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Abstract

The main purpose of this paper is to discuss a new lifetime distribution, called the type 1 Topp-Leone
generated q-exponential distribution(Type 1 TLqE). Using the quantile approach various distributional
properties, L−moments, order statistics, and reliability properties were established. We suggested a new
reliability test plan, which is more advantageous and helps in making optimal decisions when the lifetimes
follow this distribution. The new test plan is applied to illustrate its use in industrial contexts. Finally,
we proved empirically the importance and the flexibility of the new model in model building by using a
real data set.

Keywords: Type 1 Topp-Leone generated q-exponential distribution, Quantile density function,
Quantile function, Hazard quantile function, L−moments, Reliability Test Plan.

1. Introduction

Ther e are many statistical distributions which pla ys an important role in modeling sur viv al
and life time data such as exponential, weibull, logistic etc. Almost all these distributions with
unbounded support. But ther e are situations in real life, in which obser vations can take values
only in a limited range such as per centages, proportions or fractions. Papke and Wooldridge
[12] claims that in many economic settings, such as fraction of total weekly hours spent working,
pension plan participation rates, industr y market shar es, fraction of land area allocated to
agricultur e etc., the variable bounded betw een zer o and one. Thus it is important to have models
defined on the unit inter val in order to have reasonable results.

A new distribution w as introduced in 1955, called Topp Leone (TL) distribution, defined on
finite support, proposed Topp and Leone [20] and used it as a model for failur e data. A random
variable X is distributed as the TL with parameter α denoted by x ∼ TL(α), with a cumulativ e
distribution function

FTL(x) = xα(2− x)α, 0 < x < 1, α > 0. (1)

The corresponding probability function is

fTL(x) = 2αxα−1(1− x)(2− x)α−1. (2)

Topp Leone distribution provides closed forms of cumulativ e density function (cdf) and the
probability density function (pdf) and describes empirical data with J-shaped histogram such as
powered tool band failur es, automatic calculating machine failur e. The Topp Leone distribution
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had been receiv ed little attention until Nadarajah and Kotz [10] disco vered it. Further infor mation
and application of TL distribution can be obtained from Ghitany et al. [2], Kotz and Seier [7].

Lifetime data pla ys an important role in a wide range of applications such as medical, engineering
an social sciences. When ther e is a need for mor e flexible distributions, almost all resear chers
are about to use the new one with mor e generalization. An excellent revie w of Lee et al. [9]
has provided through knowledge of several methods for generating families of continuous
univ ariate distributions. They discussed some noticeable de velopments after 1980, are method of
generating ske w distributions, beta generated method, method of adding parameters, transfor med-
transfor mer method, and composite method. The beta generated (BG) family of distributions
belongs to a parameter adding method (Lee et al. [9], Kumarasw amy [8]). In a similar manner
the relation of a random variable X having the TLG distribution and a random variable T having
TL distribution is X = G−1(T), with T ∼ TL(α). This relation demonstrates that the pdf of TL
distribution, (2), is transfor med into a new pdf through the function G(.) The cdf of TL generated
random variable X is defined as

FTLG(x) =
∫ G(x)

0
h(t)dt

wher e h(t) is the pdf of TL variable and G(x) is the cdf of any arbitrar y random variable. Thus
the cdf of TL generated random variable is

FTLG(x) = 2α
∫ G(x)

0
tα−1(1− t)(2− t)α−1dt = G(x)α(2− G(x))α. (3)

By dif ferentiating, we get the corresponding pdf,

fTLG(x) = 2αg(x)(1− G(x))G(x)α−1(2− G(x))α−1, α > 0. (4)

In reliability analysis, a frequently used distribution is exponential distribution having the
characterizing property of constant hazar d function. Due to this, exponential distribution is
sometimes not suitable for analyzing data. This implies the need for mor e generalization. In such
situations we use distribution called Topp-Leone Exponential distribution (TLE). TLE distribution
comes as the combination of TL distribution and exponential distribution. Her e TL distribution
is the generator and exponential is the par ent distribution. Sangsanit and Bodhisuw an [16]
presented the Topp-Leone generated exponential (TLE) distribution as an example of the Topp-
Leone generated distribution. A random variable X possessing TLE distribution having cdf and
probability function defined respectiv ely as

FTLE(x) = (1− exp(−λx))α(2− (1− exp(−λx)))α = (1− exp(−2λx))α

and
fTLE(x) = 2αλexp(−2λx)(1− exp(−2λx))α−1,

wher e α is the shape parameter and λ is the scale parameter .
Various entr opy measur es have been de veloped by mathematicians and physicists to describe

several phenomena, depending on the field and the context in which it is being used. Tsallis
[19], introduced a generalization of the Boltzmann-Gibbs entr opy. Tsallis statistics have found
applications in many areas suc h as physics, chemistr y, biology , medicine, economics, geophysics,
etc. By maximizing Tsallis entr opy, subject to certain constraints, leads to the Tsallis distribution,

also known as q-exponential distribution, which has the for m f (x) = c[1− (1− q)x]
1

(1−q) wher e
c is the normalizing constant. Various applications and generalizations of the q-exponential
distribution are giv en in Picoli et al. [13]. In the limit q→ 1, q-entropy conv erges to Boltzmann-
Gibbs entr opy.

