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Abstract

In burn-in analysis, models with a bathtub-shaped hazard rate and a bimodal density function are
inevitable.This work focusses on a new five parameter distribution called Burr III Modified Weibull
distribution which can be used to design burn-in procedures and preventative maintenance for incurable
devices. The statistical properties such as quantile function, hazard rate function and order statistics have
been discussed.The model parameters are estimated using the maximum likelihood estimation technique,
and the performance of the proposed model is evaluated using the simulation technique. Finally, a real
data set is presented to demonstrate the model’s utility and its application in the burn-in process.

Keywords: Burr III distribution, Modified Weibull distribution, maximum likelihood estimation.

1. Introduction

In lifetime analysis, one is often interested to know about the reasons for the failure of a system
or component. The different ways through which a system or product may fail is known as
competing risk. Some normal reasons for the failures are material defects, imperfection of
manufacturing process, wear out processes etc. Here comes the importance of burn-in process in
reliability. Burn-in is an important technique for detecting and eliminating early fault, thereby
increasing system reliability. It is used to find the defective units before they reach the customers.
Items that survive burn-in period ensure the product quality. Burn-in must have a high failure
rate in the early stages of life in order to be successful. This characteristic is mainly found
in a class of life time distributions with bathtub-shaped failure rates. In the modelling of the
lifetime of a system, distributions with bathtub-shaped failure rates are preferred. The bathtub
curve has three phases: an infant mortality phase (decreasing failure rate), a normal life phase
(constant failure rate), and a wear-out phase ( increasing failure rate). The necessary condition
in distribution of lifetime of system is bathtub hazard rate and sufficient condition is bimodal
density function. That is, a model with bathtub hazard rate function and a bimodal density
function allows designing burn-in procedures and preventive maintenance of malfunctioning
devices. The goal of this study is to create a new reliability distribution that meets both the
necessary and sufficient conditions of the lifetime of system. The important works related to this
are reliability enhancement through optimal burn-in by Way K [22], a new model in relation to
burn-in of components and its consequences are discussed by Mϕltoft [8] , the burn-in problems
by Lawrence [12] and Chandrasekaran [5]. Park [17] learned about the impact of burn-in on the
average residual life.

In reliability analysis, lifetime distriburions has an importance because of its ability to explain
the nature of data and its properties. For analysing lifetime data, one often consider Weibull
distribution. But one of the disadvantage of Weibull distribution is that it possess only monotone
hazard rates not non-monotone hazard rates. Hence it cannot be used in the case of lifetime
data possessing bathtub hazard rates. To overcome this problem, several new models were

76

mailto:deepthygs@gmail.com, nicycms@gmail.com


proposed such as three parameter modified Weibull distribution introduced by Lai et al. [11],
a four-parameter generalisation of the Weibull distribution that can simulate a bathtubshaped
hazard rate function by Carrasco et al. [4], a modification is given to weibull distribution which
exhibit non monotone behavior by Sarhan et al. [19], beta modified Weibull distribution in-
troduced by Silva et al. [20], extended flexible Weibull distribution by Bebbington et.al. [1].
Khan [15] introduced another flexible distribution called modified beta Weibull distribution etc.
Among which modified Weibull proposed by Lai et al. [11] seems to be more flexible than other
proposed ones. Another important life time distribution that we consider in our study is Burr
III distribution. In 1942, Burr introduced twelve types of cumulative distribution function based
on the Pearson system of distributions among which Burr XII and Burr III are commonly used.
The Burr type III distribution is used in a variety of domains, including survival and reliability
research, forestry, and environmental studies etc. BurrIII is the inverse of BurrXII distribution.
Burr III distribution is also known as dagum distribution studies on the wealth of distribition
[6] and as kappa distribution in the meteorological literature [14]. Many modification of Burr III
have been already intoduced such as Burr and Cislak [3], Johnson et al. [9] etc. This distribution
has a wide range of applications in statistical modelling, including forestry by Gove et al. [7],
meteorological field Mielke [14] and actuarial literature Kleiber [10] etc.

Using the concept of competing risk model, a new five parameter distribution called Burr III
Modified Weibull (BIIIMW) is proposed in this paper. If we model lifetime of units subjecting
to two risk as series system, then the life time of the observed unit is the minimum of the
individual potential lifetimes associated with each risk (see [23]). That is the realibility function
of the BIIIMW model is the product of the reliability function of Burr III and Modified Weibull
distribution. This model exhibits both bathtub hazard function and bimodal density function,
which are commonly present when dealing with survival and lifetime data, and it can also be
utilised in burn-in procedures.

