1 ρjνj:2ρ1 ,...,2ρn]:
[σ+η+∑nj=1 ρjνj:2ρ1 ,...,2ρn]:[ν1+1:1],...,[νn+1:1]: ;
−
a21x2ρ1

4 , . . . , −a
2
nx2ρn
4 ].

Corollaries 3.2 and 3.3 follow from Theorem 3.1 in the respective cases β = −α and β = 0 if we take (1.6) and
(1.8) into account.

Corollary 3.4. Let α, β, σ, ν1, ν2 ∈ ℂ, a1, a2, ρ1, ρ2 ∈ ℝ+, be such that ℜ(ν1) > −1, ℜ(ν2) > −1, ℜ(α) > 0
and ℜ(σ + ρ1ν1 + ρ2ν2) > max[0, −ℜ(β), −ℜ(η), −ℜ(β + η)]. Let also n = 2, a1 = λ1, a2 = λ2, ρ1 = 1, ρ2 = 1.
Then, (3.3) reduces to

(Dα,β,η
0+ tσ−1(Jν1 (λ1t)Jν2 (λ2t)))(x) =

xc−1λν11 λ
ν2
2

2ν1+ν2Γ(ν1 + 1)Γ(ν2 + 1)
Γ(a)Γ(b)
Γ(c)Γ(d)

× F4:0,04:1,1[
[ a2 :1,1],[

a+1
2 :1,1],[ b2 :1,1],[

b+1
2 :1,1]:

[ c2 :1,1],[
c+1
2 :1,1],[ d2 :1,1],[

d+1
2 :1,1]:[ν1+1:1],...,[νn+1:1]:

;

−
λ21x2

4 , −
λ22x2

4 ], (3.4)

where

a = σ + ν1 + ν2, b = σ + α + β + η + ν1 + ν2, c = σ + β + ν1 + ν2, d = σ + η + ν1 + ν2,

and F[ ⋅ ] is de�ned in (1.14).

Proof. First we note that the convergence conditions p + q < l + m + 1 and p + k < l + n + 1 from (1.14) take
the form 4 < 6 and therefore F[ ⋅ ] is absolutely convergent.

Now, we prove (3.4). Taking n = 2, a1 = λ1, a2 = λ2, ρ1 = 1, ρ2 = 1 in (3.3), we have

(Dα,β,η
0+ tσ−1(Jν1 (λ1t)Jν2 (λ2t)))(x) =

xσ+ν1+ν2+β−1λν11 λ
ν2
2

2ν1+ν2 Γ(ν1 + 1)Γ(ν2 + 1)
Γ(σ + ν1 + ν2)Γ(σ + α + β + η + ν1 + ν2)
Γ(σ + ν1 + ν2 + β)Γ(σ + η + ν1 + ν2)

× F2:0,02:1,1[
[σ+ν1+ν2:2,2],[σ+α+β+η+ν1+ν2:2,2]:
[σ+β+ν1+ν2:2,2],[σ+η+ν1+ν2:2,2]:[ν1+1:1],[ν2+1:1]: ;−

λ21x2

4 , −
λ22x2

4 ].
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Applying the result

(z)2k = 22k(
z
2)k

(
z + 1
2 )

k
, z ∈ ℂ, k ∈ ℕ0, (3.5)

and using equations (1.13) and (3.5), we obtain

(Dα,β,η
0+ tσ−1(Jν1 (λ1t)Jν2 (λ2t)))(x) =

xσ+β+ν1+ν2−1λν11 λ
ν2
2

2ν1+ν2Γ(ν1 + 1)Γ(ν2 + 1)
Γ(a)Γ(b)
Γ(c)Γ(d)

×
∞

∑
k1 ,k2=0

(a)2(k1+k2)(b)2(k1+k2)
(c)2(k1+k2)(d)2(k1+k2)(ν1 + 1)k1 (ν2 + 1)k2

(− λ
2
1x2
4 )k1

k1!
(− λ

2
2x2
4 )k2

k2!

=
xσ+ν1+ν2−β−1

2ν1+ν2Γ(ν1 + 1)Γ(ν2 + 1)
Γ(a)Γ(b)
Γ(c)Γ(d)

× F4:0,04:1,1[
[ a2 :1,1],[

a+1
2 :1,1],[( b2 ):1,1],[(

b+1
2 ):1,1]:

[ c2 :1,1],[
c+1
2 :1,1],[ d2 :1,1],[

d+1
2 :1,1]:[ν1+1:1],...,[νn+1:1]:

;−
λ21x2

4 ,−
λ22x2

4 ],

which proves the claim.

Example 3.5. If n = 1, a1 = λ, ρ1 = 1, ν1 = ν, then (3.3) reduces to

(Dα,β,η0+ tσ−1Jν(t))(x) =
xσ+ν+β−1λν

2ν
Γ(σ + ν)Γ(σ + ν + α + β + η)

Γ(σ + ν + β)Γ(σ + ν + η)Γ(ν + 1)4F5[
σ+ν
2 , σ+ν+12 , σ+ν+α+β+η2 , σ+ν+α+β+η+12

ν+1, σ+ν+β2 , σ+ν+β+12 , σ+ν+η2 , σ+ν+η+12
;− λ

2x2

4 ].