An important characteristic of q-exponential distribution is that it has tw o parameters q and λ
providing mor e flexibility with regar d to its deca y, dif ferently from exponential distribution. The
q exponential distribution is defined by its cdf and pdf as,

F1qE(x) = 1− [1− (1− q)λx]
(2−q)
1−q . (5)
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f1qE(x) = (2− q)λ[1− (1− q)λx]
1

1−q , 1− λ(1− q)x > 0, λ > 0, q < 2, q 6= 0 (6)

The parameter q is known as entr opy index. As q→ 1, the q-exponential distribution becomes
exponential distribution. In that sense q-exponential distribution is a generalization of exponential
distribution. The parameters q and λ deter mine how quickly the pdf deca ys. In the reliability
context, an important characteristic of the q-exponential distribution is its hazar d rate, which is
not necessarily constant as in exponential distribution.

The rest of the paper is organized as follo ws. In section 2 we will discuss the Type 1 Topp-Leone
q-Exponential Distribution. In section 3 consists of the quantile properties of Type 1 TLqE
distribution. Section 4, we described a new reliability test plan for type 1 TLqE distribution
and its applications are also discussed. In Section 5, we apply the Type 1 TLqE distribution to
a real data sets to sho w that it can be used quite effectiv ely in analyzing lifetime data. Finally ,
concluding remarks and futur e work are addr essed in Section 6.

2. Type 1 Topp-Leone q-Exponential Distribution

In this section we discuss the type 1 Topp-Leone generated q− exponential (TLqE) distribution
introduced by combining the TL distribution with q− exponential distribution, for mor e details
see Sebastian et al. [17]. Substituting (5) and (6) in (3) and (4) respectiv ely we will get the
distribution function and density function of TLqE distribution as follo ws:

F1TLqE(x) = {1− [1− (1− q)λx]2(
2−q
1−q )}α, x > 0, λ, α > 0, q < 2, q 6= 0.

and

f1TLqE(x) = 2αλ(2− q)[1− (1− q)λx]
3−q
1−q {1− [1− (1− q)λx]2(

2−q
1−q )}α−1,

wher e 1− [1− (1− q)λx]2(
2−q
1−q ) > 0, λ, α > 0, q < 2.

Figure 1: Plots of F(x) of TLqE distribution for α = 1.1, λ = 0.1 (left) and for λ = 0.3, q = 1.1 (right).

RT&A, No 3 (69) 
Volume 17, September 2022

363



Nicy Sebastian, Jeena Joseph and Princy T
Type 1 Topp-Leone q−Exponential Distribution

Figure 2: Plots of f(x) of TLqE distribution for α = 1.1, λ = 0.1 (left) and for λ = 0.3, q = 1.1 (right).

In Figur e 1 and Figur e 2, we can see the plots of cdf and pdf of TLqE for dif ferent values
of the shape parameters α and q. The sur viv al function, the probability density function and
the Hazar d function are the three important functions that characterize the distribution of the
sur viv al times. Her e

S(x) = 1− {1− [1− (1− q)λx]2(
2−q
1−q )}α,

and

h(x) = 2αλ(2−q)[1−(1−q)λx]
3−q
1−q {1−[1−(1−q)λx]

2( 2−q
1−q )}α−1

1−{1−[1−(1−q)λx]
2( 2−q

1−q )}α

respectiv ely are the sur viv al and the hazar d function of TLqE distribution. Figur e 3, giv es the
plots of h(x) of TLqE distribution for dif ferent values of the shape parameters α and q.

Figure 3: Plots of h(x) of TLqE distribution for α = 1.1, λ = 0.1 (left) and for λ = 0.3, q = 1.1 (right).

As q→ 1 then f1TLqE(x) goes to

f3TLqE(x) = 2αλe−2λx
(

1− e−2λx
)α−1

, λ, α > 0, x > 0, (7)

and the correspond cdf is

F3TLqE(x) =
(

1− e−2λx
)α

, x > 0, λ, α > 0.

3. Quantile properties of type 1 Topp-Leone q−Exponential Distribution

3.1. Distributional characteristics
In modelling and analysis of statistical data, probability distribution can be specified either
in ter ms of distribution function or by the quantile function. Quantile functions have several
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inter esting properties that are not shar ed by distributions, which makes it mor e conv enient for
analysis. For example, the sum of tw o quantile functions is again a quantile function. For a
nonnegativ e random variable X with distribution function F(x), the quantile function Q(u) is
defined by (see Nair et al. [11])

Q(u) = F−1(u) = in f {x : F(x) ≥ u}, 0 ≤ u ≤ 1 (8)

For every -∞ < x < ∞ and 0 < u < 1, we have

F(x) ≥ u if and only if Q(u) ≤ x.