The cumulative distribution function (cdf) of the modified Weibull (MW) distribution proposed
by Lai is given by,

FMW(x; α, β, λ) = 1 − e−αxβeλx
; x ≥ 0, α > 0, β > 0, λ ≥ 0. (1)

where α is the scale parameter, β is the shape parameter and λ is the accelerating factor in the
time of imperfection and a factor of fragility in the individual’s survival as time increases. The
cumulative distribution (cdf) of the Burr III distribution is given by,

GB(x; c, k) = (1 + x−c)−k; x ≥ 0, k > 0, c > 0. (2)

where c and k are shape parameters.

2. Proposed Distribution

The concept of competing risk model is used to create the new Burr III Modified Weibull
distribution (BIIIMW). Realibility function of the model is the product of reliability functions
of Burr III and Modified Weibull distributions. The realibility function, cumulative distribution
function and probability density function of the Burr III modified Weibull distribution (BIIIMW)
are respectively given by,

r(x, c, k, α, β, λ) = e−αxβeλx
(

1 −
(
1 + x−c)−k

)
x ≥ 0, c > 0, k > 0, α > 0, β > 0, λ ≥ 0,

F(x, c, k, α, β, λ) = 1 − e−αxβeλx
(

1 −
(
1 + x−c)−k

)
, x ≥ 0, c > 0, k > 0, α > 0, β > 0, λ ≥ 0

(3)
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and

f (x, c, k, α, β, λ) =


e−αxβeλx

[
ckx−c−1 (1 + x−c)

−k−1
+

(
1 − (1 + x−c)

−k
)

αxβ−1eλx(β + λx)
]

,

for x ≥ 0, c > 0, k > 0, α > 0, β > 0, λ ≥ 0.
0, otherwise.

(4)
Where α is the scale parameter. β, c, k are the shape parameters and λ is the accelerating factor in
the imperfection time and a factor of fragility increases.
Plot of the density function of BIIIMW distribution is given in Figure 1. The figures shows that

Figure 1: Probability density functions of the BIIIMW distribution for different parameteric values.

the the BIIIMW distribution can be decresing, positively skewed, negatively skewed, unimodal
and bimodal for selected values of parameters.

The particular case of the BIIIMW distribution is included in Table 1.

Table 1: Special cases of BIIIMW distribution

Parameters Distribution
α = 0 BurrIII

c=1, α = 0 Inverse Lomax
λ = 0 BurrIII-Weibull

λ = 0, β = 1 BurrIII-Exponential
λ = 0, β = 2 BurrIII-Rayleigh

c=1 Inverse Lomax-Modified Weibull
c=1, λ=0, β=1 Inverse Lomax-Exponential
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3. Reliability Analysis

The hazard and reverse hazard function of the BIIIMW distribution is obtained respectively, as
follows

h(x) =
ckx−c−1 (1 + x−c)

−k−1
+

(
1 − (1 + x−c)

−k
)

αxβ−1eλx(β + λx)(
1 − (1 + x−c)−k

) (5)

and

t(x) =
e−αxβeλx

[ckx−c−1 (1 + x−c)
−k−1

+
(

1 − (1 + x−c)
−k

)
αxβ−1eλx(β + λx)]

1 −
[
e−αxβeλx

(
1 − (1 + x−c)−k

)] . (6)

Plot of the hazard function for selected values of BIIIMW parameters are shown in Figure (2).
The shape of the hazard function shows that BIIIMW distribution can accommodate both mono-
tone and non monotone behavior such as monotonically decreasing, monotonically increasing,
unimodal and bathtub shapes for different values of the parameters, which are more likely to be
meet when dealing with survival and lifetime data.

Figure 2: Plot for hazard rate functions of BIIIMW distribution.

4. The Statistical Properties

In this section, some statistical properties of BIIIMW distribution such as quantile function and
order statistics are discussed.

4.1. Quantile Function

The quantile function of the BIIIMW distribution is obtained by solving the non-linear equation,
that is FBII IMW(x) = u, 0 ≤ u ≤ 1.

1 − e−αxβeλx
(

1 −
(
1 + x−c)−k

)
= u,

e−αxβeλx
(

1 −
(
1 + x−c)−k

)
= 1 − u.
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Taking logarithm on both sides we have,

log
(

1 −
(
1 + x−c)−k

)
− αxβeλx − log(1 − u) = 0. (7)

The quantile values of the BIIIMW distribution can be obtained by solving the equation (7) using
numerical methods, where u denotes a uniformly distributed random variable on the interval
[0,1]. Table 2 describe the quantile values of BIIIMW distribution for certain given parameter
values.