Indeed, by putting the above values in (3.3), we have

(Dα,β,η
0+ tσ−1Jν(t))(x) = xσ+ν+β−1

λν

2ν
Γ(σ + ν)Γ(σ + ν + η + β)

Γ(ν + 1)Γ(σ + ν + β)Γ(σ + ν + η)F
2:0
2:1[

[σ+ν:2],[σ+η+β+ν:2]:
[σ+β+ν:2],[η+σ+ν:2]:[ν+1:1]: ;−

λ2x2

4 ].

Using (1.13) and (3.5), we obtain

(Dα,β,η
0+ tσ−1Jν(t))(x) = xσ+ν+β−1

λν

2ν
Γ(σ + ν)Γ(σ + ν + η + β)

Γ(ν + 1)Γ(σ + ν + β)Γ(σ + ν + η)
(σ + ν)2k(σ + ν + η + β)2k
(σ + ν + β)2k(σ + ν + β)2k

(− λ
2x2
4 )k

k!

=
xσ+ν+β−1

2ν
Γ(σ + ν)Γ(σ + ν + α + β + η)

Γ(σ + ν + β)Γ(σ + ν + η)Γ(ν + 1)4F5[
σ+ν
2 , σ+ν+12 , σ+ν+α+β+η2 , σ+ν+α+β+η+12

ν+1, σ+ν+β2 , σ+ν+β+12 , σ+ν+η2 , σ+ν+η+12
;− λ

2x2

4 ]

and (3.4) is proved. For more special cases, see [4, Section 4].

Remark 3.6. Equation (3.4) was proved in [4, Theorem 3].

4 Fractional di�erentiation of the cosine function
For ν = −12 , the Bessel function Jν(z) in (1.12) coincides with the cosine function apart from the multiplier

(
2
πz)

1
2
,

that is,

J− 12 (z) = (
2
πz)

1
2
cos(z).

From Theorem 3.1, we obtain the following result for

ν1 = ⋅ ⋅ ⋅ = νn = −
1
2 and ρ1 = ⋅ ⋅ ⋅ = ρn = 1.
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Theorem 4.1. Let α, β, η, σ ∈ ℂ, aj ∈ ℝ+, j = 1, . . . , n, be such that

ℜ(α) > 0 and ℜ(σ) > max[0, −ℜ(β), −ℜ(η), −ℜ(β + η)]. (4.1)

Let alsoℜ(σ) > 0 andℜ(σ + α + β + η) > 0. Then, we have

(Dα,β,η
0+ tσ−1(

n
∏
j=1

cos(aj t)))(x) = xσ+β−1
Γ(σ)Γ(σ + α + β + η)
Γ(σ + β)Γ(σ + η)

× F2:0,...,02:1,...,1[
[σ:2,...,2],[σ+α+β+η:2,...,2]:
[σ+β:2,...,2],[σ+η:2,...,2]:[ 12 :1],...,[

1
2 :1]:

;

−
a21x2

4 , . . . , −a
2
nx2

4 ]. (4.2)

Taking β = −α and β = 0 in Theorem 4.1 and using (1.13) and (4.1) from (4.2), we deduce the following
assertions.

Corollary 4.2. Let α, σ ∈ ℂ, aj ∈ ℝ+, j = 1, . . . , n, be such thatℜ(α) > 0 andℜ(σ) > 0. Then, we have

(Dα
0+t

σ−1(
n
∏
j=1

cos(aj t)))(x) = xσ−α−1
Γ(σ)

Γ(σ − α)F
1:0,...,0
1:1,...,1[

[σ:2,...,2]:
[σ−α:2,...,2]:[ 12 :1],...,[

1
2 :1]:

;−
a21x2

4 , . . . , −a
2
nx2

4 ].

Corollary 4.3. Let α, η, σ ∈ ℂ, aj ∈ ℝ+, j = 1, . . . , n, be such that ℜ(α) > 0 and ℜ(σ) > max[0, −ℜ(η)]. Then,
we have

(D+η,α tσ−1(
n
∏
j=1

cos(aj t)))(x) = xσ−1
Γ(σ + α + η)
Γ(σ + η) F1:0,...,01:1,...,1[

[σ+α+η:2,...,2]:
[σ+η:2,...,2]:[ 12 :1],...,[

1
2 :1]:

;−
a21x2

4 , . . . , −a
2
nx2

4 ].

5 Fractional di�erentiation of the sine function
For ν = 1

2 , the Bessel function Jν(z) in (1.12) coincides with the sine function apart from the multiplier

(
2
πz)

1
2
,

that is,

J 1
2
(z) = ( 2

πz)
1
2
sin(z). (5.1)

The next statement follows from Theorem 3.1 by setting νj = 1
2 , ρj = 1, j = 1, . . . , n, in (3.3) and us-

ing (5.1).