Thus, if ther e exists an x such that F(x) = u, then F(Q(u)) = u and Q(u) is the smallest value of
x satisfying F(x) = u. Further , if F(x) is continuous and strictly increasing, Q(u) is the unique
value x such that F(x) = u, and so by solving the equation F(x) = u, we can find x in ter ms of u
which is the quantile function of X.

By using inv ersion method, we can generate a randon variate from TLqE distribution. We
have alr eady seen that the relationship betw een a random variable X, having TLqE distribution,
and a random variable T, having the TL distribution, is

X = G−1(t)

=
1− (1− t)

1−q
2−q

(1− q)λ
(9)

wher e G−1(· ) is related to inv ersion of the q-exponential cdf. The quantile function of the TL
distribution is

t = 1−
√

1− u
1
α , (10)

wher e u is picked from the unifor m distribution over (0, 1). Then the quantile function of type 1
TLqE distribution is obtained by using equation (9) and (10),

Q(u) =
1−

(√
1− u

1
α

)(
1−q
2−q )

(1− q)λ
, q < 2. (11)

The quantile-based measur es of the distributional characteristics like location, dispersion,
ske wness, and kurtosis are useful for estimating parameters of the model by matching population
characteristics with corresponding sample characteristics. We can obtain the median as Median =
Q( 1

2 ). Dispersion is measur ed by the inter quartile range, IQR = Q( 3
4 ) − Q( 1

4 ). Ske wness is

measur ed by Galton’s coef ficient, S =
Q( 3

4 )+Q( 1
4 )−2M

IQR . Moors proposed a measur e of kurtosis as,

T =
Q( 7

8 )−Q( 5
8 )+Q( 3

8 )−Q( 1
8 )

IQR .

If f (x) is the probability function of X, then f (Q(u)) is called the density quantile function .
The deriv ativ e of Q(u),

q(u) = Q
′
(u),

is known as the quantile density function of X. If F(x) is right continuous and strictly increasing,
we have

F(Q(u)) = u (12)

so that F(x) = u implies x = Q(u). When f(x) is the probability density function (PDF) of X; we
have from (12)

q(u) f (Q(u)) = 1 (13)

RT&A, No 3 (69) 
Volume 17, September 2022

365



Nicy Sebastian, Jeena Joseph and Princy T
Type 1 Topp-Leone q−Exponential Distribution

Quantile function has several properties that are not shar ed by distribution function. See Nair et
al. [11] for details. Now the qunatile density of type 1 TLqE distribution is obtained as

q(u) =
1

2αλ(2− q)
u

1
α−1

(
1− u

1
α

) q−3
2(2−q) . (14)

For the proposed family of distribution, the density function f (x) can be written in ter ms of
the distribution function as

f (x) = 2αλ(2− q)
F(x)1− 1

α(
1− (F(x))

1
α

) q−3
2(2−q)

. (15)

For all values of the parameters, the density is strictly decr easing in x and it tends to zer o as x→∞.

3.2. L−moments
The L-moments are often found to be mor e desirable than the conv entional moments in

describing the characteristics of the distributions as well as for infer ence. A unified theor y and a
systematic study on L− moments have been presented by Hosking [3].
The rth L− moment is giv en by

Lr =
∫ 1

0

r−1

∑
k=0

(−1)r−1−k
(

r− 1
k

)(
r− 1 + k

k

)
ukQ(u)du. (16)

Theorem 1. For the type 1 TLqE distribution, the rth L− moment can be obtained by using the
follo wing recurr ence relation,

Lr =
r−1

∑
k=0

(−1)r−1−k
(

r− 1
k

)(
r− 1 + k

k

)
α

λ(1− q)

[
B(1, kα)− B(

(1− q)
2(2− q)

+ 1, kα)

]
. (17)

So we can evaluate the L−coef ficient of variation (τ2), analogous to the coef ficient of variation
based on ordinar y moments is giv en by, τ2 = L2

L1
. Similarly the L−coef ficient of ske wness, (τ3)

and kurtosis, (τ4) of type 1 Topp-Leone generated q-expo nential quantile function respectiv ely
can be obtained as τ3 = L3

L2
and τ4 = L4

L3
.

3.3. Order statistics of type 1 Topp-Leone q-Exponential Distribution
If Xr:n is the rth order statistic in a random sample of size n, then the density function of Xr:n

can be written as
fr(x) =

1
B(r, n− r + 1)

f (x)F(x)r−1(1− F(x))n−r (18)

From Eq.(15), we have

fr(x) =
2αλ(2− q)

B(r, n− r + 1)
F(x)r− 1

α (1− F(x))n−r(
1− (F(x))

1
α

) q−3
2(2−q)

. (19)

Hence,

µr:n = E(Xr:n) =
∫

x fr(x)dx

=
2αλ(2− q)

B(r, n− r + 1)

∫ ∞

0
x

F(x)r− 1
α (1− F(x))n−r(

1− (F(x))
1
α

) q−3
2(2−q)

dx. (20)
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In quantile ter ms, we have

E(Xr:n) =
2αλ(2− q)

B(r, n− r + 1)