Table 2: BIIIMW quantile values for selected parameters

(c,k,α,β,λ,)
u (3,2,0.7,0.4,2) (3,2,1,2,2) (0.7,1,0.5,2,4) (1,0.5,3,4,3) (0.7,0.4,0.4,0.6,0.8)

0.1 0.00844 0.25199 0.04266 0.01010 0.000244
0.2 0.04566 0.33641 0.12545 0.04167 0.00274
0.3 0.10799 0.39880 0.22052 0.09871 0.01134
0.4 0.18256 0.45172 0.30147 0.18620 0.03183
0.5 0.26241 0.50027 0.36646 0.28989 0.07354
0.6 0.34600 0.54755 0.42171 0.37356 0.15240
0.7 0.43513 0.59646 0.47254 0.43637 0.29609
0.8 0.53557 0.65143 0.52404 0.49053 0.55078
0.9 0.66521 0.72343 0.58525 0.54787 0.99652

4.2. Order Statistics

Order statistics have a wide application in realibiity. Let X1, X2, ..., Xn be a simple random
sample from BIIIMW distribution with cdf and pdf given in (3) and (4), respectively. Let
X(1) ≤ X(2) ≤ .... ≤ X(n) denote the order statistics. Then the pdf of ith order statistc is given by,

fXi (x) =
n! f (x)

(i − 1)!(n − i)!
[F(x)]i−1[1 − F(x)]n−i.

fXi (x) =
n!

(i − 1)!(n − i)!
e−αxβeλx

[ckx−c−1 (1 + x−c)−k−1
+

(
1 −

(
1 + x−c)−k

)
αxβ−1eλx(β + λx)]

∗
[
1 − e−αxβeλx

(
1 −

(
1 + x−c)−k

)]i−1
∗
[
e−αxβeλx

(
1 −

(
1 + x−c)−k

)]n−i
.

The pdf of 1st order statistic X1 is given by,

fX1(x) = ne−αxβeλx
[ckx−c−1 (1 + x−c)−k−1

+
(

1 −
(
1 + x−c)−k

)
αxβ−1eλx(β + λx)]

∗
[
e−αxβeλx

(
1 −

(
1 + x−c)−k

)]n−1
.

The pdf of nth order statistic Xn is given by,

fXn(x) = ne−αxβeλx
[ckx−c−1 (1 + x−c)−k−1

+
(

1 −
(
1 + x−c)−k

)
αxβ−1eλx(β + λx)]

∗
[
1 − e−αxβeλx

(
1 −

(
1 + x−c)−k

)]n−1
.

5. Maximum Likelihood Estimation

In this section, we consider the estimation of unknown parameters of BIIIMW model using
maximum lilelihood estimation technique. Let x1, x2, ...., xn be a random sample from BIIIMW
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distibution having parameters ∆=(c, k, α, β, λ)T then the log likelihood function is given by,

l(x; c, k, α, β, λ) =
n

∑
i=1

ln ( f (xi, c, k, α, β, λ)) . (8)

The log liklyhood of a single observation x of X is given by,

l(x; c, k, α, β, λ) = −αxβeλx + ln
[
ckx−c−1 (1 + x−c)−k−1

+
(

1 −
(
1 + x−c)−k

)
αxβ−1eλx(β + λx)

]
. (9)

The first order derivatives of the log-likelihood function with respect to the parameters ∆=(c, k, α, β, λ)T

is given by,

∂l
∂α

=

[
1 − (1 + x−c)

−k
] (

λxβeλx + βxβ−1eλx)
ckx−c−1 (1 + x−c)−k−1 +

[
1 − (1 + x−c)−k

] (
αλxβeλx + αβxβ−1eλx

) − xβeλx. (10)

∂l
∂β

=

[
1 − (1 + x−c)

−k
] (

αeλx (xβ−1ln(x)β + xβ−1)+ αλxβeλxln(x)
)

ckx−c−1 (1 + x−c)−k−1 +
[
1 − (1 + x−c)−k

] (
αλxβeλx + αβxβ−1eλx

) − αxβeλx ln(x). (11)

∂l
∂λ

=

[
1 − (1 + x−c)

−k
] (

αxβ
(
xλexλ + exλ

)
+ αβxβexλ

)
ckx−c−1 (1 + x−c)−k−1 +

[
1 − (1 + x−c)−k

] (
αλxβeλx + αβxβ−1eλx

) − αxβ+1exλ. (12)

∂l
∂c

=
k
(
−x−c−1ln(x)(1 + x−c)−k−1c + c(k + 1)x−2c−1ln(x)(1 + x−c)−k−2 + x−c−1(1 + x−c)−k−1

)
− A

ckx−c−1 (1 + x−c)−k−1 +
[
1 − (1 + x−c)−k

] (
αλxβeλx + αβxβ−1eλx

) .