Theorem 5.1. Let α, β, η, σ ∈ ℂ, aj ∈ ℝ+, j = 1, . . . , n, be such that condition (5.1) be satis�ed. Let also
ℜ(σ) > max[0, −ℜ(β), −ℜ(η), −ℜ(β + η)]. Then, we have

(Dα,β,η
0+ tσ−n−1(

n
∏
j=1

sin(aj t)))(x) = (
n
∏
j=1
aj)xσ+β−1

Γ(σ)Γ(σ + α + β + η)
Γ(σ + β)Γ(σ + η)

× F2:0,...,02:1,...,1[
[σ:2,...,2],[σ+α+β+η:2,...,2]:
[σ+β:2,...,2],[α+η:2,...,2]:[ 32 :1],...,[

3
2 :1]:

;

−
a21x2

4 , . . . , −a
2
nx2

4 ]. (5.2)

Taking β = −α and β = 0 in Theorem 5.1 and using (1.13) and (5.1), from (5.2) we deduce the following
assertions.
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Corollary 5.2. Let α, σ ∈ ℂ, aj ∈ ℝ+, j = 1, . . . , n, be such thatℜ(α) > 0 andℜ(σ) > 0. Then, we have

(Dα
0+t

σ−n−1(
n
∏
j=1

sin(aj t)))(x) = (
n
∏
j=1
aj)xσ−β−1

Γ(σ)
Γ(σ − α)

× F1:0,...,01:1,...,1[
[σ:2,...,2]:
[σ−α:2,...,2],:[ 32 :1],...,[

3
2 :1]:

;−
a21x2

4 , . . . , −a
2
nx2

4 ].

Corollary 5.3. Let α, η, σ ∈ ℂ, aj ∈ ℝ+, j = 1, . . . , n, be such that ℜ(α) > 0 and ℜ(σ) > max[0, −ℜ(η)]. Then,
we have

(D+η,α tσ−n−1(
n
∏
j=1

sin(aj t)))(x) = (
n
∏
j=1
aj)xσ−1

Γ(σ + α + η)
Γ(σ + η)

× F1:0,...,01:1,...,1[
[σ+α+η:2,...,2]:
[η+σ:2,...,2]:[ 32 :1],...,[

3
2 :1]:

;−
a21x2

4 , . . . , −a
2
nx2

4 ].

Remark 5.4. When n = 1, a1 = λ, all results in Section 4 and Section 5 reduce to [4, Section 5 and Section 6].

The types of single-variable hypergeometric series considered here appear in many physical contexts, in-
cluding quantum chemistry, the development of few-body and many-body wave functions, and statistical
physics. In [6], the authors proved the formulas of compositions for such generalized fractional integrals
with the product of Bessel functions of the �rst kind and observed that the solution is obtained in terms
of the multivariable hypergeometric function. Special cases of products of cosine and sine functions are
also given in the same paper. It is fairly well known that hypergeometric series in one, two, and more vari-
ables occur rather frequently in a wide variety of problems in theoretical physics and applied mathematics
(including, for instance, nuclear and neutrino astrophysics), and also in engineering sciences, statistics, and
operations research.

6 Statistical interpretations
The traditional special functions (the special functions of classical calculus) are known to be related to the
classical fractional calculus andalso to the generalized fractional calculus. Theyhavebeen shown tobe repre-
sentable by fractional-order integration or di�erentiation of some basic elementary functions. The essentials
of fractional calculus according to di�erent approaches which can be useful for our applications in probabil-
ity theory and in stochastic processes are established with the help of the pathway idea of [8]. The pathway
idea was originally developed by Mathai in the 1970s in connection with population models. It was later
rephrased and extended to cover scalar as well as matrix cases and was made suitable for modeling data
from statistical and physical situations. The main idea behind the pathway model is the switching property
of the binomial function to the corresponding exponential function.

By means of the pathway model [8], the pathway fractional integral operator (pathway operator) is de-
�ned as

(P(η,q)0+ f )(x) = xη−1
x

a(1−q)
∫
0

[1 − a(1 − q)tx ]
η(1−q)−1

f(t)dt (6.1)

for f(x) ∈ L(a, b), η ∈ C,ℜ(η) > 0, a > 0 and q < 1, where q is the pathway parameter and f(t) is an arbitrary
function. For more details, see [9]. It is also observed that when the pathway parameter, q = 0, a = 1 and f(t)
is replaced by

2F1(α + β, −η; α; 1 −
t
x)
f(t),

then the pathway operator yields
x

∫
0

(x − t)α−12F1(α + β, −η; α; 1 −
t
x)
f(t)dt = Γ(α)

x−α−β
Iα,β,η0+ .
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Thus, we can obtain all the generalizations, like in [7], [10], etc., of left-sided fractional integrals by suitable
substitutions, so that we call it the pathway fractional operator, a path through the pathway parameter q,
leading to the above known fractional operators. When η = 1 and by replacing f(t) by

tβ−10F1( ⋅ ; β; δt)

in the pathway fractional integral operator, one can deduce the q-analogue of the gamma Bessel density [12]
andhencewe are essentially dealingwith a distribution function under a gammaBessel-typemodel in a prac-
tical statistical problem. Hence, a connection between statistical distribution theory and fractional calculus
is established so that one can make use of the rich results in statistical distribution theory for the further
development of fractional calculus and vice versa.
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