∫ 1

0
Q(u)

ur− 1
α (1− u)n−r(

1− (u)
1
α

) q−3
2(2−q)

du. (21)

For the type 1 TLqE distribution, the first-or der statistic X1:n has the quantile function

Q1(u) = Q(1− (1− u)
1
n ) =

1
λ(1− q)

[
1−

(
1− (1− u)

1
n

) 1
α

] (1−q)
2(2−q)

, (22)

and the nth order statistic Xn:n has the quantile function

Qn(u) = Q(u
1
n ) =

1
λ(1− q)

[
1− (1− u

1
nα )
] (1−q)

2(2−q) . (23)

3.4. Hazar d quantile function
One of the basic concepts emplo yed for modeling and analysis of lifetime data is the hazar d rate.
In a quantile setup, Nair et al. [11] defined the hazar d quantile function, which is equiv alent to
the hazar d rate. The hazar d quantile function H(u) is defined as

H(u) = h(Q(u))) = (1− u)−1 f Q(u) = [(1− u)q(u)]−1. (24)

Thus H(u) can be inter preted as the conditional probability of failur e of a unit in the next small
inter val of time giv en the sur viv al of the unit until 100(1− u)% poi nt of the distribution. Note
that H(u) uniquely deter mines the distribution using the identity ,

Q(u) =
∫ u

0

dp
(1− p)H(p)

. (25)

The hazar d quantile functions of type 1 TLqE distribution is

H(u) =

(
(1− u)

1
2αλ(2− q)

u
1
α−1

(
1− u

1
α

) q−3
2(2−q)

)−1

(26)

with H(0) = ∞ and H(1) = 0. Plots of hazar d quantile function for dif ferent values of parameters
are giv en in figur e 4.

Figure 4: Plots of hazard quantile function

No. Parameter region Shape of hazar d quantile function

1 0 < α < 1 and q < 2 Decr easing hazar d rate (DHR)
2 α > 0 and q < 2 Upside-do wn Bathtub
3 α = 1, q < 2 and λ = 0 Constant
4 α = 1 and q < 2 DHR

Table 1: Behavior of the hazard quantile function for different regions of parameter space.
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3.5. Mean residual quantile function
Another concept used in reliability is that of residual life Xt = (X − t|X > t) with sur viv al

function

F̄t(x) = F̄(t + x)/ F̄(t), x ≥ 0, 0 < t < T.

The mean residual life function is then

m(t) = E(Xt) = [F̄(t)]−1
∫ ∞

t
F̄(x)dx.

Accor dingly , the mean residual quantile function is defined by Nair et al. [11] as

M(u) = mQ(u) = (1− u)−1
∫ 1

u
(Q(t)−Q(u))dt (27)

which is the average remaining life beyond the 100(1− u)% point of the distribution. For the type
1 TLqE distribution, M(u) has the for m

M(u) =
1

λ(1− q)

[
α

1− u
B(1−u1/ α)

(
(1− q)

2(2− q)
+ 1, α

)
+ (1− u1/ α)

(1−q)
2(2−q)

]
. (28)

wher e Bu(a, b) =
∫ u

0 xa−1(1− x)b−1dx is the incomplete beta function.

3.6. Reversed hazar d quantile function
The reversed hazar d quantile function is (Nair et al. [11]) defined by

A(u) =
1

uq(u)
(29)

and it deter mines the distribution through the for mula

Q(u) =
∫ u

0

1
pA(p)

dp. (30)

For type 1 TLqE distribution,

A(u) = q(u) =
1

2αλ(2− q)
u

1
α−2

(
1− u

1
α

) q−3
2(2−q) . (31)

4. Reliability Test Plan

Acceptance sampling plan is an inspection procedur e used to de ter mine whether to accept or
reject a specific quantity of material. (See Kantam et al. [6], Rao et al. [15], Jose and Joseph [4],
Joseph and Jose [5] etc.) If it is applied to a series of lots, it prescribes a procedur e that will giv e a
specified probability of accepting lots of giv en quality .

In statistical quality contr ol, acceptance sampling plan is concer ned with the inspection of a
sample of products taken from a lot and the decision whether to accept or reject the lot based on
the quality of the product. Her e we discuss the reliability test, with its operating characteristic
function plan for accepting or rejecting a lot wher e the lifetime of the product follo ws type 1 Topp
- Leone q− exponential distribution. In a life testing experiment, the procedur e is to ter minate
the test by a predeter mined time ‘t’ and note the number of failur es. If the number of failur es at
the end of time ‘t’ does not exceed a giv en number ‘c’, called acceptance number then we accept
the lot with a giv en probability of at least ‘p’. But if the number of failur es exceeds ‘c’ befor e

RT&A, No 3 (69) 
Volume 17, September 2022

368



Nicy Sebastian, Jeena Joseph and Princy T
Type 1 Topp-Leone q−Exponential Distribution

time ‘t’, we reject the lot. For such truncated life test and the associated decision rule, we are
inter ested to obtain the smallest sample size to make at a decision. Even though a large number
of distributions belonging to Topp-Leone generated family have been de veloped with wide range
of applications, none of these have been applied in acceptance sampling to de velop reliability test
plans.This motiv ated the present study .
Assume that the lifetime of a product T follo ws the type 1 Topp-Leone q− exponential distribution
with cumulativ e distribution function (cdf)