(13)
where,

A =
k
(
αλxβeλx + αβxβ−1eλx) ln(x)(1 + x−c)−k−1

xc .

∂l
∂k

=
cx−c−1B +

(
αλxβeλx + αβxβ−1eλx) ln(1 + x−c) (1 + x−c)

−k

ckx−c−1 (1 + x−c)−k−1 +
[
1 − (1 + x−c)−k

] (
αλxβeλx + αβxβ−1eλx

) , (14)

where B = (1 + x−c)
−k−1

[1 − ln (1 + x−c) k].

The total log-likelihood function of BIIIMW distribution based on a random sample of size
n (x1, x2, ..., xn) is given by l(∆)=∑n

i=1 li(∆) where li(∆)(i=1, 2,..., n) is the log-likelyhood of ith

observation. By setting the above partial derivatives to zero, the solution will yield the maximum
likelyhood estimators of ĉ, k̂, α̂, β̂ and λ̂. These equations can be solved by using Newton-Raphson
method. All the second order derivatives are exist for BIIIMW distribution. Then the observed
information matrix is given by,

V−1 = −E


Vcc Vck Vcα Vcβ Vcλ

Vkc Vkk Vkα Vkβ Vkλ

Vαc Vαk Vαα Vαβ Vαλ

Vβc Vβk Vβα Vββ Vβλ

Vλc Vλk Vλα Vλβ Vλλ


−1

. (15)

Here Vjj, j=c, k, α, β, λ denotes the second order derivatives of log-likelihood function with
respect to the parameters and E(.) denotes the expexted value. The asymptotic variance and
co-variances of these maximum likelihood estimators for ĉ, k̂, α̂, β̂ and λ̂ can be obtained by
solving this observed information matrix. From (15), the 100(1-ξ)% confidence intervals for the
parameters are approximately given as follows,
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ĉ ± Zξ/2

√
V̂cc, k̂ ± Zξ/2

√
V̂kk, α̂ ± Zξ/2

√
V̂αα, β̂ ± Zξ/2

√
ˆVββ, λ̂ ± Zξ/2

√
ˆVλλ.

where Zξ/2 is the upper ξth percentile of the standard normal distribution.

6. Simulation and Data Analysis

In this section, we consider the simulation of BIIIMW distribution. Parameters are estimated by
using optim CG method in R. We simulate 1000 samples for the true parameters values I : c = 8.5,
k = 6, α = 2, β =5 , λ = 0.8 and II: c=2, k=9, α=0.5, β=9, λ=1.5. Table 3 lists the means of the MLE
estimates, bias and RMSE. From the table, it is obvious that as the sample size grows, estimates
approach the true value of the parameter, whereas bias and RMSE decrease as expected.

Table 3: Simulation Results: Mean Estimates, Bias and MSE of BIIIMW distriburion.

I II

Sample Size Parameter Mean Bias RMSE Mean Bias RMSE

n=200

c 7.8901 -0.6098 0.7106 2.0048 0.0048 0.0070
k 7.6779 1.6779 1.8808 9.0031 0.0031 0.0036
α 2.2418 0.2418 1.5350 0.2244 -0.2755 0.2783
β 7.7369 2.7369 2.9288 9.9856 0.9856 1.0549
λ 0.3435 0.2435 0.866 2.3495 0.8495 0.8946

n=500

c 7.9066 -0.5933 0.6594 2.0045 0.0045 0.0059
k 7.6698 1.6698 1.7860 9.0028 0.0028 0.0032
α 1.8931 -0.1068 1.094 0.2281 -0.2734 0.2780
β 7.6866 2.6866 2.786 9.9638 0.9667 0.9752
λ 0.3193 0.2193 0.6565 2.3398 0.8398 0.8577

n=800

c 8.0117 -0.4882 0.568 2.0042 0.0042 0.0052
k 7.3521 1.3521 1.5066 9.0025 0.0025 0.0026
α 1.9233 -0.0766 0.3474 0.2286 -0.2712 0.2751
β 7.6809 2.6809 2.7521 9.9581 0.9581 0.9925
λ 0.3089 0.2089 0.4682 2.3216 0.8276 0.8396

6.1. Data Analysis

We evaluate a data set in this part to demonstrate the importance and flexibility of the BIIIMW
distribution and comparison is done with other well known distributions such as Burr III, modi-
fied Weibull, inverse Lomax, exponetiated Weibull and Rayleigh(BIII, MW, IL, EW, R). The data is
obtained from Sylwia ([21]) on the lifetime of a certain device (30 device).