F(t) = {1− [1− (1− q)
t
λ
]
2( 2−q

1−q )}α, t > 0, λ, α > 0, q < 2. (32)

Let λ0 be the requir ed minimum average life time and the shape parameters α and q are known.
Then

FTLqE(t; α, q, λ) ≤ GTLqE(t; α, q, λ0)⇔ λ ≥ λ0. (33)

A sampling plan is specified by the number of units n on test, the acceptance number c, the
maximum test duration t and the minimum average lifetime repr esented by λ0.

The probability of accepting a bad lot (consumer ’s risk) should not exceed the value 1− p∗,
wher e p∗ is a lower bound for the probability that a lot of true value λ belo w λ0 is rejected by
the sampling plan. For fixed p∗ the sampling plan is characterized by (n, c, t/ λ0). Binomial
distribution can be used to find the acceptance probability for suf ficiently large lots. The aim is to
deter mine the smallest positiv e integer n for giv en values of c and t/ λ0 such that

L(p0) =
c

∑
i=0

(
n
i

)
p0

i(1− p0)
n−i ≤ 1− p∗ (34)

wher e p0 = FTLqE(t; α, q, λ0) giv en by (32) which indicates failur e probability befor e time ‘t’ which
depends only on the ratio t/ λ0. The operating char acteristic function L(p) is the acceptance
probability of the lot as a function of the failur e probability p(λ) = FTLqE(t; α, q, λ)

The average life time of the product is increasing with λ and the failur e probability p(λ)
decr eases implying that the operating characteristic function is increasing in λ. The minimum
values of n satisfying (34) are obtained for α = 2, q = 1.1 and p∗=0.75, 0.95, 0.99 and t/ λ0 = 0.248,
0.361, 0.482, 0.602, 0.903, 1.204, 1.505 and 1.806. The results are displa yed in Table 2.

If p0 = FTLqE(t; α, q, λ0) is small and n is very large, the binomial probability may be appr oxi-
mated by Poisson probability with parameter θ = np0 so that (34) becomes

L1(p0) =
c

∑
i=0

θi

i!
e−θ ≤ 1− p∗ (35)

The minimum values of n satisfying (35) are obtained for the same combination of values of α, q,
p∗ and t/ λ0 and are displa yed in Table 3.

The operating characteristic function of the sampling plan (n,c,t/ λ0) giv es the probability L(p)
of accepting the lot with

L(p) =
c

∑
i=0

(
n
i

)
p0

i(1− p0)
n−i (36)

wher e p = F(t, λ) is consider ed as a function of λ.
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Table 2: Minimum sample size using binomial approximation

p∗ c t/ λ0
0.248 0.361 0.482 0.602 0.903 1.204 1.505 1.806

0.75

0 11 6 4 3 2 1 1 1
1 22 12 8 6 4 3 3 2
2 32 17 11 9 6 4 4 4
3 41 22 15 11 7 6 5 5
4 51 27 18 14 9 7 6 6
5 60 33 22 17 11 9 8 7
6 70 38 25 19 13 10 9 8
7 79 43 29 22 14 12 10 9
8 88 48 32 24 16 13 11 11
9 97 52 35 27 18 14 13 12

10 106 57 39 30 20 16 14 13

0.95

0 24 12 8 6 4 3 2 2
1 38 20 13 10 6 4 4 3
2 50 27 17 13 8 6 5 5
3 62 33 22 16 10 8 7 6
4 73 39 26 19 12 9 8 7
5 84 45 30 22 14 11 9 8
6 95 51 34 25 16 12 11 10
7 106 56 37 28 18 14 12 11
8 116 62 41 31 20 15 13 12
9 126 68 45 34 22 17 15 13

10 136 73 49 37 24 18 16 14

0.99

0 36 19 12 9 5 4 3 2
1 52 27 18 13 13 6 5 4
2 66 35 23 17 17 8 6 5
3 80 42 27 20 20 9 8 7
4 92 49 32 24 24 11 9 8
5 104 55 36 27 27 13 11 9
6 116 61 41 30 30 14 12 11
7 128 68 45 33 33 16 13 12
8 139 74 49 36 36 17 15 13
9 150 80 53 39 39 19 16 14

10 162 86 57 42 42 21 17 16

Table 3: Minimum sample size using poisson approximation

p∗ c t/ λ0
0.248 0.361 0.482 0.602 0.903 1.204 1.505 1.806

0.75

0 12 7 5 4 3 2 2 2
1 23 13 9 7 5 4 4 3
2 33 18 13 10 7 6 5 5
3 43 23 16 13 9 7 7 6
4 52 29 20 15 11 9 8 7
5 62 34 23 18 12 10 9 9
6 71 39 27 21 14 12 11 10
7 80 44 30 23 16 13 12 11
8 89 49 34 26 18 15 13 12
9 99 54 37 29 20 16 15 14

10 108 59 40 31 21 18 16 15

0.95

0 25 14 10 8 5 4 4 4
1 40 22 15 12 8 7 6 6
2 52 29 20 15 11 9 8 7
3 64 36 24 19 13 11 10 9
4 76 42 29 22 15 13 11 11
5 87 48 33 25 17 14 13 12
6 98 54 37 28 20 16 14 14
7 109 60 41 32 22 18 16 15
8 119 65 45 35 24 20 18 17
9 130 71 49 38 26 21 19 18

10 140 77 52 41 28 23 21 19

0.99

0 38 21 15 11 8 7 9 6
1 55 30 21 16 11 9 12 8
2 70 38 26 20 14 12 15 10
3 83 46 31 24 17 14 18 12
4 96 53 36 28 19 16 21 13
5 109 59 41 31 22 18 24 15
6 120 66 45 35 24 20 26 17
7 132 72 49 38 26 22 29 18
8 144 79 54 42 28 23 31 20
9 156 85 58 45 31 25 34 21

10 167 91 62 48 33 27 36 23

RT&A, No 3 (69) 
Volume 17, September 2022

370



Nicy Sebastian, Jeena Joseph and Princy T
Type 1 Topp-Leone q−Exponential Distribution

Table 4: Values of the Operating Characteristic function for the sampling plan (n,c,t/λ0)

λ/ λ0
p∗ n c t/ λ0 2 2.5 3 3.5 4 4.5 5

0.75

32 2 0.241 0.8821 0.9541 0.9804 0.9909 0.9954 0.9975 0.9986
17 2 0.361 0.8665 0.9453 0.9758 0.9884 0.9940 0.9967 0.9981
11 2 0.482 0.8594 0.9403 0.9728 0.9866 0.9930 0.9961 0.9977
9 2 0.602 0.8113 0.9144 0.9591 0.9792 0.9888 0.9937 0.9962
6 2 0.903 0.7429 0.8711 0.9334 0.9640 0.9797 0.9880 0.9927
4 2 1.204 0.7926 0.8952 0.9449 0.9696 0.9825 0.9895 0.9935
4 2 1.505 0.6387 0.7926 0.8801 0.9291 0.9568 0.9729 0.9825
4 2 1.806 0.4854 0.6703 0.7926 0.8688 0.9158 0.9449 0.9632

0.95

50 2 0.241 0.7096 0.8689 0.9389 0.9699 0.9843 0.9913 0.9949
27 2 0.361 0.6638 0.8383 0.9208 0.9595 0.9782 0.9877 0.9928
17 2 0.482 0.6579 0.8306 0.9149 0.9555 0.9756 0.9861 0.9917
13 2 0.602 0.6111 0.7968 0.8936 0.9425 0.9677 0.9812 0.9886
8 2 0.903 0.5499 0.7448 0.8567 0.9181 0.9518 0.9708 0.9817
6 2 1.204 0.4955 0.6944 0.8184 0.8911 0.9334 0.9582 0.9731
5 2 1.505 0.4409 0.6410 0.7756 0.8595 0.9109 0.9423 0.9619
5 2 1.806 0.2792 0.4788 0.6410 0.7572 0.8359 0.8883 0.9231

0.99

66 2 0.241 0.5459 0.7689 0.8838 0.9398 0.9675 0.9817 0.9892
35 2 0.361 0.4989 0.7292 0.8572 0.9232 0.9573 0.9753 0.9852
23 2 0.482 0.4582 0.6921 0.8307 0.9059 0.9462 0.9683 0.9806
17 2 0.602 0.4242 0.6588 0.8055 0.8887 0.9349 0.9608 0.9757
17 2 0.903 0.3109 0.5421 0.7126 0.8221 0.8892 0.9298 0.9546
8 2 1.204 0.2681 0.4858 0.6596 0.7792 0.8567 0.9061 0.9374
6 2 1.505 0.2866 0.4955 0.6612 0.7764 0.8523 0.9015 0.9334
5 2 1.806 0.2792 0.4788 0.6410 0.7572 0.8359 0.8883 0.9231

The values of n and c are deter mined by means of operating characteristics (OC) function for
giv en value of p∗ and t/ λ0 are displa yed in Table 4 by considering the fact that p = F( t

λ0
/ λ

λ0
).

The producer ’s risk is the probability of rejecting a lot when λ > λ0.We can compute the
producer ’s risk by first finding p = F(t; λ) and then using the binomial distributi on function. For
the giv en value of producer ’s risk say 0.05 we obtain p from the sampling plan giv en in Table 1
subject to the condition that

c

∑
i=0

(
n
i

)
p0

i(1− p0)
n−i ≥ 0.95 (37)

The minimum value of λ/ λ0 satisfying (37) for the sampling plan (n,c,t/ λ0) and for the giv en p∗

are listed in Table 5.