Data set : 0.0094, 0.05, 0.4064, 4.6307, 5.1741, 5.8808, 6.3348,7.1645, 7.2316, 8.2604, 9.2662,
9.3812, 9.5223, 9.8783, 9.9346, 10.0192, 10.4077,10.4791, 11.076, 11.325, 11.5284, 11.9226, 12.0294,
12.074, 12.1835, 12.3549, 12.5381, 12.8049, 13.4615, 13.853.

The estimated values of the parameters, Akaike Information Criterion, Bayesian Information
Criterion are presented. Also presented Kolmogorov-Smirnov(KS) (its p value), Cramer-Von
Mises(W) and Anderson-Darling (A) statistic for hypothesis test. Goodness of fit is performed
to test whether the proposed model fits better to the real data sets. In general, the distribution
with smallest values of these statistics better fits for the data. Table 4 list the MLE’s of model
parameters of BIIIMW, BIII, MW, EW, IL, R and the statistics values of W, A and KS.
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Table 4: Goodness of fit of Dataset

Model
Estimates

W A KS P value AIC BIC
Parameters Estimates

BIIIMW c 2.693 0.076 0.585 0.124 0.692 156.0103 180.0223
k 1920.256
α 0.0202
β 0.2089
λ 0.3164

BIII c 0.6941 1.295 6.373 0.367 0.00038 231.1692 240.774
k 2.564

MW α 3.797 0.118 1.258 0.154 0.428 233.1692 247.5763
λ 0.021
β 0.0001

EW α 0.396 6.200 1.250 0.348 0.0009 213.734 223.339
β 4.658

IL α 0.9301 1.046 5.277 0.357 0.0006 215.5066 225.1113
β 8.432

R α 6.935 0.456 3.652 0.257 0.030 213.5066 218.3089

From the table 4, it is clear that BIIIMW distribution has the smallest values for these statistics,
hence the proposed model is regarded as the better one. The variance- covariance matrix after
substituting the unknown parameters of the MLE’s in (15), we get,

0.00560 −0.012635 −0.000049 0.001199 0.00162
−0.01263 0.71116 0.00062 −0.08420 −0.00695
−0.00004 0.00062 0.00001 −0.00428 0.00018
0.00119 −0.08420 −0.00428 1.56465 −0.14485
0.00162 −0.00695 0.00018 −0.14485 0.02210


and the corresponding 95% confidence interval is given by c ∈ (2.693 ± 1.96 ∗ 0.0748), k ∈
(1920.256 ± 1.96 ∗ 0.8433), α ∈ (0.0202 ± 1.96 ∗ 0.0031), β ∈ (0.2089 ± 1.96 ∗ 1.2508) and λ ∈
(0.3164 ± 1.96 ∗ 0.1486). Plot of the fitted densities, histogram of the data and pp plot of the real
data set is shown in figure (3).
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Figure 3: (a) Plot of the estimated pdfs over the histogram and (b) PP plot of the BIIIMW model for dataset.
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Figure 4: Survival plot of BIIIMW distribution with the estimated parameter values.

Figure 5: (a) The expected parameter values for the BIIIMW distribution hazard rate function (b) The BIIIMW density
function for the estimated parameter values.

Figure (4) describe the survival plot of BIIIMW distribution. Figure (5) gives a clear picture
that the model satisfy both the necessary and sufficent condition of the distribution of lifetime
of system ( both bathtub hazard rate and bimodal density function). The hazard rate function
reaches minimum at time, x=0.05 (time period till which the system may undergo breakdown at
the beginning of its use itself), followed by normal life till x=4.5 and thereafter exibit an increasing
failure rate (wear-out process of the system). Also from figure (5b) it is evidant that the density
function attains maximum at time x=0.05 and x=10.5. From the results, it is clear that the model
can be used for modelling burn-in procedures.

7. Conclusion

In this paper, we introduce the Burr III-Modified Weibull (BIIIMW) distribution, a new five-
parameter lifetime distribution. This distribution can be used to represent both monotone and
non-monotone hazard rates in lifetime data. The statistical properties such as quantile fuction,
hazard rate function and order statistics are presented. The performance of the new BIIIMW
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distribution is performed by using simulation study. Finally, flexibility and applicability of this
model is illustrated by a real data set. From the data analysis, it is obvious that the proposed
model is highly desirable in the modeling of the lifetime of system. The model satisfy both the
necessary and sufficent condition of the distribution of lifetime of system. The proposed method
can be used to successfully plan a burn-in process and preventive maintenance of inoperable
devices.
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