4.1. Explanation of the tables
Assume that the lifetime follo ws type 1 TLqE distribution with α=2 and q=1.1. Suppose that

the experimenter is inter ested in establishing that the true unkno wn average life is at least 1000
hours with confidence p∗ = 0.75. It is desir ed to stop the experiment at t = 602 hours. Then, for
an acceptance number c = 2, the requir ed n is 9 (Table 2) . If during 602 hours, no mor e than 2
failur es out of 9 are obser ved, then the experimenter can assert that the average life is at least
1000 hours with a confidence level of 0.75. If the Poisson appr oximation to binomial probability is
used, the value of n is 10 ( Table 3) . For this sampling plan (n = 9, c = 2, t/ λ0=0.602) under the
type 1 TLqE distribution, the operating characteristic values from Table 3 are giv en belo w.
Comparing with Reliability Test Plans for Marshall- Olkin Extended Exponential distribution
(see Rao et al. [15]), for α=2, acceptance number c=9, for the specified ratio t/ λ0=0.482 and
confidence level p∗=0.75, the minimum sample size is 49 using binomial appr oximation, wher eas
for type 1 TLqE distribution it is 35. Similarly , if we are considering each value of c and each vale
of t/ λ0, the scaled ter mination time is unifor mly smaller than those for the present reliability
test plans.This impr ovement makes the new test plan mor e adv antageous and helps in making
optimal decisions.
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Table 5: Minimum ratio of true λ and required λ0 for the acceptability of a lot with producer’s risk of 0.05 for
α = 2, q = 1.1

p∗ c t/ λ0
0.241 0.361 0.482 0.602 0.903 1.204 1.505 1.806

0.75

0 6.6277 6.9167 7.4538 8.5749 10.0789 9.02959 10.8794 12.9175
1 3.3083 3.3984 3.6148 3.8266 4.5121 4.9581 6.1036 5.0452
2 2.5084 2.6096 2.6871 2.9107 3.3462 3.1597 3.8907 4.6549
3 2.1518 2.7074 2.3305 2.3933 2.5223 2.9791 3.0960 3.6261
4 1.9886 2.0125 2.0707 2.2308 2.3344 2.4468 2.5469 3.0898
5 1.8547 1.9365 1.9647 2.0913 2.2343 2.4174 2.6911 2.7487
6 1.7632 1.8542 1.8795 1.9327 2.0847 2.1529 2.3735 2.4319
7 1.7019 1.7454 1.8105 1.8628 1.9042 2.1529 2.1756 2.2671
8 1.6283 1.6914 1.7471 1.7379 1.8576 2.0156 2.0471 2.4124
9 1.5945 1.6413 1.6744 1.7379 1.8576 1.8908 2.1317 2.3129

10 1.5624 1.5946 1.6406 1.7093 1.8130 1.8908 2.0063 2.1783

0.95

0 9.2357 10.6374 11.5682 12.5609 13.9643 16.5278 16.0189 19.2227
1 4.3401 4.7867 4.9101 5.1202 5.8541 6.0161 7.2767 7.3615
2 3.1957 3.3984 3.5699 3.7542 4.1055 4.3640 4.8318 5.6912
3 2.6899 2.8940 3.0059 3.1139 3.2874 3.8654 4.2043 4.4687
4 2.4550 2.5494 2.6871 2.7369 2.9548 3.0668 3.5219 3.7152
5 2.2687 2.3403 2.4084 2.5180 2.6971 2.8961 3.0217 3.2294
6 2.1163 2.1899 2.2584 2.3362 2.4825 2.5905 3.0217 3.2294
7 2.0186 2.0965 2.1290 2.1820 2.3698 2.5389 2.7524 2.9591
8 1.9320 2.0125 2.0707 2.0913 2.3001 2.3603 2.5195 2.7204
9 1.8547 1.9365 1.9647 2.0490 2.1721 2.3055 2.5195 2.5581

10 1.8074 1.8806 1.9163 2.0086 2.1721 2.2019 2.3635 2.4565

0.99

0 12.2925 13.5082 13.2554 14.7459 17.3020 20.5092 20.6597 21.2298
1 5.3685 5.5826 5.9984 6.0065 9.0097 7.6532 8.7403 9.0242
2 3.7269 3.9328 4.1647 4.3518 6.5277 5.3182 5.4550 5.7982
3 3.1957 3.2789 3.4039 3.4961 5.2442 4.1826 4.8318 5.0452
4 2.7589 2.8940 3.0059 3.1819 4.6708 3.7256 3.8335 4.2262
5 2.5084 2.6096 2.7086 2.8206 4.2051 3.3635 3.7239 3.6261
6 2.3569 2.4134 2.5856 2.6591 3.9886 2.9791 3.2546 3.6261
7 2.2279 2.3172 2.4084 2.4538 3.6622 2.8961 2.9504 3.3029
8 2.1163 2.2099 2.2865 2.3251 3.4877 2.6037 2.9504 3.0234
9 2.0498 2.1326 2.1914 2.2308 3.3462 2.5389 2.7524 2.8362

10 1.9886 2.0619 2.1290 2.1820 3.2308 2.5389 2.5748 2.8362

Table 6: Values of the operating characteristic function L(p) for values of λ/ λ0 .

λ/ λ0 2 2.5 3 3.5 4 4.5 5
L(p) 0.8113 0.9144 0.9591 0.9792 0.9888 0.9937 0.9962
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4.2. Application
Consider the follo wing order ed failur e times of the release of a softw are giv en in ter ms of hours
from starting of the execution of the softw are up to the time at which a failur e of the softw are is
occurr ed (see Wood [21]). This data can be regar ded as an order ed sample of size n = 9 consisting
of the obser vations {254, 788, 1054, 1393, 2216, 2880, 3593, 4281, 5180}. Let the requir ed average
lifetime be 1000 hours and the testing time be t = 602 hours, which leads to ratio of t/ λ0 = 0.602
with a corresponding sample size n = 9 and an acceptance number c = 2, which are obtained
from Table 1 for p∗ = 0.75. Ther efor e, the sampling plan for the abo ve sample data is (n =9, c = 2,
t/ λ0 = 0.602). Based on the obser vations, we have to decide whether to accept the product or
reject it. We accept the product only if the number of failur es befor e 602 hours is less than or
equal to 2. However, the confidence level is assur ed by the sampling plan only if the giv en life
times follo w type 1 TLqE distribution. In order to confir m that the giv en sample is generated by
lifetimes follo wing the type 1 TLqE distribution, we have compar ed the sample quantiles and the
corresponding population quantiles and found a satisfactor y agr eement. Thus, the adoptio n of
the decision rule of the sampling plan seems to be justified. In the sample of 9 units, ther e is only
one failur e at 254 hours befor e t = 602 hours. Ther efor e we accept the product.

5. Numerical Illustration

The data consists of the number of successiv e failur e for the air conditioning system reported of
each member in a fleet of thirteen Boeing 720 jet air planes. The pooled data with 214 obser vations
w as consider ed by Proschan [14]. 50, 130, 487, 57, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9, 254, 493,
33, 18, 209, 41, 58, 60, 48, 56, 87, 11, 102, 12, 5, 14, 14, 29, 37, 186, 29, 104, 7, 4, 72, 270, 283, 7, 61,
100, 61, 502, 220, 120, 141, 22, 603, 35, 98, 54, 100, 11, 181, 65, 49, 12, 239, 14, 18, 39, 3, 12, 5, 32, 9,
438, 43, 134, 184, 20, 386, 182, 71, 80, 188, 230, 152, 5, 36, 79, 59, 33, 246, 1, 79, 3, 27, 201, 84, 27,
156, 21, 16, 88, 130, 14, 118, 44, 15, 42, 106, 46, 230, 26, 59, 153, 104, 20, 206, 5, 66, 34, 29, 26, 35, 5,
82, 31, 118, 326, 12, 54, 36, 34, 18, 25, 120, 31, 22, 18, 216, 139, 67, 310, 3, 46, 210, 57, 76, 14, 111, 97,
62, 39, 30, 7, 44, 11, 63, 23, 22, 23, 14, 18, 13, 34, 16, 18, 130, 90, 163, 208, 1, 24, 70, 16, 101, 52, 208,
95, 62, 11, 191, 14, 71.

Table 7: The values of estimated parameters of Dataset 1

The model Estimate and Standar d Error (in paranthesis) of Dataset 1
Type 1 TLqE α=1.2150 (0.2422), λ=0.0149 (0.0079), q=1.3883(0.1279)

TLE α=0.9036 (0.0884), λ=0.0052 (0.0005)
E λ =0.0112 (0.0008)

Table 8: Goodness of fit of collection of different distributions for the data set.

AIC CAIC BIC HQIC A∗ w∗ K-S p value -log L
Type 1 TLqE 1964.01 1964.18 1973.60 1967.92 0.46 0.06 0.04 0.78 979.02

TLE 1968.37 1968.44 1974.74 1970.95 1.37 0.25 0.07 0.28 982.18
E 1967.47 1967.49 1970.65 1968.76 2.08 0.40 0.08 0.13 982.73
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Figure 5: The P - P plot and estimated pdf of data set.

Accor ding to the Table 8 the type 1 TLqE model is mor e appr opriate as compar ed to the TLE
and exponential distribution.

6. Conclusion and future work

Introduced a quantile function associated with the type 1 Topp-Leone q-exponential distribution.
The estimation of parameters of the model using L−moments is studied. Also, a reliability test
plan w as deriv ed on the basis that the lifetime distribution of the test item follo ws the type 1
TLqE distribution. Besides, we find the minimum sample size needed for the acceptance or
rejection of a lot based on per centiles. Some useful tables were provided and applied to establish
the test plan. The new test plan is applied to illustrate its use in industrial contexts. We proved
empirically the importance and flexibility of the new model in the model building by using a real
data set. One can de velop a parallel theor y for type 2 TLqE distribution using the type 2 beta
generated for m giv en in Sebastian et al. [18].
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